
Exploiting Sensing Diversity for Confident Sensing

in Wireless Sensor Networks

Matthew Keally, Gang Zhou, Guoliang Xing†, Jianxin Wu‡

College of William and Mary, †Michigan State University, ‡Nanyang Technological University

Abstract—Wireless sensor networks for human health mon-
itoring, military surveillance, and disaster warning all have
stringent accuracy requirements for detecting or classifying
events while maximizing system lifetime. We define meeting such
user accuracy requirements as confident sensing. To perform
confident sensing and reduce energy, we must address sensing
diversity: sensing capability differences among heterogeneous and
homogeneous sensors in a specific deployment. We are among
the first to explore the impact of sensing diversity on sensor
collaboration, exploit diversity for sensing confidence, and apply
diversity exploitation for confident sensing coverage. We show
that our diversity-exploiting confident coverage problem is NP-
hard for any specific deployment and present a practical solution,
Wolfpack. Through a distributed and iterative sensor collabo-
ration approach, Wolfpack maximizes a specific deployment’s
capability to meet user detection requirements and save energy
by powering off unneeded nodes. Using real vehicle detection
trace data, we demonstrate that Wolfpack provides confident
event detection coverage for 30% more detection locations, using
20% less energy than a state of the art approach.

I. INTRODUCTION

Many applications for body sensor networks [1], sensing

coverage [2], and classification [3] all have stringent user

accuracy requirements and demand long system lifetimes. A

system with wearable sensors for fall detection [4] in the

elderly must be extremely accurate, lest an injury-causing fall

go undetected as a false negative. Similarly, an acoustic sensor

network used to localize enemy snipers on a battlefield [5] may

misclassify a friendly soldier’s gunshot as an enemy sniper,

with such a false positive resulting in a friendly fire incident.

Consequently, the need exists for confident sensing, where the

user’s desired false positive and false negative rates are met

for event detection, classification, or coverage.

In providing confident sensing, we must first address sensing

diversity. Sensing diversity encompasses the sensing capability

differences between different sensors of the same modality

as well as among different modalities. The causes of sensing

diversity can be linked to the in-situ reality of a specific

deployment [6] as well as hardware differences [7], especially

in the case of cheap off-the-shelf motes.

Many works ignore sensing diversity entirely and assume all

sensors have similar sensing capabilities [2] [8]. Other works

attempt to overcome sensing diversity by correcting for the

differences in readings from different sensors [7]. Instead, we

take advantage of such sensing differences to provide sensing

This work was supported in part by NSF grants ECCS-0901437, CNS-
0916994, and CNS-0954039.

confidence. Several challenges exist in providing confident

sensing through exploitation of sensing diversity:

• Learning Sensing Diversity. Machine learning techniques,

many of which can be utilized to learn the sensing capabil-

ities of a deployment, greatly differ in terms of accuracy

and complexity. A learning method for energy constrained

sensor networks should provide enough accuracy to meet

user requirements but still require low computation and

communication overhead.

• On-demand sensor collaboration. In many deployments,

individual sensors are sufficient to provide confident event

detection, and hence collaboration is not needed. Through

learned sensing diversity, it is important to determine when

single sensors are sufficient and when collaboration is

necessary. When sensor collaboration is neeeded, it is also

important to determine the right sensors to collaborate, for

such careful collaboration can save valuable computation

and communication resources.

• Distributed and online diversity exploitation. Distributed

learning and exploitation of sensing diversity allows for

decreased bandwidth and energy usage as well as increased

scalability. Furthermore, a distributed scheme allows for

more efficient adaptation to environmental dynamics, for

only portions of the network that do not meet user require-

ments need to be updated during runtime to ensure these

requirements are met.

In this paper, we first capture and explore sensing diversity

with a sensor network deployment for vehicle detection. We

show that sensing capabilities greatly differ among sensors

in a real deployment and identify when sensor collaboration

is needed. When collaboration is needed, we show that ar-

bitrary sensor collaboration often fails to meet user accuracy

requirements, not to mention a joint consideration of accuracy

and energy efficiency. We explore different machine learning

techniques for on-demand collaboration and identify one ap-

propriate for energy and computationally constrained sensor

networks. These results provide key insights into protocol

design for collaborative sensing.

We are among the first to take advantage of explored sensing

diversity to provide sensing confidence and apply this ap-

proach for confident sensing coverage, such as in a fixed sensor

network deployment for vehicle detection. We formally define

and theoretically analyze our confident coverage problem

when diversity is explored. We show that a specific case of our

diversity-exploiting confident coverage problem is NP-hard

and proposeWolfpack, a distributed event detection framework

that exploits sensing diversity for use in practical deployments.

With machine learning, Wolfpack determines only the sensing

capability needed to meet user detection requirements and save

energy, only collaborating sensors when individual sensors

are not accurate enough. During runtime, Wolfpack adapts its

detection capability to adjust for environmental changes that

cause a drop in accuracy and run the risk of not meeting the

user requirements. Our main contributions are:

• We explore the fundamental challenges in addressing sens-

ing diversity and its impact on collaboration for confident

sensing using two different machine learning techniques.

• Through theoretical analysis and our practical Wolfpack

design, we exploit sensing diversity to provide sensing

confidence and apply it to sensing coverage.

• Our evaluation in a vehicle detection application demon-

strates that Wolfpack achieves confident coverage for 30%

more locations while using 20% less energy than a state

of the art approach.

This paper is organized as follows: We present related

work in Section II and explore sensing diversity in Section

III. We formally define our confident coverage problem with

theoretical analysis in Section IV and present our Wolfpack

confident coverage design for practical system deployment in

Section V. We analyze the performance of Wolfpack in Section

VI, and present conclusions and future work in Section VII.

II. RELATED WORK

Some works ignore both sensing confidence and diversity.

These include k-coverage approaches [8] [2] [9] [10] [11] that
rely on k nodes to be awake within the sensing range of a

target location. In [12] [13], multiple modalities collaborate

to detect events along with a sleeping scheme to save energy.

Similarly, disc-based sensing models [14] [15] [16] [17] [18]

address neither sensing confidence nor diversity.

