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Abstract—Many mission-critical applications such as military
surveillance, human health monitoring, and obstacle detaon
in autonomous vehicles impose stringent requirements forvent
detection accuracy and demand long system lifetimes. Thrah
guantitative study, we show that traditional approaches toevent
detection have difficulty meeting such requirements. Spefically,
they cannot explore the detection capability of a deployedystem
and choose the right sensors, homogeneous or heterogeneoios
meet user specified detection accuracy. They also cannot dym-
ically adapt the detection capability to runtime observatons to
save energy. Therefore, we are motivated to propose Watchdp
a modality-agnostic event detection framework that clustes
the right sensors to meet user specified detection accuracy
during runtime while significantly reducing energy consumpgion.
Through evaluation with vehicle detection trace data and a
building traffic monitoring testbed of IRIS motes, we demonsrate
the superior performance of Watchdog over existing solutias in
terms of meeting user specified detection accuracy and enegrg
savings.

I. INTRODUCTION

we must first determine how to differentiate the sensing
capabilities of individual sensors and sensor clusters in
a specific deployment. Secondly, how can the detection
capability of a specific deployment be obtained? Lastly, if
the detection capability of a specific deployment exceeds
the user detection requirements, how to obtain a subset
of the detection capability to save energy and still meet
the user requirements?

Since many real deployments use multiple sensor modal-
ities, how to efficiently perform collaboration between
heterogeneous sensors to meet specific user require-
ments? Instead of relying on different sensing models
for different modalities, how to create a generic solution
that can work easily and efficiently with a wide range of
deployments and sensor modalities?

How to adapt the detection capability to runtime sen-
sor observations? Some runtime observations may easily
yield a confident event detection decision with a small,

Wireless sensor network deployments have been widely €nergy-efficient cluster of sensors. However, other run-
used for event detection in military surveillanéé [1], ambu  fime observations may require more detection capability.
latory medical monitoring(12], and vehicle trackirig [3]. e With different runtime observations requiring different
event detection scenarios usually require high accuracy to detection capabilities, how to form different clustershwit
achieve application goals. For example, urban planners may different detection capabilities? Furthermore, how can
wish to monitor traffic flow at a troublesome intersectibh [3] ~ these clusters of varying capability collaborate to perfor
with less than 5% false positive and false negative vehicle confident event detection within a deployment?

detection rates. A high false positive rate may precipi@te Eyisting approaches for event detection do not provide a
costly and unneeded road expansion. Similarly, a high falggjistic solution with respect to addressing these chgtien
negative rate in detectipn may cause the plapners to_ Cam‘?ie%sing coverage approachBs [4] [5] only provide best teffor
proposed road expansion, leading to worsening traffic eongietection and do not cluster the right sensors to meet user
tions. Such an event detect|0r_1 appllcat|0_n must meet asuSfatection requirements. Many machine learniig [6] apgreac
event detection accuracy requirements with a long deploymeyster sensors to save energy, but do not provide confident
lifetime. When a framework makes event detection decisiog§ent detection. Application or modality-specific sensimgd-
that meet a user's accuracy requirements in terms of desitqd [7] [€] can determine theoretical detection accuraey, b
false positive and false negative rates, we say @osfident this accuracy is not always achieved during runtime since
Several challenges exist to provide a confident event det@gase models fail to account for sensing irregularity [5. |
tion framework: all of these existing approaches, the detection capaluifity
« How to cluster the right sensors in order to meet usdeployment is not fully explored to cluster the right sessor
detection requirements? Previous work has shown thmaket user requirements during runtime event detection in an
event detection with individual sensors can exhibit up tenergy efficient way. Therefore, we are motivated to address
60% false positive and false negative rates while sengbese issues, and our main contributions are:
collaboration through clustering can significantly reduce

such inaccuracie§][1]. In order to cluster the right sensors * With trace data from a vehicle detection application, we

