
FastPay: A Secure Fast Payment Method for Edge-IoT
Platforms using Blockchain

Zijiang Hao
College of William and Mary

Williamsburg, Virginia
hebo@cs.wm.edu

Raymond Ji
College of William and Mary

Williamsburg, Virginia
mengxi25@gmail.com

Qun Li
College of William and Mary

Williamsburg, Virginia
liqun@cs.wm.edu

ABSTRACT

Blockchain-based cryptocurrency systems such as Bitcoin
and Ethereum have attracted much attention during the
last decade. In recent years, a trend of combining Inter-
net of Things (IoT) devices with blockchain technology has
emerged. Digital payments can be made on front-end IoT
devices, while a back-end blockchain serves as a distributed
ledger to ensure the validity of payments across the system.
Nevertheless, fast payments are usually on demand in such
a scenario, but an open problem still remains on how to
protect blockchain-based systems from double-spending at-
tacks in the context of fast payment. Of-chain techniques,
such as Lightning Network and Raiden Network, act as coun-
termeasures to this problem, but they all sufer from the
hidden transactions problem. To combat this problem, we
propose FastPay, a solution for achieving secure fast pay-
ments in blockchain-backed edge-IoT systems. Preliminary
evaluation on our prototype demonstrates the efectiveness
of FastPay.

1 INTRODUCTION

The Internet of Things (IoT) has grown signiicantly in re-
cent years. It is believed that the global market value of the
IoT will reach as much as 7.1 trillion dollars by 2020 [9]. The
basic idea of the IoT concept is that smart devices, including
RFID (radio-frequency identiication) tags, mobile devices,
sensors and actuators, are connected to and managed by a
global network infrastructure based on standard and inter-
operable communication protocols [20]. Since IoT devices
usually possesses limited hardware resources, edge comput-
ing is viewed as the best enabler for IoT systems by both
industry and academia, as it can serve the IoT devices with
low network latency [1, 2, 17].

We observe that a new trend has emerged in the IoT ield,
i.e., employing the blockchain technique to eithermanage the
data collected from the IoT devices or enhance the security
of the IoT system [3, 5, 7, 8, 10, 15]. Blockchain provides a
way for IoT systems to achieve consensus on the critical data
within the system, even in presence of malicious IoT devices.
This broadens the range of the IoT applications, which in turn
pushes the advancement of the IoT technique. In particular,
making digital payments via blockchain-backed IoT devices
has been envisioned as a popular IoT application in the near
future [16, 18]. Through this application, customers canmake
payments using a range of devices connected to the IoT, such

as smart cars, household appliances, smartphones, and most
recently, wearables. A blockchain serves as a distributed
ledger behind the IoT devices, establishing a solid foundation
for ensuring the validity of the payments in the IoT system.

Nevertheless, fast payments are usually on demand in such
a scenario. Unfortunately, it is well-known that blockchain-
based cryptocurrency systems are prone to double-spending
attacks in the context of fast payment [14]. In order to en-
sure that a payment will not be invalidated afterwards, the
payee must wait until enough subsequent blocks have ap-
peared in the blockchain, which may take tens of minutes.
This prevents the blockchain-based IoT payment application
from being widely adopted in the real world. Consider the
following example: two attackers share the same blockchain
wallet. One attacker makes a purphase on fast food via an
IoT device in a restaurant, while the other purchases some
goods simultaneously via another IoT device in a supermar-
ket. The restaurant and the supermarket are geographically
far from each other, and each attacker spends all the fund in
the wallet, meaning that the fund is spent twice. In such a
case, either the restaurant or the supermarket cannot receive
money from the wallet.

Notably, some of-chain techniques, such as Lightning Net-
work [11] and Raiden Network [19], have been proposed as
countermeasures to this problem. Nevertheless, they all suf-
fer from the hidden transaction problem, i.e., the payments
are batched and combined, and the blockchain only records
the combined payments, losing lots of information about
the raw payments. This is not desirable in the IoT scenario,
because such information can be used to infer the trend of
user behaviors and should be made public. To this end, we
propose our solution, FastPay, which provides the security
guarantee for fast payments in blockchain-backed edge-IoT
systems. FastPay is built atop the smart contract mechanism
supported by many well-known blockchain systems, such
as Ethereum [21]. FastPay secures fast payments by forc-
ing payers along with their guarantors to provide payment
proofs before the payments take place. With these proofs,
the payers and their guarantors will receive severe penal-
ties if they dare to launch double-spending attacks. To the
best of our knowledge, we are the irst to build a secure fast
payment method for edge-IoT platforms using blockchain.
Preliminary evaluation on our prototype system reveals that
FastPay works efectively with acceptable overhead. More
speciically, FastPay conirms a payment in about 9 seconds,