Other works attempt to meet user accuracy requirements

through theoretical modality-specific sensing models and data

fusion-based [19] collaboration. Specific sensing models for

coverage with acoustic, seismic, and infrared sensors are

presented in [3]; models also exist for structural health moni-

toring with accelerometers [20] as well as camera-based event

detection [21]. Signal attenuation-based models are described

in [22] [5] [23] which give false positive and false negative

rates for a given modality and training data set, allowing for

data fusion between a cluster of sensors. Another collaboration

scheme using a signal attenuation model [24] incorporates a

sleeping scheme to save energy. A noise distribution model is

used for event detection in [25] and [26]. However, modality-

specific sensing models adopted in these works must train

each modality individually, making heterogeneous collabora-

tion difficult. Furthermore, such models often rely on sensing

assumptions that do not account for reality.

Some approaches attempt to address sensing diversity by

accounting for sensing differences in different sensors but

cannot provide sensing confidence. This includes works [6]

[27] that use a similarity metric to ensure enough nodes are

awake within the sensing range of a target location as well as

those [7] that calibrate sensors based on differences in their

readings. Some approaches use machine learning to provide

collaboration [28] [29] [30] [31] [32] [33] [34], but these

works do not fully explore the effects of sensing diversity on

collaboration nor do they provide sensing confidence. Other

work [1] addresses sensing diversity in providing sensing

confidence but does not provide lightweight and decentralized

collaboration appropriate for wireless sensor networks.

III. EXPLORING AND EXPLOITING SENSING DIVERSITY

We explore how to take advantage of sensing diversity and

on-demand sensor collaboration to provide confident sensing.

We make use of the Wisconsin SensIT vehicle detection trace

data [28], with 23 nodes deployed along a road with each node

containing an acoustic, seismic, and infrared sensor. Vehicles

make 20 passes along a road through the network with ground

truth provided via a GPS trace. Trace data of raw sensor energy

is provided for each sensor at a sampling rate of up to 4960Hz.

We provide this unmodified real sensor data and ground truth

as input to a trace-driven wireless sensor network simulation

run on a PC. While the sensor data and ground truth is real, we

simulate communication behavior and assume each node is a

low power mote-class device equipped with an 802.15.4 radio,

such as the Crossbow IRIS [35]. While we are aware that radio

communication is often lossy in wireless sensor networks, we

focus on sensing accuracy, not communication quality, and

assume reliable communication.

We use the trace sensor data sampled at 100ms intervals and

a total trace length of 6763 intervals. We classify sensor and

sensor cluster readings into events when a vehicle is detected

and non-events when no vehicle is present. To learn sensing

diversity, collaborate sensors, and perform event detection, we

choose machine learning, which can address the complexity

and heterogeneity of sensor data. We first identify sensing

diversity among sensors of the same modality as well as

with different modalities. Next, we illustrate the effects of

sensing diversity on collaboration, determining when and how

to collaborate sensors such that user requirements can be met.

Finally, we compare two different machine learning techniques

for learning sensing diversity and locate one appropriate for

low power sensor networks.

A. Identifying Sensing Diversity

In this subsection, we use k-means clustering [36] with

k = 2 classifications: trace data for each sensor is clustered

into mean event and non-event centroids. As vehicles pass

through the deployment area, each sensor reading is classified

by determining its closest centroid. Using vehicle location

ground truth and classified data, we plot the sensing range for

all acoustic, seismic, and infrared sensors in Figure 1. Since

sensing diversity encompasses sensing capabilities within a

specific deployment, accounting for in-situ reality, some sen-

sors have a sensing range of 0m, indicating that the vehicle

does not pass close enough to the sensor to be detected.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

D
is

tr
ib

u
ti
o
n

Sensing Range (m)

All
Acoustic
Seismic
Infrared

Fig. 1: Sensing range differences in Wisconsin
deployment.

 0.4 0.5 0.6 0.7 0.8 0.9 1

Individual Accuracy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
lu

s
te

r
A

c
c
u
ra

c
y

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

#
 C

lu
s
te

rs

Fig. 2: Nearest Centroid: cluster accuracy and best
individual member accuracy.

 0.4 0.5 0.6 0.7 0.8 0.9 1

Individual Accuracy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
lu

s
te

r
A

c
c
u
ra

c
y

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

#
 C

lu
s
te

rs

Fig. 3: Fisher’s Linear Discriminant: cluster accu-
racy and best individual member accuracy.

Diversity within the same modality. Figure 1 demonstrates

that sensors of the same modality experience significant dif-

ferences in event detection performance. For example, 10% of

acoustic sensors can detect the vehicle at 400m, while another

10% can only detect vehicles at ranges up to 50m. Similarly,

10% of seismic sensors have a range of 40 meters or less while

10% have a range greater than 200m. Similar differences can

be observed for infrared sensors. This diverseness in sensing

capability can be linked to the quality of the sensor itself as

well as the properties of the local environment such as terrain,

weather, and other obstacles [6]. Due to sensing diversity,

a single sensor may even perform differently in different

environments. However, these observations are largely ignored

in traditional sensing approaches. In [1], it is demonstrated that

traditional sensing approaches, such as sensing coverage, use

too little or too much sensing capability to detect events and

either exhibit poor accuracy or waste energy. Other approaches

such as [14] [8] also do not account for sensing diversity with

respect to individual sensors, and thus fail to provide sufficient

accuracy to meet user requirements.

Diversity among different modalities. Figure 1 also il-

lustrates the differences between different sensing modalities.

The sensing range of acoustic sensors is extremely varied, with

50% of acoustic sensors exhibiting a sensing range of at least

200m, with a miniumum and maximum range of 0 and 400m,

respectively. Conversely, infrared sensors have little variance,

with 95% of sensors exhibiting a sensing range of 30m.

Many existing detection coverage approaches [37] [23] rely on

modality-specific sensing models, making sensor collaboration

difficult in heterogeneous deployments. Therefore, significant

sensing diversity exists in real deployments which should be

addressed or exploited in confident sensing.

B. Impact of Diversity on Collaboration and Accuracy

In our study of sensor collaboration and accuracy, we

compare Nearest Centroid, a variant of k-means clustering,

with another learning technique, Fisher’s Linear Discriminant

[36]. Both techniques allow for sensor readings to be combined

into tuples for cluster-based collaboration and classification. In

Nearest Centroid, sensor data is used to form two classification

centroids, one for events and one for non-events, except that

unlike k-means, ground truth is used in centroid formation.