show the drawbacks of existing solutions. We motivate
the need for a holistic framework that provides confident
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heterogeneous sensor fusion, and reduces energy usagslaborate in detection to provide energy savings. Bb#]j [3
« We propose Watchdog, an event detection frameworknd [35%] rely on mathematical sensing models to detect syent
which is able to fully explore the available event detectionsing a probabalistic noise distribution. More generaksen
capability of a specific deployment. Watchdog is also ablaodels, such as disc-basedl[3B11[3[711[38] [7], can apply to
to cluster the right sensors to enforce user-defined eventvider range of sensing modalities with reduced accuracy.
detection accuracy during runtime. In comparison with Watchdog, these model-driven approsiche
« Watchdog is able to dynamically adjust its detectioare modality-specific and do not reflect sensing irregudasrit
capability to runtime observations. For observations thf] in real deployments. None explore the detection cajigbil
can easily yield confident event detection decisions, afi a specific deployment to cluster the right sensors and
energy efficiensentinelsensor cluster is used. For morgrovide confident event detection.
difficult observations for which thesentinel cluster is
not able to make a confident decision, a less energy
efficient but more powerfuteinforcementsensor cluster  In this section, we demonstrate the need for a new approach
is used. Watchdog coordinates the two clusters so thatconfident event detection with reduced energy consumptio
user detection requirements can always be met wifur goal is to provide confident event detection at a critical
maximum energy savings. point, such as monitoring vehiclular traffic flow, detecting
« Watchdog is designed as a generic framework, whoseldiers crossing a bridge, or health monitoring with body
performance is evaluated in two scenarios: a vehickensor networks. As an example, we utilize the Wisconsin
detection application using trace data and a buildingensIT experiment[[3] to perform vehicle detection at a
traffic monitoring application using IRIS motes. Thespecific location. The SensIT experiment consists of a 7&nod
performance evaluation shows that Watchdog can alwaystwork with acoustic, seismic, and infrared sensors. Wi¢h
meet user-specified detection accuracy with reduced drace data, we quantify the differences of detection aagura
ergy usage, while in many cases existing solutions cannamong individual sensors and sensor clusters and analgize th
The rest of this paper is organized as follows: We presefitPact on existing event detection solutions. Unlike emst
related work in Sectiofilll and motivate our Watchdog design APproaches, we conclude that performance differences be-
SectiorIll. We describe our detailed Watchdog design in Sewveen different sensors and sensor clusters cannot beeignor
tion [¥] and present its performance evaluation in Sedfidn W0 confident event detection.
Finally, we present conclusions and future work in Sedfidn v  In the trace data analysis, we define a target location at
the “X” along the road in Figur€ll. Data is aggregated into
time intervals of 100ms length. A time interval is defined as
Many event detection approaches attempt to address in-situ event time interval when the vehicle is present within 2
sensing reality but do not cluster the right sensors to mest umeters of the target location. With this in mind, we deternin
detection requirements. In sensing coverage approachg#} [9 vehicle detection accuracy for individual sensors and gens
[L0] [T [5] [L2], energy savings is emphasized by ensuehg clusters using the method that we present in Seéfion] IV-B and
leastk nodes are awake to cover a detection location, leavimge plot the results in Figurd 1.
all other nodes asleep. The authors bfl[13] use statisticalin Figure[l (a), we first observe that sensors with the same
models to remove outlier sensor data as noise. Regionsdistance to the target location may exhibit different detec
similar sensor data are detected Inl[14]. [nl[15] ahd [164ccuracies. For example, nodes 41 and 50 are both 80m from
event detection is provided for multiple modalities alonighw the target location, but their detection accuracies afergifit,
a sleeping scheme to save energy. Other solutions use neacBiB% and 56%, respectively. This is because while accuracy
learning techniques to address in-situ sensing realigh &8 generally decreases with distance from the target location
feature classificatiol [17] 18] 119][6]120], Hidden Marko terrain changes and environmental conditions still preduc
Models [21] [22], or both[[23]. Contrasting with Watchdogjrregularities in sensor performance, which is consisteitt
none of these approaches cluster the right sensors to prowutae findings inl[’5]. This observed sensing irregularity canse
confident event detection with energy savings. modality-specific sensing models to suffer, suchlds [8]. For
Another group of event detection solutions use a modalitgxample, a signal attenuation model for acoustic sen&grs [8
specific sensing model that allows for predicting system derives the same acoustic signal receiving power for sensor
sensor cluster accuracy. An accelerometer-oriented reensivith the same distance to the target location. Therefore, th
model is used in[24]. A sensing model for camera-basedtargame detection accuracy is statistically derived for nadds
localization is presented if_[25]. Specific sensing modets fthe same distance (node 41 and 50 in our example). This signal
acoustic, magnetic, and PIR sensors are presentedlin [26]atenuation model cannot articulate the accuracy diffezen
signal attenuation-based model is usedlin [8] [Z7] [28] [29mong sensors, such as determining which sensor is 93%
[30] [B1], which gives a false positive rate and false nagati accurate and which is 56% accurate in our example. For
rate for a given modality and set of training data, allowinthis reason, the system performance suffers and the reluire
for data fusion between multiple sensdrs|[32]. An attermnati detection accuracy can not always be met, which we further
based model is also used in[33], where nodes in a clustemonstrate in Sectidn_\VB.
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(a) Individual acoustic sensors, labeled by accuracy. (b) Sensor clusters: with 100% accuracy.
Fig. 1. Sensor and cluster event detection performance weitiicle trace data. The target location is marked by the “K'tloe road.

In Figure[l (a), we also observe that not all sensors with@tetection decisions. Our architecture is structured teestiie
the 25m sensing range provide the same detection accuratwllenges that arise from providing confident event ditect
For example, even though both node 60 and 54 are withirough the use of the Local Aggregation, Cluster Genarmatio
the 25m sensing range of the target location, they have dfentinel and Reinforcement Selection, and Runtime Event
ferent detection accuracies, 93% and 86%, respectivelg. TBetection modules.
observed sensing difference can cause sensing coveragd-ba
schemes to suffer. For example, [ [1], only one of multiple Aggregator
sensors with the sensing range is enabled at a time to providg
sensor coverage (or 1-coverage) for energy savings. For ou Generation
example, this means that either node 60 or 54 can be turned o

. .. . Aggregation
to provide such 1-coverage. However, it is clear that usoen

Request
Reinforcement

60 will provide 7% points better accuracy than with node 54. Data Training
Unfortunately, sensing coverage schemes have no knowledge S D
of such subtle but important detection accuracy difference Observations

and hence cannot provide confident event detection.