T3

Alice

Chain N

Miner X

Chain N

Miner Y

Chain N

Miner Z

TXBob

TXCarol

Chain NChain N

BKN+1'

Chain N+1Chain N+1

T0

T1

T2

TXBob : Alice
Bitcoin c

Bob

:TXCarol

TXCarol

Chain N+1

BKN+1 :

Alice
Bitcoin c

Carol

Chain N+1 : Chain N BKN+1

Chain N+1'Chain NChain N+1

BKN+1'

Chain N+1'

Chain N+1 Chain N+2 Chain N+1'

BKN+2BKN+2

Chain N+2 Chain N+2 Chain N+2

T4

T5

A block w/ TXCarolTXBob w/o

:BKN+1'

: A block w/oBKN+2

A block w/ TXCarol TXBobw/o

TXCarolTXBob w/o

: Chain N BKN+1'Chain N+1'

Chain N+2 : Chain N+1 BKN+2

BKN+1 BKN+1

Figure 1: Double-spending prevention in Bitcoin.

much faster than many widely-adopted blockchain-based
cryptocurrency systems such as Bitcoin [4].

2 BLOCKCHAIN & DOUBLE-SPENDING

Blockchain systems are built on the peer-to-peer (P2P) ba-
sis [14, 21]. Every peer in the system is called a miner ; they
collaboratively maintain a global ledger called blockchain to
keep track of the transactions acknowledged by the system.
More speciically, each miner maintains a local replica of the
blockchain, and the consensus on the blockchain is achieved
through proof-of-work (POW). POW is organized in which
all miners work on a generated computational puzzle, and
the irst one to solve the puzzle is allowed to append a new
block to the blockchain. The new block contains a sequence
of transactions seen by the puzzle-solver, so the blockchain
is essentially a global ledger of the transactions. All min-
ers in the system eventually agree on the same view of the
blockchain, even with the presence of malicious miners, as
long as the benign miners hold a majority of the CPU power.
Due to the long broadcast latency of the underlying P2P

network and the unstable block generation rate, however, it is
possible thatmultiple blocks generated from the same state of
the blockchain simultaneously appear in the system [6], such
as the case described in Figure 1. This is called a blockchain
fork. The conlicts of the forked blockchains will be elimi-
nated after a longer blockchain appears, due to the miners
always treating the longest blockchain they have ever seen as
the current state of the distributed blockchain. As such, con-
sensus on the blockchain is achieved in an eventual manner,
and it is possible that a transaction previously included in a
block disappears in the blockchain due to a blockchain fork.
Bitcoin suggests that a transaction should not be considered
safely included by the blockchain until the block containing

it has ive or more subsequent blocks [4]. This rule is known
as ł6 conirmationž, and the transactions in accordance with
this rule are considered to be ł6-conirmedž.

Figure 1 demonstrates how double-spending is prevented
in Bitcoin. Miner X, Miner Y and Miner Z are Bitcoin miners.
Alice is a Bitcoin user, who intends to double-spend c, the
only bitcoin in her wallet, by transferring it to both Bob
and Carol. At time T0, the system blockchain is in the state
of Chain N. At some time after T0, Alice sends transaction
TXBob to Miner X, and transaction TXCarol to Miner Y and
Miner Z, hoping that the system blockchain will record both
transactions. In other words, Alice has launched a double-
spending attack.
At time T1, Miner X solves the puzzle and generates a

new block BKN+1, which contains TXBob that Miner X has
received from Alice. Similarly, at time T2, Miner Z solves the
puzzle and generates another block BKN+1

′, which contains
TXCarol. T1 and T2 are so close that Miner Z has no chance
to learn the existence of BKN+1 before generating BKN+1

′.
Miner X and Miner Z further update their local blockchain
to Chain N+1 and Chain N+1′, respectively, and broadcast
the new block to other miners.