Like k-means, new data is classified by determining the closest

centroid. While Nearest Centroid assumes that each reading

in a tuple of sensor cluster data is independent, Fisher’s

Linear Discriminant attempts to capture the dependencies

among different sensors in a cluster. For example, sensors

in proximity to each other usually yield correlated readings.

Fisher’s Linear Discriminant attempts to find a projection (i.e.

linear combination) of sensor cluster readings that maximizes

the separation of event readings from non-event readings.

Using the vehicle detection trace, we select 103 detection

locations with a 10m radius throughout the deployment area

along a road on which vehicles pass. We detect vehicles at

these target locations and classify such sampling intervals as

events. For each target location, we form random clusters

of size 2 through 25 with up to 30 clusters of each size,

using sensors within 100m of each target location. We perform

classification with both Nearest Centroid and Fisher’s Linear

Discriminant and use ground truth for each individual sensor

or cluster reading to determine accuracy. For each generated

cluster we compare the detection accuracy of the best indi-

vidual member sensor as a singleton cluster to the generated

cluster accuracy and plot the results in Figures 2 and 3, where

darker points indicate fewer than 50 overlapping clusters.

1) On-Demand Collaboration: We derive the guidelines

for when sensor collaboration is needed and when it is not.

First, we demonstrate that when an individual sensor meets the

user detection requirements for a target location, collaboration

is unnecessary. Using Figures 2 and 3, we show that in

over 36,000 cases for both Fisher’s Linear Discriminant and

Nearest Centroid, individual sensors have perfect accuracy.

Individual sensors have over 95% accuracy in 2,000 more

cases. In such cases where the user requirements fall in this

5% points acccuracy range, collaboration is not needed for

the requirements can be met by a single sensor and valuable

communication and computational overhead is saved.

When an individual sensor cannot meet the user require-

ments for a given target location, collaboration is needed,

but there are individual sensors that can be excluded from

the collaboration process to reduce the search space size. In

Figures 2 and 3, with this specific deployment and trace data,

it is clear that no individual sensor can boost cluster accuracy

as a cluster member by more than 20% points (We define

this exclusion boundary as the sensitivity threshold). These

sensors can be excluded from detection and collaboration, for

any cluster consisting entirely of sensors below this threshold

will not meet the user detection requirements.

Lastly, we show that when a sensor has a detection accuracy

above the sensitivity threshold, but below the user require-

ments, it is a candidate for collaboration in a sensor cluster.

Figures 2 and 3 depicts over 2,500 cases where all individual

sensors in a cluster exhibit less than perfect accuracy but the

cluster accuracy is equal to 100%.

TABLE I: Cluster vs. individual sensor performance.

Cluster Type Nearest Centroid Fisher’s Linear Discriminant

Good 3894 4606
Bad 1424 412

Neutral 36919 37219

2) Collaboration Accuracy and Complexity of Learning:

Now that we have determined when sensor collaboration is

required, we analyze how to learn the sensing capabilities

of sensors and sensor clusters. We first show that when

collaboration is needed, we must cluster sensors carefully

instead of randomly. In Figures 2 and 3, cluster performance

from randomly generated clusters can be classified into three

categories: “good”, “bad”, and “neutral”, whose classification

totals can be found in Table I. Good clusters perform bet-

ter than their best individual member sensors, bad clusters

perform worse than their best individual member sensors,

and neutral clusters perform the same as their best individual

member sensors. It is clear that if the right sensors are not

chosen for collaboration, cluster performance can suffer, for

over 1,800 clusters exhibit worse performance than the best

individual member sensor. However, clustering carefully can

yield a cluster that performs accurately and better than the best

individual member sensor.

We next compare two machine learning collaboration tech-

niques, Nearest Centroid and Fisher’s Linear Discriminant

and demonstrate that Fisher’s Linear Discriminant has better

sensor collaboration performance. Figures 2 and 3 and Table

I show that Fisher’s Linear Discriminant is able to elimi-

nate most of the “bad” clusters and increase the number of

“good” clusters since it accounts for the data dependencies

among individual sensors in the cluster. While Fisher’s Linear

Discriminant improves clustering performance by eliminating

many bad clusters, its greater computational requirements

make it unattractive for use in sensor networks for distributed

event detection, as most motes have microcontroller speeds

of less than 10 MHz [35]. Given n training observations

and a cluster size of k, Nearest Centroid incurs a training

cost of O(n · k) while Fisher’s Linear Discriminant incurs a

much greater training cost of O(k3 + nk2). Although, from
Figure 2, Nearest Centroid has many more “bad” clusters than

Fisher’s Linear Discriminant, its best performing clusters have

comparable results to that of Fisher’s Linear Discriminant. By

collaborating sensors wisely, we can use Nearest Centroid to

classify events in a distributed, node-centric fashion, achieving

high performance and low complexity.

IV. DIVERSITY-EXPLOITING CONFIDENT COVERAGE

Confident sensing through exploitation of sensing diversity

can apply to many problems such as assisted living [4] or

military surveillance [5]; in this paper we apply confident sens-

ing to sensing coverage for vehicle detection in a static wire-

less sensor network. Here, we define our diversity-exploiting

confident coverage problem and show that it is NP-hard. To

provide confident coverage, a set of sensor clusters must be

found that can meet user detection accuracy requirements for

all desired detection locations in an energy conscious manner.

We first define a set of nodes N = {n1, ..., nn}. Each node

nj ∈ N contains kj sensors, forming the set S of all sensors:

S = {s1
1
, s2

1
, ..., sk1

1
, s1

2
, s2

2
, ..., sk2

2
, ..., s1n, ...s

kn
n }, where sij is

the ith sensor on node j. We also define a set of detection

locations L = {l1, ..., ll} which a user wishes to cover.

Users can specify the accuracy of detection for all locations

in L in terms of desired false positive and false negative rates,

ufp, ufn, respectively. With machine learning, cluster Ci

of one or more sensors can quantify its sensing diversity by

determining its false positive rate and false negative rate for

each location lk: fp(Ci, lk) and fn(Ci, lk). If cluster Ci meets

the user requirements ufp and ufn, for location lk, we say

that location lk is covered by Ci.