Figure[l (b) illustrates that different sensor clustersadrie Fig. 2. Watchdog design with node and aggregator components

to provide the same detection accuracy. For example, ctuste The Local Aggregation module, located on sensor nodes, is

Cy. Cy, andCs (consisting of different sensor modalities) car%'sed to provide efficient collaboration between heterogase

gpnsors. Sensor data is aggregated such that observatons f

all provide 100% detection accuracy even though individug " )
s . ifferent sensor modalities can be compared and easilydfuse
sensors cannot. As shown in_[39], clustering sensors can pr

- . X . 42 the aggregator to make cluster-level detection dedsion
duce a synergistic effect, allowing sensors with complitagn In Cluster Generation, we explore the detection capabilit
detection strengths in different scenarios to collabor&te ' P P y

ploring the detection capability of a deployment by evahgt of a deployment by determining the detection capabilities o

the performance of different sensor clusters allows thetm(é]‘\na/dN'dualI sensors and sensor clusters within the deployme

energy efficient clusters to be chosen to confidently detect also use Hidden Markov Models 140] to determine accu-

L . racy between clusters of heterogeneous sensors.
events. However, such thorough exploration is not achievettY 9

by existing works and thus user-defined accuracy requirEmelré g?edstehn;'tnae(;;r;dthieégggﬁ)n;eC': igill? tctl(())fn é (;luzz?fzi arel se-
cannot be met with reduced energy usage. P P Y P aep

: o o ment to runtime observations. Using the deployment detecti
While more negative impacts on existing works can be o . :

L . L apability determined by Cluster Generation, a subset aif th
observed in FigurEl1, we leave it to individual readers due 0

space limitations. From the trace data analysis, it is végrc capability is selected such that the user requirements can

- e . . be met. A cluster of low-powesentinelsensors is selected

that existing approaches have difficulty meeting user requi . : )
. o . .o meet the user detection requirements for many runtime
detection accuracy. This is due to lack of detailed detactio . . o
s Observations, when event detection decisions are easy. For
accuracy knowledge of individual sensors and sensor chiste e . - .
more difficult event detection decisions where more detecti

Therefore, it is imperative to design a scheme that can neowcapability is needed. a cluster éinforcementsensors is

confident event detection with user-defined accuracy, addre : .
A : : Selected to ensure the user detection requirements are met.
in-situ sensing reality, and reduce energy usage.

In Runtime Event Detection, the detection capability is
adapted to runtime observations using the clusters sdlecte
in Sentinel and Reinforcement Selection. Specifically,va-lo

In our Watchdog architecture, depicted in Figllre 2, comppewer set of sentinel sensors make easy event detection deci
tationally limited nodes with sensors are connected thincug sions to meet user accuracy requirements. When the sentinel
link to a more powerful aggregator. Nodes collect sensas datensors determine that more detection capability is needed
and return observations to the aggregator, which makes evensecond set of reinforcement sensors are used to make a

Sentinel and Reinforcement
Selection

IV. WATCHDOG DESIGN



confident detection decision. Algorithm 1 Cluster Generation

Currently, we make use of offline training to determinéput: Set of all sensors in networkV, user-defined false
detection models for different sensor clusters and assumgositive rateu.FP and negative rate.FN, training obser-
that training data is representative of runtime data. In thevationsO = {Oc,:|C; C N,1 <t < T}, ground truth
evaluation, different data are used for training and ruatie- G = {G:|1 <t < T}, number of clusters for each cluster
tection, which demonstrates negligible impact on perforoea  size M
However, if computation and energy concerns permit, onlifutput: Set of clusters” = {C;|C; C N}

training can allow for periodic detection model updates. Randomly generatéd/ clusters for each sizé(1 < k <
) |[N|—1), add toC