A deployment has a set of possible sensor clusters C =
{Ci|Ci ⊆ S}. With the learning techniques we have discussed,

we can quantify cluster detection capabilities through a func-

tion f : Ci → 2L that maps a cluster Ci ∈ C to a subset

of locations in L indicating the coverage of the locations by

the sensors in Ci. In this section, we assume that possible

covering clusters are already generated and focus only on

cluster selection for energy savings. In Section V, we describe

our combined cluster generation and selection process.

Our goal is to find the set of clusters C∗ ⊆ C that meets the

user requirements for all locations while residing on the fewest

number of nodes, hence using the least amount of energy due

to active node power consumption. We need to find a set of

clusters C∗ ⊆ C such that all locations in L are covered,
⋃

Ci∈C∗
f(Ci) = L (1)

subject to minimizing the total number of nodes contained by

the clusters in C∗:

minimize |{nj ∈ N}| where skj ∈ Ci for some Ci ∈ C∗ and some k (2)

We now demonstrate that our cluster selection problem is

NP-hard by showing that a special case of our problem is in

fact the known NP-hard Set Cover problem [38]. In the special

case, we assume that each node n ∈ N has only one sensor.

That is, the set of all sensors in the deployment is represented

as S = {s1, s2, ..., sn}, where a sensor si is the only sensor

on node i. We also assume that the set of possible clusters C
contains only clusters with one sensor: C = {{si}|si ∈ S}.
Using the mapping of clusters to covered locations, f : C →
2L, the set of all possible clusters, C, is equivalent to: C =
{L′|L′ ⊆ L}, where C represents a collection of subsets of

L. In this instance, the optimization problem can be rewritten

to find the set of clusters C∗ ⊆ C such that:

⋃

L′∈C∗
L′ = L (3)

subject to minimizing the number of clusters in C∗. This spe-

cial case is equivalent to the Set Cover problem, demonstrating

that the general case of our clustering problem is also NP-

hard. Since we wish to solve our confident coverage problem

in a distributed manner, we plan to formally define a greedy

solution and derive an approximation ratio in future work.

V. WOLFPACK FRAMEWORK DESIGN

In this section, we propose Wolfpack, a practical, distributed

solution to our confident coverage problem defined in Section

IV. For each defined detection location, Wolfpack assigns a

sensor cluster which meets the user detection requirements;

these sensor clusters are formed in parallel at the start of

deployment and updated when needed during runtime. While

many clustering schemes exist, such as leader election [3],

Wolfpack clusters sensors on nodes based on their sensing

capabilities and only clusters the sensors needed to meet the

user requirements, placing unused nodes to sleep. A cluster is

formed for each detection location by incrementally adding

a member node and one or more of its sensors until the

user requirements are met. Nodes are added to a cluster in

decreasing order of the learned detection capability of their

sensors. In some cases, a single sensor residing on a single

node may be enough to meet the user requirements. We now

describe the diversity aware clustering process in Section V-A

and how clusters can be adaptively updated during runtime in

Section V-B if they fail to meet user detection requirements.

A. Distributed Diversity-Aware Clustering

Nodes first quantify their sensing diversity and then compete

to declare themselves as cluster heads, with the nodes that

have the most sensing capability winning the competition. If

a cluster formed solely from a cluster head node is not enough

to meet the user requirements for its target location, the most

capable member nodes join the cluster one at a time until the

user requirements are met.

For event detection training and cluster formation, each

active node maintains a history of recent observations for all

of its sensors. Each node also maintains an application-level

feedback mechanism, such as a vehicle tracking application, to

provide event ground truth in a manner similar to [6]. Since we

demonstrate in Section III that communication range of many

sensor motes [35] is at least twice that of the sensing range,

we cluster sensors within one communication hop of each

detection location (fusion range) to save bandwidth and energy

resources. We now describe the details of our distributed

clustering scheme from a node and event-driven perspective.

Exploring and quantifying diversity. Using Nearest Cen-

troid, each node nj explores its sensing diversity by training

singleton clusters with each of its sensors smj for each of

the locations li in its fusion range. For each trained sensor

and location, nj determines the detection false positive and

false negative rates fp(smj , li) and fn(smj , li). A sensor smj is

sensitive to location li, or sensitive(s
m
j , li), if its false positive

and false negative rates fall within 20% of the user require-

ments. This sensitivity threshold is an empirical rule that may

vary with different deployment scenarios, for our choice of

threshold is due to our study in Section III which shows that

no individual sensor can improve detection accuracy by more

than 20% when added to an existing sensor cluster.

Algorithm 1 Event Handler: Backoff Timer Fires

Input: Node nj , sensitive locations LS for node nj

Output: Cluster head or cluster member declaration for nj

1: for all li ∈ LS do

2: if No cluster exists for li then
3: Create cluster Ci

4: Set nj as cluster head

5: Compute fp(Ci, li) and fn(Ci, li)
6: else

7: Add nj to existing cluster Ci

8: end if

9: Broadcast the following in a packet:

10: Cluster Ci covers li with fp(Ci, li) and fn(Ci, li)
11: if fp(Ci, li) > ufp or fn(Ci, li) > ufn then

12: /*More collaboration is needed*/

13: Broadcast observation history for cluster Ci

14: end if

15: end for

Each node then determines how much each of its sensors

can contribute towards meeting the user requirements for each

sensitive location: ∆fpj and ∆fnj , which are real numbers

between 0 and 1. Values closer to 0 indicate that the sensor sjm
contributes very little towards meeting the user requirements

for location li, while the maximum possible values 1 − ufp
and 1−ufn indicate that the user requirements are met. ∆fpj
is defined in Equation 4 (∆fnj is similar).

∆fpj(s
m
j , li) = 1−max{fp(smj , li), ufp} (4)

A node quantifies its sensing diversity by calculating its

importance, which is the sum of all contributions on a node for

all of its sensors and sensitive locations. The more important a

node, the more valuable it is towards meeting the user require-

ments for locations within its fusion range. More important

nodes are more likely to have very capable sensors which will

become members of many different clusters covering different

detection locations. Each node sets a backoff timer based on

its importance value to declare itself as a cluster head for its

sensitive locations, where greater importance values result in

shorter timers. Therefore, clusters can usually be formed from

a small number of important nodes to cover all locations, thus

reducing the number of active nodes needed to meet the user

requirements. Importance is defined in Equation 5 as:

I(nj) =

|Sj |
∑

m=1

|Lj |
∑

i=1

(

∆fpj(s
m
j , li) + ∆fnj(s

m
j , li)

)

(5)

Importance-based competition. When a cluster head timer

fires on node nj (Algorithm 1), node nj declares itself as the

head for all sensitive locations not yet declared covered by

another cluster head, creating a cluster Ci for each undeclared

sensitive location li ∈ LS . If a cluster member timer fires

on node nj , the node adds itself to an existing cluster Ci

containing other member nodes. In both cases, the declaring

node nj adds to the cluster only its sensitive sensors that

increase the∆fpj and∆fnj contribution towards meeting the

user requirements for each location li. The declared cluster Ci

is trained using Nearest Centroid learning and the observation

history of all sensors in Ci.

Algorithm 2 Event Handler: Receive Declaration Packet

Input: Node nj , sensitive locations LS for node nj , declara-

tion cluster Ci for location li
Output: Node nj sets member timer if user requirements are

not met for Ci

1: if nj /∈ Ci and li ∈ LS then

2: if nj is competing to be a member covering li then
3: Stop timer on node nj for li
4: end if

5: if fp(Ci, li) > ufp or fn(Ci, li) > ufn then

6: /*More collaboration is needed*/

7: Update I(nj) using Eqns. 5 and 6

8: Set timer using I(nj); nj competes to join Ci

9: end if

10: end if

After a node nj has its backoff timer fire and it declares

itself as a head or member, the node broadcasts a packet to all

neighbors for each declared cluster Ci with the cluster false

positive and false negative rates, fp(Ci, li) and fn(Ci, li) and
the location the cluster covers, li. If a declared cluster Ci

does not yet meet the user requirements ufp or ufn, more

collaboration is needed by recruiting member sensors, so node

nj broadcasts its member sensor observation history to its

neighbors to allow neighbors to compete to form a new cluster

including observations from node nj .

If a node nj receives a cluster head or cluster member

declaration packet for an existing cluster Ci and location li,
node nj may perform one of two actions (Algorithm 2). First,

if node nj is competing to become a member of cluster Ci,

node nj has lost the member competition to the broadcasting

node and cancels its backoff timer. Second, if the declared

cluster Ci does not meet the user requirements ufp or ufn,
and nj is sensitive to li, then nj attempts to add itself as a

cluster member. Node nj determines its contribution towards

meeting the requirements at li if it adds itself as a member

of cluster Ci. For each of its sensitive sensors smj , node nj

updates ∆fpj and ∆fnj as performed in Equation 6 and

sets an importance-based backoff timer to compete with other

nodes to join Ci based on Equation 5.

∆fpj(Ci, s
m
j , li) = fp(Ci, li)− max{fpj(Ci ∪ {smj }, li), ufp} (6)

Example. We present an example of the distributed cluster-

ing process in Figure 4. During initialization, in Figure 4 a),

nodes n1 and n2 explore their diversity by determining which

of their sensors are sensitive to each of the two locations,

l1 and l2. From sensitivity and contributions towards meeting

the user requirements ∆fpj and ∆fnj , node n1 quantifies its

diversity, calculating an importance value greater than that of

node n2, thus setting a shorter backoff timer. With its shorter

backoff timer, node n1 declares itself as the cluster head for all

its sensitive locations: l1 and l2 in Figure 4 b), but the cluster

C2 for location l2 does not meet the user requirements. Node

n2 sets a backoff timer to join C2, where its timer fires and

in Figure 4 c) the new C2 meets the user requirements.

���
�
�������

���
�
�������

�
�

�
� �

�

� � �
�

� �

(a) Importance

��������
��������

�
�

�
� �

�

� �

��������
��������

�
�

�
�

�
�

� �

(b) Head Declaration

��������
��������

�
�

�
� �

�

� �

��������
��������

�
� �

�

�
�

� �

(c) Member Join

Fig. 4: Distributed clustering with two nodes n1, and n2, each with two
sensors, two detection locations l1 and l2, and user requirements ufp =
ufn = 0.05. n1 has greater sensing capability and importance: it becomes
the cluster head for C1 and C2 (indicated by stars). n2 is then added as a
member to C2 since the user requirements are not met by n1 alone.

B. Runtime and Adaptive Coverage

During runtime, after clusters have been formed to cover

each location, cluster member nodes transmit sensor readings

collected at each sample interval to their assigned cluster

heads. Each cluster head makes a detection decision for each of

its covered locations at each sample interval using its learned

detection model and collected sensor data. To save bandwidth

and transmission energy, we employ a scheme similar to [1],

where a member node will only transmit sensor readings

that are closest to the learned event centroid. A cluster head

assumes the non-event centroid value if no transmission is

received from a member sensor.

A cluster currently covering a location may experience a

drop in performance, running the risk of not meeting the user

detection requirements. Such a performance drop may be due

to changes in background noise or to the properties of the

event. In these cases, the existing cluster is dissolved and a

new, more accurate cluster is formed in its place that meets

the user requirements. Such an approach allows Wolfpack to

adapt to environmental changes over time.

All cluster heads maintain moving accuracy using obser-

vation history and ground truth, allowing a cluster to detect

a short term drop in fp(Ci, li) and fn(Ci, li). When such

a performance drop is detected, the cluster head broadcasts

an update message containing the location the cluster covers.

Upon receiving the update message, all current cluster mem-

bers stop transmitting samples to the cluster head. All nodes

that have been awake long enough to have full observation

histories compete to form a new cluster as in Section V-A.

A new, updated cluster may change with respect to the old

cluster in three ways. First, the new cluster may consist of

the same exact sensors as the old cluster, but with new event

and non-event centroids. Second, a newly formed cluster may

also reside on the same nodes as the old but contain different

sensors. Third, a new cluster may also reside on different

nodes than the previous cluster. In future work, we will predict

how a cluster changes during an update, reducing energy and

computational overhead in generating a new cluster.

For each cluster that is formed to cover a location, a

subset of nodes is selected as candidate nodes from among

all sleeping and non-member sensors. Such candidate nodes

remain awake and sample data so that during an update

candidates may be selected to become member nodes if the

current nodes cannot meet the user requirements.