A. Local Aggregation for all clustersC; € C do

On a sensor node, the Local Aggregation module allows Train HMM C;.\ for C; with Baum-Welch using)g,
nodes to aggregate data locally at regular intervals, aligw for Aggregation intervat(1 <¢ < T) do
for reduced radio communication and heterogeneous sensor  Determine event probability; with C;.\ andO¢;
fusion. The module is flexible to allow incorporation of if v¢ > .5then E; =1 elseE; =0
different widely used aggregation algorithms. The agdiega Compare system event decisidh with G

interval length is selected such that an event can be capture UpdateC;.OA.FN, C;.OA.FP,C;.v.FN, C;.v.FP
For each sensoj, aggregated data is converted to discrete end for
observations at each aggregation interzaD, ; € {1...m}, end for
wherem is the same for all sensors so that readings from
different modalities can be easily compared. The aggregato
fuses observations from each sengoin a sensor cluster application scenarios. At each aggregation intetyale define
C; to form an observatio¢, ; for that cluster. The fused two hidden states in cluster HMM#, = 0 for non-events and
observations can then be used by the aggregator to determihe= 1 for events. We also provide a sequence of known fused
sensor cluster accuracy or make runtime detection desisiosensor observations for each clustr at each aggregation
interval: Oc;. In the Watchdog context, a trained cluster HMM
C;.\ for cluster C; assumes that events are correlated with
In Cluster Generation, we determine the detection capgarticular cluster observations and noise is correlatat ail
bilities of individual sensors and different sensor cluste other observations. For instance, in the Wisconsin Senata d
exploring the detection capability of a specific deploymentrace, seismic sensor data may produce very high readings
To do this, we determine the detection accuracy of sensshen a vehicle is close to the sensor, but lower readings when
clusters of each possible size (size is 1 for individual ees)s the vehicle is farther away or not present; a trained HMM will
in the network using training trace observations. Ideallg, capture this correlation. HMMs also assume that events and
wish to generate all possible clusters of each size to cdeiple non-events are correlated with time and make use of transiti
explore the deployment detection capability. Howeverpifne probabilities to further predict the likelihood of an eveatt
puting resources are limited, we can complMeandom clus- each aggregation interval.
ters of each possible size from which to choose sentinels andteps 2 and 3With a trained HMM for each cluster, we can
reinforcements. Algorithrhl1 describes the Cluster Geimrat determine a cluster’s event decisidf for each aggregation
process: (1) First, to compute accuracy for a given cluSter interval ¢. E; is derived from the cluster's event probability
in the set of generated clustet§ we train a Hidden Markov +; at each training aggregation interval To determinevy;
Model for that cluster. A thorough explanation of HMMs andor each aggregation interval, we use the forward algorithm
training is provided by[[40]; (2) Second, we determine atelus [40] in conjunction with the trained cluster HMII;.\ and a
event decision at each training data aggregation inteisiagu cluster observation sequen€k;,. The cluster determines an
the trained HMM; (3) Finally, we compare the cluster everdvent occurred at interval (F; = 1) if 4 > .5 and no event
detection decision at each interval with measured grourttl tr occurred £, = 0) if v, < .5. We can then use the cluster’s
to determine the cluster detection accuracy. Ground trath cevent decision sequendé = {F:|1 < t < T} to compare
be collected via trace data, monitored through video reéngrd with known ground truthG = {G:|1 < ¢t < T} at each
or provided by an upper layer application such as wiih [5]. aggregation interval to determine cluster training accyrH,
Step 1. To distinguish events from noise and to hel@t aggregation interval the event detection decision is equal
determine event detection accuracy, we train a Hidden Markt the ground truth £, = G¢), then the cluster made a correct
Model for each cluster. We use HMMs as our event detectialecision att. Otherwise, the decision was a false positive or
mechanism since HMMs require little initial configuratiorfalse negative.
and are built upon the premise of determining hidden statesEvent Probability Discussion.We can compute the overall
(events) from a sequence of known observations (sensmcuracy for each clustér; by comparing all event detection
readings) [[40]. Furthermore, HMMs allow aggregated sensgecisionsE; to ground truthG; to determine the overall false
readings from different sensor modalities to be easily dusenegative rateC;.OA.FN and the overall false positive rate
providing a generic framework that is adaptable to many,;.OA.FP. However, a cluster with an overall low false positiv

B. Cluster Generation



1 Algorithm 2 Sentinel and Reinforcement Selection

C.7.FN
1
| | | | | | | | | | |
o 1 2 3 4 5 6 7 .8 .9 OverAl
~ (Event Probability)
Fig. 3. Event probability breakdown for a clustéf; with a 6% overall

false positive rate and no overall false negative rate. Fmhe.l event

probability range, the associated false positive €atey.FP and false negative
rate C;.v.FN are shown as bars. All ranges that have no observati@hs gi

false positive or false negative rate of 1, since no accucacybe determined
for that range and hence we assume the worst.

or false negative rate may have all its incorrect decisiesslt
from event probabilities that hover near .5. During runtime
detection, it is likely that an event probability near .5 Iwil