VI. EVALUATION

We evaluate our scheme using the Wisconsin SensIT vehicle

detection trace data [28], with the same trace-driven simulation

methodology described in Section III. We choose 79 detection

locations within the deployment area along the road where

vehicles pass: the first pass is used for initial training and

the subsequent 10 passes are used for runtime detection.

The vehicle path deviates slightly with each pass, creating

environmental dynamics during runtime.

We compare our Wolfpack confident coverage approach

to V-SAM [6], a state of the art coverage scheme, which

in contrast to conventional coverage approaches, attempts

to address sensing diversity by keeping awake sensors that

sample similar data. For both Wolfpack and V-SAM, we set

the user requirements to 5% for both false positive and false

negative rates and set a 100m fusion range to collaborate

sensors and to detect events at each location. For Wolfpack,

we use Nearest Centroid for clustering and collaboration if

not explicitly specified. For comparison, we illustrate the

performance of Wolfpack with and without adaptive coverage

(AC) and V-SAM with both similarity coverage and forced k-
coverage, where 1 to 3 nodes are awake to cover each location.

We also test V-SAM with each possible k of n decision fusion

rule: at least k of n awake nodes within the fusion range must

detect an event in order for V-SAM to detect an event.

A. Meeting User Requirements

In this section, we demonstrate that Wolfpack can meet

the user requirements for nearly all detection locations, while

V-SAM cannot. From Table II, Wolfpack with Adaptive

Coverage exhibits 99.8% accuracy and meets 98.7% of the

detection locations while the best V-SAM configurations have

94.8% accuracy and meet only 74.7% locations. In analyzing

performance by detection location, Figure 5 demonstrates that

Wolfpack has perfect accuracy for 85% of locations while

V-SAM has much higher variance, with 25% of locations

exhibiting less than 90% accuracy. In comparison with V-

SAM, Wolfpack is able to quantify the sensing diversity in this

deployment and choose the nodes with the most capable sen-

sors to confidently detect events at each location. Conversely,

V-SAM experiences poor accuracy, with false negative rates as

high as 39.8% since it neither correctly learns the capabilities

of each sensor nor collaborates carefully. V-SAM places too

many nodes to sleep for lower k-coverage levels and fails to

detect events while increasing coverage levels only slightly

increases detection accurarcy.

TABLE II: Overall accuracy for Wolfpack and V-SAM.

Acc.
(%)

FP (%) FN (%) Loc. Met
(%)

Wolfpack 99.8 0.0 0.4 98.7
Wolfpack, No AC 99.2 0.0 1.9 93.7
Wolfpack, Fisher’s 99.8 0.0 0.6 96.2

Wolfpack, No Collab. 99.5 0.0 1.4 88.6

V-SAM, Sim-cov, 1/n 93.4 0.0 15.1 67.1
V-SAM, 1-cov, 1/n 94.2 0.0 13.0 68.4
V-SAM, 2-cov, 1/n 94.6 1.6 9.7 74.7
V-SAM, 2-cov, 2/n 92.2 0.0 19.0 59.5
V-SAM, 3-cov, 1/n 94.8 2.2 8.0 57.0
V-SAM, 3-cov, 2/n 92.7 0.0 17.8 60.8
V-SAM, 3-cov, 3/n 84.6 0.0 39.8 31.6

Table II shows that Wolfpack with Adaptive Coverage is

able to increase the locations covered by 5% points due to

adaptation to environmental dynamics during runtime. Further-

more, the table demonstrates that by collaborating carefully

and choosing different sensors, Nearest Centroid classification

is able to slightly outperform Fisher’s Linear Discriminant by

covering 2.5% points more locations. The table also demon-

strates that in most cases, single sensor clusters are enough to

meet the user requirements, for when collaboration is disabled,

the number of locations met decreases by about 10% points.

B. Exploiting Sensing Diversity

TABLE III: Sensor, modality, and node makeup per cluster.

No. Sensors

Acoustic Seismic Infrared No. Nodes No. Clusters

1 0 0 1 46
1 1 0 1 21
0 1 0 1 12
0 2 0 2 5
2 0 0 2 4
2 1 0 2 1
0 1 1 1 1

Using Table III, which depicts the node and sensor makeup

of each cluster, we show that acoustic sensors are the most

capable and are chosen in 80% of all clusters, with seismic

and infrared sensors selected in 44% and 1% of all clusters.

The table also illustrates that 64% of all clusters consist of a

single sensor and 89% reside on a single node, emphasizing

that Wolfpack only collaborates sensors when a single sensor

cluster is not good enough to meet user requirements. When

collaboration is disabled in Table II, the relatively small 10%

points reduction in locations that meet user requirements is

explained by most clusters residing on a single node. Only

36% of all clusters consist of multiple sensors and 11% of all

clusters consist of multiple nodes.

In addition to exploiting sensing diversity among sensors

of different modalities, Watchdog exploits sensing diversity

among sensors of the same modality. Figure 6 shows that

while nearly 60% of all nodes are not used to detect events at

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

u
ti
o

n

Accuracy

Wolfpack
Wolfpack (No AC)

Wolfpack (Fisher’s)
V-SAM (Similarity):

V-SAM (2-Coverage)

Fig. 5: Location accuracy CDF, illustrating the
performance difference of each detection location.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

D
is

tr
ib

u
ti
o

n

Cluster Membership Total

Wolfpack Nodes
Wolfpack Sensors

Fig. 6: Cluster membership CDF of nodes and
sensors for all detection locations.

.98

.99

1

0 1000 2000 3000 4000
 0

 1

 2

A
c
c
u

ra
c
y

N
o

.
o

f
U

p
d

a
te

s

Time Interval (100ms)

Wolfpack Updates
Wolfpack Acc.

Wolfpack Acc. (No AC)

Fig. 7: Location updates and accuracy during run-
time.

 0
 10
 20
 30
 40
 50
 60
 70
 80

0 1 2
 0.95

 0.96

 0.97

 0.98

 0.99

 1

N
u
m

b
e
r

o
f
L
o
c
a
ti
o
n
s

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

Updates per Location

Wolfpack
Wolfpack (Fisher’s)

Wolfpack Acc.
Wolfpack Acc.(Fisher’s)

Fig. 8: Updates per location.

 0

 5

 10

 15

 20

Total Same
Cluster

New
Sensors

New
Nodes

 0.95

 0.96

 0.97

 0.98

 0.99

 1

N
u
m

b
e
r

o
f
U

p
d
a
te

s

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

Wolfpack
Wolfpack (Fisher’s)

Wolfpack Acc.
Wolfpack Acc.(Fisher’s)

Fig. 9: Number and accuracy of update types.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

D
is

tr
ib

u
ti
o

n

Energy usage per location (J)

Wolfpack
Wolfpack (No AC)

Wolfpack (Fisher’s)
V-SAM (Similarity)

V-SAM (2-Coverage)

Fig. 10: CDF of energy usage per detection loca-
tion for Wolfpack and V-SAM.

any location, one node is used to detect events at 46 different

locations. Since each node has one sensor of each modality,

some sensors of the same modality are much more capable

than others, for Wolfpack heavily relies on a few nodes and

sensors to confidently detect events. Similar behavior in cluster

selection is witnessed for individual sensors.

C. Adaptive Coverage

Using Figure 7, we demonstrate that Wolfpack with Adap-

tive Coverage is able to update and maintain accuracy when

the environment changes, leading to an increase in locations

covered by 5% points in Table II. The figure shows that there

are three distinct time periods where environmental dynamics

cause an Adaptive Coverage update: intervals 50, 1100, and

3300. At these time intervals, the overall accuracy from

Wolfpack with Adaptive Coverage maintains or drops only

slightly while a greater decrease is witnessed for Wolfpack

without Adaptive Coverage.

Most clusters are able to tolerate moderate environmental

dynamics and require no updates, as illustrated in Figure 8,

with insignificant differences between Nearest Centroid and

Fisher’s Linear Discriminant. Over 10 locations experience

only 1 update and only 1 location experiences 2 updates.

Those locations that experience greater environmental changes

experience lower detection accuracy: as the number of updates

increases, accuracy drops from 100% to 95% with Nearest

Centroid. Locations with significant environmental changes

also incur cluster updates that move the cluster to different

sensors or different nodes, as illustrated in Figure 9. As the

complexity of the update increases, the accuracy decreases

with Nearest Centroid from nearly 100% using the same

sensors to 95% using different nodes. Fortunately, Figure 9

also shows that most updates form the same cluster (with

different centroids) or use different sensors on the same nodes,

maintaining higher accuracy than when new nodes are used.

D. Active Nodes and Energy Usage

By exploiting sensing diversity and selecting the nodes with

the most capable sensors to cover each detection location,

Wolfpack can avoid both too little and too much active node

coverage. In Table IV, all 3 Wolfpack configurations maintain

10 nodes awake at all times, while bested only slightly by

V-SAM with similarity coverage. However, Wolfpack covers

nearly all detection locations while similarity coverage V-SAM

only covers 67%. Increasing levels of V-SAM coverage have

more nodes awake, peaking at nearly 17 out of 23 total nodes

awake. The large V-SAM standard deviation in Table IV show

that V-SAM puts too many nodes to sleep to accurately capture

all events, and once an event is captured, an unnecessarily large

number of nodes are awoken to monitor the event.

Consequently, due to fewer active nodes, Wolfpack uses less

energy than V-SAM, illustrated by total energy usage in Table

IV. For both schemes we measure energy usage as active

node sampling time and transmission energy as defined in

[39]. With only 10 nodes awake and very few communications

due to most clusters residing on the same node, the most

costly Wolfpack configuration, Nearest Centroid with Adaptive

Coverage, uses 26.558J. This is compared with 32.933J for

the most energy efficient V-SAM configuration, similarity

coverage. As coverage is increased with V-SAM, energy usage

also increases, for more nodes are awake, with energy usage

nearly twice that of Wolfpack for 3-coverage V-SAM.

In Figure 10, we plot the CDF of energy usage per location

for both Wolfpack and V-SAM. The figure demonstrates that

TABLE IV: Active nodes and energy usage for Wolfpack and V-SAM.

Active Nodes Energy
Avg. SD Total (J) Radio (J) Active (J)

Wolfpack 10.0 0.0 26.558 0.177 26.381
Wolfpack, No AC 10.0 0.0 26.548 0.168 26.381
Wolfpack, Fisher’s 10.0 0.0 26.456 0.075 26.381

V-SAM, Sim-cov 9.9 5.0 32.933 6.771 26.162

V-SAM, 1-cov 10.8 4.6 34.759 6.195 28.564
V-SAM, 2-cov 13.9 3.8 43.393 6.644 36.749
V-SAM, 3-cov 16.7 3.2 50.959 6.797 44.162

for all locations, Wolfpack has very low energy consump-

tion while for many locations, V-SAM can be very energy

consuming. For all Wolfpack configurations, almost 90% of

all locations are covered by a cluster that uses less than 4J

of energy, with all locations using less than or equal to 5J.

With similarity coverage, the most energy efficient V-SAM

configuration, only 25% of locations use less than or equal to

5J, while 50% use more than 15J and others use nearly 20J.

VII. CONCLUSION AND FUTURE WORK

Existing work does not exploit sensing diversity in order

to provide confident sensing. Thus, we explore how to use

sensor collaboration to take advantage of sensing diversity.

Through trace-driven study, we explore sensing diversity,

when sensor collaboration is needed, and how to perform

sensor collaboration. We formally define a diversity-exploiting

confident coverage problem and demonstrate that it is NP-hard.

For practical sensor network deployments, we also propose

Wolfpack, a confident and distributed event detection coverage

scheme which exploits sensing diversity to meet user detection

requirements and save energy. Using real trace data for a

vehicle detection application, Wolfpack outperforms existing

approaches in terms of meeting user requirements, energy,

and environmental adaptability. In future work, we plan to

investigate how to duty cycle the most capable nodes and

sensors to balance the energy consumption of the network

while ensuring user requirements are still met.

REFERENCES

[1] M. Keally, G. Zhou, and G. Xing, “Watchdog: Confident Event Detection
in Heterogeneous Sensor Networks,” in IEEE RTAS, 2010.

[2] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated
Coverage and Connectivity Configuration for Energy Conservation in
Sensor Networks,” ACM TOSN, 2005.

[3] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He,
J. Stankovic, T. Abdelzaher, and B. Krogh, “Lightweight Detection and
Classification for Wireless Sensor Networks in Realistic Environments,”
in ACM SenSys, 2005.