Input: Set of all sensors in network, set of trained clusters

C, user-defined false positive rateFP and negative rate
u.FN

Output: Sentinel sensors, Reinforcement sensors

/*Sentinel Selection*/
s.FN=1; s.numNodestV|; s = N;
for all clustersC; € C do
/*Meet user FN with least energy*/
if C;.OA.FN<u.FN and C;.numNodes s.numNodes
then
S = Cl
end if
end for
[*Reinforcement Selection*/
r.FP=17.FN=1; r.numNodestV|; r = N;
for all clustersC; € (C — s) do
/*Meet user FP and FN with least energy*/
if (suC;).numNodes.r.numNodesnd C;.OA.FP<u.FP

result in an incorrect decision. Consequently, it is beiadfto and C;.OA.FN<u.FN then

differentiate the accuracies between event probabililesing r=0C;
runtime detection, possible bad decisions made by sestinel end if
due to middle-range event probabilities can be caught andend for
reinforcements can be used to meet the user requirements.
To study the correlation between event probability and
detection accuracy, for each clustéy, we break down each tive event decisions cannot be confidently made by sentinels
training event probabilityy, into p ranges of sizel /p. For Therefore we choose reinforcements so that both the user’s
each range we compute false positive rafesy.FP and false false positive and false negative requirements are met.1¥%e a
negative rateg’;.7.FN. Figure[® shows an event probabilityensure that the combined sentinel and reinforcement ctuste
breakdown of a cluste€; from the Wisconsin vehicle traceare located on the fewest number of nodes to save energy.
data with 97% overall accuracy with = 10 probability The reinforcement cluster has at least one sensor that is not
ranges. From the figure, it is clear that all negative evemtthe sentinel cluster in order to ensure there is some added
decisions have an event probability in tfte.1) and[.2,.3), benefit from sampling reinforcement data. The sentinel and
ranges, while all event decisions have a probability in tireinforcement selection algorithm is given in Algorittiin 2.
[.9,1] range. During runtime detection, the event probabilit . .
breakdown for the sentinel cluster is used to determine if Runtime Event Detection
event probabilityy, does not meet user false positive and false In Runtime Event Detection, sentinels and reinforcement
negative requirements and that reinforcement obsenati@ensors sample observations at each aggregation intemital w
should be collected to make a confident decision. all other nodes are asleep. The aggregator dynamically de-
termines an event detection decisi@h for each intervalt
using sentinel or reinforcement observations. From tngini
With the deployment detection capability explored by deteobservations, a default observation value is determined fo
mining accuracy for all generated clusters, we choose aesubsach sensor, which is associated with non-events. To save
of the deployment to remain awake during runtime detecti@mergy, a node only transmits observations when at least
as sentinels and reinforcements to make confident detectmre of its sensors makes a non-default observation. If the
decisions. We choose sentinels such that all negative evaggregator does not receive an observation from a sentinel
decisions can be made with confidence: that the user’s fatsereinforcement sensor when such an observation is needed,
negative requirement is met by sentinels. Since commuaitatit assumes the default observation value. The Runtime Event
is the most energy intensive operation in wireless senser nBetection algorithm is described in Algorithih 3.
works [41], we minimize energy usage by selecting a sentinelAs shown in the algorithm, for each runtime aggregation
cluster with sensors on the fewest number of nodes, for onhtervalt, sentinels determine an event probabilityusing the
one radio transmission is needed to report observatioms frgame method performed in Cluster Generation except runtime
multiple sensors on the same node in one aggregation ihteredservations are used.4f < .5, the sentinels can confidently
Since sentinels are only concerned with determining thietermine that no event has taken plaég & 0) since the
lack of an event with confidence, we leave more difficukentinels were selected such that the user’'s false negative
observations to the more powerful reinforcements when-negaquirement is always met. However;jif > .5, we must check

C. Sentinel and Reinforcement Selection



Algorithm 3 Runtime Event Detection t=1 2 3 4 5
Input: Sentinelss, reinforcements, runtime observation for ﬁ[ 1, Acoustic : ' ' L
s for the current aggregation intervé; ;, may also receive fsj 10“
runtime observations for for the previous and currrent §[ 1 Seismic ! ! | L
aggregation interval®, ;_1, O, ; " Oz
Ou.tput:. Event detection decision fqr the. current agg_regag[w/mustic L L -
tion interval E; and for the previous intervaF, | if g
E,_1=UNDECIDED S T T
if £,_,=UNDECIDED then 5 o1, Seismic ' ' R Pl
/*Make a confident decision dt— 1 usingr*/ T R
Determiney; ; using HMM r.A andO;.; Aggregator [——— & ——— P R S
if vv_1>.5thenE,  =1¢e€lseE;,_ 1 =0 E=0  syFP=02<uFP E=0  syFP=45>uFP E=1
end If E,=1 E,=UNDECIDED $4,7.02
E,=0

Determiney, using HMM s.\ andO; ;
if v < .5 then
E, =0 [*s confidently determines no eventt#t
else ify, > .5 and s.v.FP<u.FPthen
E, =1 [*s confidently determines an eventt#t
else ify, > .5 and requested),.; has been receiveithen
/*Make a confident decision atusingr*/
Determiney, using HMM r.A and O,
if v > .5then E; =1elseE;, =0
else
/*A confident decision cannot be madetatising s*/
E,=UNDECIDED; request,.; and O, ;41

Fig. 4. Runtime detection timeline with sentinel and reinéanent event
decisions, where..FN = w.FP = .05. Gray areas indicate sensor readings
that trigger non-default observations. Aggregator-aeteed event probabil-
ities are indicated byy; and event decisions are indicated . Radio
transmissions due to non-default observations are iretichy the arrows.