[4] Q. Li, J. Stankovic, M. Hanson, A. Barth, and G. Zhou, “Accurate, Fast
Fall Detection Using Gyroscopes and Accelerometer-Derived Posture
Information,” in BSN, 2009.

[5] P. Volgyesi, G. Balogh, A. Nadas, C. Nash, and A. Ledeczi, “Shooter Lo-
calization and Weapon Classification with Soldier-Wearable Networked
Sensors,” in ACM MobiSys, 2007.

[6] J. Hwang, T. He, and Y. Kim, “Exploring In-Situ Sensing Irregularity
in Wireless Sensor Networks,” in ACM SenSys, 2007.

[7] R. Tan, G. Xing, X. Liu, J. Yao, and Z. Yuan, “Adaptive Calibration for
Fusion-based Wireless Sensor Networks,” in IEEE INFOCOM, 2010.

[8] T. Yan, T. He, and J. Stankovic, “Differentiated Surveillance for Sensor
Networks,” in ACM SenSys, 2003.

[9] Z. Abrams, A. Goel, and S. Plotkin, “Set K-Cover Algorithms for Energy
Efficient Monitoring in Wireless Sensor Networks,” in ACM/IEEE IPSN,
2004.

[10] C. Hsin and M. Liu, “Network Coverage using Low Duty-Cycled
Sensors; Random and Coordinated Sleep Algorithms,” in ACM/IEEE

IPSN, 2004.
[11] S. Kumar, T. Lai, and A. Arora, “Barrier Coverage With Wireless

Sensors,” in ACM MobiCom, 2005.
[12] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of

a Wireless Sensor Network Platform for Detecting Rare, Random, and
Ephemeral Events,” in ACM/IEEE IPSN, 2005.

[13] M. Malinowski, M. Moskwa, M. Feldmeiera, M. Laibowitz, and J. Par-
adiso, “CargoNet: A Low-Cost MicroPower Sensor Node Exploiting
Quasi-Passive Wakeup for Adaptive Asynchronous Monitoring of Ex-
ceptional Events,” in ACM SenSys, 2008.

[14] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong Barrier Coverage
of Wireless Sensor Networks,” in ACM MobiHoc, 2008.

[15] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho, “Grid Coverage for
Surveillance and Target Location in Distributed Sensor Networks,” in
IEEE TOC, 2002.

[16] E. B. Ermis and V. Saligrama, “Adaptive Statistical Sampling Methods
for Decentralized Estimation and Detection of Localized Phenomena,”
in ACM/IEEE IPSN, 2005.

[17] W. Wang, V. Srinivasan, B. Wang, and K. Chua, “Coverage for Target
Localization in Wireless Sensor Networks,” in ACM/IEEE IPSN, 2006.

[18] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target
Tracking with Binary Proximity Sensors: Fundamental Limits, Minimal
Descriptions, and Algorithms,” in ACM SenSys, 2006.

[19] P. Varshney, Distributed Detection and Data Fusion, Springer, 1996.
[20] G. Hackmann, F. Sun, N. Castaneda, C. Lu, and S. Dyke, “A Holis-

tic Approach to Decentralized Structural Damage Localization Using
Wireless Sensor Networks,” in IEEE RTSS, 2008.

[21] V. Isler and R. Bajcsy, “The Sensor Selection Problem for Bounded
Uncertainty Sensing Models,” in ACM/IEEE IPSN, 2005.

[22] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap,
J. Sallai, and K. Frampton, “Sensor Network-Based Countersniper
System,” in ACM SenSys, 2004.

[23] N. Bisnik, A. Abouzeid, and V. Isler, “Stochastic Event Capture Using
Mobile Sensors Subject to a Quality Metric,” in ACM MobiCom, 2006.

[24] G. Yang, V. Shukla, and D. Qiao, “A Novel On-Demand Framework
for Collaborative Object Detection in Sensor Networks,” in IEEE

INFOCOM, 2008.
[25] Y. Rachlin, R. Negi, and P. Khosla, “Sensing Capacity for Discrete

Sensor Network Applications,” in ACM/IEEE IPSN, 2005.
[26] H. Wang, K. Yao, G. Pottie, and D. Estrin, “Entropy-based Sensor

Selection Heuristic for Target Localization,” in ACM/IEEE IPSN, 2004.
[27] S. Subramaniam, V. Kalogeraki, and T Palpanas, “Distributed Real-Time

Detection and Tracking of Homogeneous Regions in Sensor Networks,”
in IEEE RTSS, 2006.

[28] M. Duarte and Y. Hu, “Vehicle Classification in Distributed Sensor
Networks,” JPDC, 2004.

[29] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madded, and H. Balakr-
ishnan, “The Pothole Patrol: Using a Mobile Sensor Network for Road
Surface Monitoring,” in ACM MobiSys, 2008.

[30] K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen, and M. Welsh,
“Resource Aware Programming in the Pixie OS,” in ACM SenSys, 2008.

[31] A. Singh, C. Ramakrishnan, I. Ramakrishnan, and D. Warren, “A
Methodology for In-Network Evaluation of Integrated Logical-Statistical
Models,” in ACM SenSys, 2008.

[32] A. Benbasat and J. Paradiso, “A Framework for the Automated
Generation of Power-Efficient Classifiers for Embedded Sensor Nodes,”
in ACM SenSys, 2007.

[33] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song,
“SeeMon: Scalable and Energy-efficient Context Monitoring Framework
for Sensor-right Mobile Environments,” in ACM MobiSys, 2008.

[34] P. Zappi, C. Lombriser, T. Steifmeier, E. Farella, D. Roggen, L. Benini,
and G. Troster, “Activity Recognition from On-Body Sensors: Accuracy-
Power Trade-Off by Dynamic Sensor Selection,” in EWSN, 2008.

[35] “XBOW Mote Specifications,” http://www.xbow.com.
[36] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[37] G. Xing, R. Tan, B. Liu, J. Wang, X. Jia, and C. Yi, “Data Fusion Im-

proves the Coverage of Wireless Sensor Networks,” in ACM MobiCom,
2009.

[38] V. Vazirani, Approximation Algorithms, Springer, 2004.
[39] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh,

“Power TOSSIM: Efficient Power Simulation for TinyOS Applications,”
in ACM SenSys, 2004.