an event probability of .02. Since the sentinels have been
determined to meet the overall false negative requirement,
s.0OA.FN < uw.FN = .05, the decision is confident. A similar
decision also occurs at= 3. At ¢ = 2, the sentinels capture
an event and report their observations via radio, yielding a
event probability of .98. The false positive rate for seglsn

end if when v, = .98 was determined during training as .02, so
this is a confident decision (.0 u.FP = .05). At ¢t = 4
the seismic sentinel sensor does not capture the event, and
if the sentinels meet the user’s false positive requirenfi@nt the sentinel false positive rate for the current observadiod
the given probability range in which, falls into, s.v.FP. If event probability was determined from training as .45. 8inc
the user false positive requirement is met,.FP < «.FP, the .45 is greater than..FP = .05, the aggregator could not
sentinels can confidently determine that an event has amturmake a confident decision and more detection capability is
(E: = 1). Otherwise, when.y.FP > «.FP, then the user falseneeded. Therefore, reinforcements are signaled to refiain t
positive requirement is not mef; is undecided, and moredata fort = 4 at the end of intervat = 5. At ¢t = 5,
detection capability is required by requesting reinforeat the reinforcement data yields a confident event decision for
observations. The aggregator sends a request message =tod since sentinels always meet the user requirements and
retrieve reinforcement observations for intervaland¢ + 1 the sentinel data determines that no event has occurred.
when a confident decision cannot be made by the sentinels.
The reinforcement observations fomwill be returned at the
end of interval + 1. Piggybacking reinforcement observations Watchdog is designed as a generic framework, so we evalu-
for interval t + 1 along with the observations farwill allow ate its performance in two different application scenanesi-
the aggregator to use reinforcement observations to maite detection using trace data and a building traffic momitpr
a decision fort + 1 if the sentinels are not confident forapplication using IRIS motes. Our evaluation is conducted
t + 1. Another reinforcement observation request message fhrough three aspects. First, we demonstrate that Watchdog
interval t + 1 would not be necessary. is able to explore the detection capability of a specific de-
When sentinel observations are returned during an interydbyment and cluster the right sensors to meet user detectio
t for the previous interval — 1, the aggregator can make arequirements. Next, we compare against a sensing coverage-
confident decision, since the sentinels meet the user aicurbased framework and illustrate that Watchdog achieves a
requirementsy; is determined using the reinforcement obsesignificantly higher performance. Finally, we compare agai
vations and an evenf;_; = 1, is confidently determined if a detection framework which uses a modality-specific sgnsin
~¢ > .5. Otherwise,F;_; = 0. model and show that Watchdog can adapt the detection capa-
To illustrate Runtime Event Detection, an example is prdility to runtime observations and always meet user deaiacti
sented in Figur&l4. In the figure, the sensors on node 1 aeguirements while the model-driven approach cannot. én th
sentinels while the other two sensors on nodes 60 and @&periments, for Watchdog, we generadte= 15 clusters for
are reinforcements. During the first intervak 1, no sensors each possible cluster size, and for each cluster, we aggrega
report non-default observations, so the base stationrdates sensor readings at each interval into two observations:d) an

V. EVALUATION
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Cluster Training and Runtime Detection. An integesilles the “x” denotes the number of clusters that give theesponding FP or FN rate.

1. Energy is measured as usage of CC2420 rafiids [42] andhis sensor hardware and local sensing reality where therayst

derived as power consumption (&) time (s).

is deployed. Different scenarios may produce differengefal
positive and false negative rates for each cluster.

A. Exploring Detection Capability and Meeting Requirensent |n Figure[® (a) (b), we also observe that even in a small

In this group of experiments, we show that by explorindeployment with “5 IRISx 6 sensors each = 30 sensors”,
the detection capability of a specific deployment, Watchddgere are a large number of sensor clusters available to meet
can choose the right sensor clusters to meet user-defirel fASer specified false positive or false negative rate. As show
positive and false negative rates. We place five IRIS motésFigureld (a), there are exactly 3+3+2=8 sensor clustes th
with attached MTS310 sensorboards (2-axis acceleronterdemonstrate a 5% false positive rate in the training data and
axis magnetometer, acoustic, light sensdfs) [43] on thexmahere are 189 sensor clusters in Figlire 5 (a) that demoastrat
entrance door of the Computer Science building to monit§Maller than a 5% false positive rate. So, in total, 8+189=19
the traffic pattern of when people are most often enterirﬁ’dﬁerent sensor clusters can be chosen to meet the user-
and leaving the building. We define an event and measure #Recified 5% false positive rate.
ground truth as the time period during which someone opendn Figurel® (c) (d), we observe that during runtime detection
the door and walks through (either entering or exiting) hwitWatchdog is able to meet the false positive or false negative
the door automatically closing behind. We obtained grouriéte explored during training. For example, Figlire 5 (cyveho
truth via video recording of the building entrance and saupl that 48 clusters with a training false positive rate of 0%iex
data at 20ms intervals using the heterogeneous sensorg orthis performance during runtime; Figurk 5 (d) shows that 182
mote sensorboards. Using the collected trace data, in &igglusters with a false negative rate of 0% also demonstrate
(a) (b), we plot the number of clusters for each cluster siz® false negatives during runtime. In Figdie 5 (c) (d), we
that achieve the same training false positive or false megatalso observe that clusters with higher training false pasit
rate. In Figurdd (c) (d), we plot cluster training perforrnan or false negative rates achieve significantly better ruatim
compared with runtime performance. In Figlite 5 (a) (b),eéheperformance: 6 clusters with a training false positive rafte
are only a limited and discrete number of false positive ani@% achieve a runtime false positive rate of 10%, and 13
false negative rates that the deployed system can support.clusters with a training false negative rate greater thab 20
that end, a user can only require a false positive or falgehieve a runtime false negative rate of 5% or less.
negative rate that can be supported by the system. For egampl To summarize, these data illustrate that Watchdog is able
most sensors and sensor clusters have false positive a&d fad cluster the right sensors to meet user requirements glurin
negative rates near zero, while only a few experience falsmtime. Plus, many clusters of different sizes exist to tmee
positive rates greater than 70% or false negative ratesegreaiser-required accuracy. This allows for freedom in sehtine
than 45%. This set of cluster performances is determined agd reinforcement selection to adapt the detection capabil
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Fig. 6. Watchdog and V-SAM comparison for different modedit levels of V-SAM coverage, and training lengths.

to runtime observations and maximize energy savings. None of the Watchdog or V-SAM configurations experience
. _ statistically noticeable false positives, so false positates are
B. Comparison with V-SAM not illustrated. Watchdog can consistently outperformANS

We compare Watchdog to the most recent sensing cover&ggause Watchdog fully explores the detection capability o
framework that addresses sensing irregularity, V-SAM 15]. individual sensors and sensor clusters in a deployed syeteim
SAM measures data similarity between sensors, and kegpsster the right sensors to meet user requirements. Howeve
awake only a cluster of sensors whose members sampt®AM has no detailed knowledge of detection accuracy, so
dissimilar data. This similarity is recomputed at every afed the most accurate sensors may be excluded while poor per-
interval along with a new sleep schedule. V-SAM detects 4arming sensors may become involved in detection decisions
event if energy readings of awake sensors surpass a dynami® Figure[® (c), we observe that Watchdog is much more
noise threshold, causing all sensors to wake up to monitor tnergy efficient than V-SAM. As shown in Figufé 6 (c),
event. A node only transmits a packet if it detects at leadtatchdog energy consumption is relatively constant for all
one event during an update interval. In this experiment, weodalities and for each modality, hovering arounet 10~*
use the building traffic monitor application. Besides the dd, while V-SAM energy consumption (when achieving good
fault V-SAM similarity-based coverage approach, we fokee performance) varies within0 x 10=% ~ 26 x 10~* J. Even
coverage on V-SAM to illustrate performance under différeithough Watchdog may use more energy than 1 or 2-coverage
levels of sensor coverage. We set the Watchdog aggregafi6BAM, Watchdog achieves about 35% points better accuracy
interval and the V-SAM update interval to 4s and give Veompared with those V-SAM configurations. Watchdog is sig-
SAM the same training data as Watchdog with performanaéficantly more energy efficient than V-SAM since Watchdog
compared using runtime data. Though V-SAM cannot providelly explores the detection capability of individual sersand
guaranteed accuracy, we set the Watchdog user requiremeetsor clusters. Hence, Watchdog can use this knowledge to
to the lowest false positive and false negative rates déexdn adapt sensing capability to runtime observations whileingak
from training. Evaluation results are presented in Figlre @®nfident detection decisions, but V-SAM cannot.
with 95% confidence intervals over 20 runs. In Figlile 6 Training Length. In Figure[® (d), we observe that for
(&) (b), We observe that Watchdog outperforms V-SAM iWatchdog to achieve the aforementioned superior detection
every configuration: all modalities, individual modalijeand accuracy and energy efficiency compared with V-SAM, only a
varying levels of V-SAM coverage. Although using highHer short training length is needed. As shown in Fiddre 6 (d),whe
coverage and similarity-based coverage helps improve MSAthe training length increases, Watchdog performance ingso
performance, it is always outperformed by Watchdog, whidjuickly, surpasses V-SAM performance, and converges to nea
consistently demonstrates close to 100% detection acguracperfect accuracy after about 2 minutes, which is reasonably
Figure[® (a) and close to zero false negatives in Fifilire 6 (Short for real applications. Even though V-SAM requiresdit
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Fig. 7. Watchdog and modality-specific sensing model comparwith sensors located within 25m of, or more than 40m frtime target location.

training, which is invisible in Figur€l6 (d), it demonstratethat meet user requirements for confident event detection.
much lower detection accuracy and much higher energy usaigee model-driven scheme does not exploit such subtle but
than Watchdog. Since the training length is short, the use infportant information.
periodic retraining can handle environmental changes. For the >40m scenario, we also observe that Watchdog
always meets user requirements but the model-driven scheme
performs poorly or even fails. For example, when user reguir

In this section, we compare Watchdog with a classical 5% false positive rate, the model-driven approach experi-
model-driven event detection solutiar [8] that uses a migdal ences very low accuracy, 67% in Figlile 7 (a), and a very high
specific sensing model. IM[8], a signal attenuation model fislse negative rate, 100% in Figurk 7 (c). This is because for
used to estimate signal energy for targets of differenadists a low desired false positive rate, the model-driven dedecti
with a Gaussian noise distribution model. Given user-ddfin¢hreshold is set too high to detect any events. We also find in
false positive rate, the model-driven implementatiorLjnd@n  FigureT (c) that requesting higher false positive rates ohms
derive an event detection threshold for the average enetgip much. The poor performance of the model-driven scheme
readings of all sensors in a cluster. Clusters are formed agd the good performance of Watchdog can be explained with
including all sensors within a fixed distance (fusion ranigeg the same reasons attributed to ti@5m scenario.
target location with all others put to sleep. For fair conigan, For both scenarios, Watchdog is found to consume signif-
we use the same Wisconsin SensIT experiment trace [data [it@htly less energy than the model-driven scheme as shown
used inl[8] and make use of acoustic sensors to detect vehigte Figure[T (d). This is because the model-driven scheme in
at a target location. An event occurs when a vehicle is lacatf8] has a very simple energy saving scheme: nodes within
within 2 meters of the target location. Data is sampled g@ie 25m “fusion range” are awake and nodes beyond the
4960 Hz and we make use of the AAV8 run for training angange all sleep. On the contrary, Watchdog adapts the dwtect
the AAV11 run for runtime detection. Ground truth of thecapability to runtime observations through the use of setgi
vehicle location is provided in the trace. Further detaits cand reinforcements for more aggressive energy savings. In
the experimental setup are given in [3]. For Watchdog and tRe&yure[T (d), we also observe that the model-driven scheme
model-driven scheme, we set an 100ms aggregation intergehsumes more energy in the40m scenario than the25m
and compare with varying levels of desired false posititesa scenario. This is because 7 nodes are used instead of 5.
since the model-driven scheme ln [8] cannot take user-d&fine TABLE |
false negative rates as input. Our evaluation is condugted i ApapTING DETECTION CAPABILITY TO RUNTIME OBSERVATIONS
two scenarios: when the target location is well within the
sensing range of all sensors, and when the sensors aredocateentinel FP/FN (%)] Reinforc. FP/EN (%)] Reinforc. Requests (%

) X ! : 9.5/0.0 0.0/0.0 21

at the fringe of the detection range. In the first scenario, we
use 5 acoustic sensoks 25m to the target location; in the Adapting Detection Capability. Using the<25m scenario
second, we use 7 acoustic sensors with distancé8m from we illustrate in Tabldll how Watchdog adapts the detection
the target location. The results are plotted in Fiddre 7. capability to runtime observations. With desired falseitpas

For the <25m scenario, we observe from Figlile 7 (b) thand false negative rates of 0%, a sentinel cluster is selecte
Watchdog always meets the user false positive requiremevrith a 9.5% false positive rate and 0% false negative rate.
while the model-driven scheme cannot. For instance, infeiguA more powerful reinforcement cluster is selected with a 0%
[ (b), the model-driven scheme has a 28% false positive réédse positive and false negative rate. During runtime, 79%
when 20% is required, and gives a 42% false positive radbservations are comparatively easy and hence confident dec
when 40% is required. We also observe from Figlire 7 (ajons are entirely made by sentinels. When the sentinele mak
that Watchdog vyields perfect accuracy, while model-drivea decision that does not meet user requirements (for the 21%
accuracy drops when the desired false positive rate ineseasnore difficult observations), reinforcements are used thema
Watchdog performs better than the model-driven scheme lwenfident decision. The reduction in radio transmissiondana
cause Watchdog always chooses sentinels and reinforceméntusing only the sensors necessary to meet user requirement

C. Comparison with a Modality-Specific Sensing Model




ensures significant energy savings.

V1. CONCLUSIONS AND FUTURE WORK
Existing works do not provide a holistic solution with

respect to clustering the right sensors for confident event

detection, heterogeneous deployments, and adaptatior-of
tection capability during runtime. Consequently, we pnése
Watchdog, a generic event detection framework which ¢

function in a wide array of applications and deployments.

Unlike existing approaches, Watchdog can obtain the detect
capability of a specific deployment and use this knowledge
cluster the right sensors to perform confident event detecti
With a short training length, Watchdog chooses sentinel a
reinforcement sensors which adapt the detection capalulit

confidently detect events while saving energy. Our evaiuati

demonstrates that Watchdog largely exceeds the detectizih
accuracy of existing approaches with reduced energy con-
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