Miner Y receives BKN+1 irst, and then BKN+1
′. Since both

blocks are generated by solving the same puzzle, Miner Y
accepts only the irst one it has received, i.e., BKN+1, and
updates its local blockchain at time T3 to Chain N+1, the
same as that of Miner X. At time T4, Miner Y solves the next
puzzle and generates a new block BKN+2. It then updates the
local blockchain from Chain N+1 to Chain N+2 using BKN+2,
and broadcasts BKN+2 to other miners. Upon receiving BKN+2,
Miner X and Miner Z update their local blockchain to Chain
N+2. Note that Chain N+2 is derived from Chain N+1, so it
is in conlict with Chain N+1′. Since Chain N+2 is longer

tr
a
n

sf
erd
ep

os
it

T2

Alice

Broker

Bob

Carol

T5 T6'T0 T1 T3 T4 T6 T8

FastPay

T7 T7' T9 T10 T11

:

:

:

"Broker, send e to Bob."

"Broker, send e to Carol."

e
BobBroker

:

:

Ether e w/ 6-conf.

Ether e w/o 6-conf.

: Contract w/o 6-conf.

cr
ea

te

Fast Payment TransferPrepare Deposit

Figure 2: The FastPay protocol.

than Chain N+1′, Miner Z must desert Chain N+1′ and adopt
Chain N+2 according to the blockchain protocol.

There are surely other miners existing in the system, but
we only consider the three shown in Figure 1 for the sim-
plicity of discussion. Clearly, consensus on the blockchain
is reached at time T5 among the three miners, because their
local blockchains are all in the state of Chain N+2. Because
Chain N+2 contains only TXBob but not TXCarol, Bob is the
only one who receives c from Alice. In other words, Alice
has failed to double-spend her bitcoin.

Figure 1 shows only a simple case of how double-spending
is prevented in Bitcoin. Nevertheless, it reveals an important
characteristic of the blockchain protocol, i.e., consensus on
the blockchain is achieved in an eventual manner, and di-
vergence on the blockchain may temporarily occur in the
system. In essence, any payee can never assert that he has re-
ceived the money from a payer in such a system, because it is
always possible that a longer, conlicting blockchain emerges
and replaces the existing one. For this reason, Bitcoin sug-
gests that the users adopt 6-conirmation [4], meaning that
a transaction should not be conirmed until the block con-
taining the transaction is followed by 5 or more blocks in
the blockchain.
Theoretically speaking, 6-conirmation can only reduce,

but not eliminate, the chance that a conirmed transaction
becomes invalid. However, it works efectively in practice,
because it is extremely unlikely that a block followed by 5
or more blocks will be invalidated by a longer, conlicting
blockchain. Despite its efectiveness, 6-conirmation comes
with a cost: the latency between when a transaction is is-
sued and when it is conirmed is quite long. It is known that
Bitcoin miners produce one block every 10 minutes on aver-
age [13], so roughly speaking, the latency of 6-conirmation
is one hour. This might be ine for many existing scenarios,
but is unacceptable when fast payment is on demand, such
as those involving IoT payments.

3 THE FASTPAY PROTOCOL

To protect the blockchain-based IoT payment systems from
double-spending attacks, we design a protocol, called FastPay,
based on the smart contract mechanism [12] provided by
many popular blockchain systems such as Ethereum [21]. A

smart contract is a piece of code stored on the blockchain.
Users can invoke a smart contract by submitting transactions
calling its public functions to the miners. After a miner has
accepted such a transaction, it executes the code of the smart
contract, and stores the current state of the smart contract on
the blockchain. Based on the blockchain mechanism, smart
contracts achieve consensus among the miners, and hence
can be used to apply many secure computations.
The FastPay protocol works on the basis that a special

user, called Broker, exists in the system. The Broker acts as
the intermediate of the payer and the payee in a fast payment
process. By carefully coordinating the behavior of the payer
and the payee using the smart contract approach, the Broker
achieves secure fast payments for IoT systems.

Figure 2 illustrates a simple example of how the protocol
works. The protocol includes four phases: the Prepare phase,
the Deposit phase, the Fast Payment phase, and the Transfer
phase. The underlying system in Figure 2 is Ethereum, as we
need to choose a smart-contract-supporting system. There-
fore, Alice tries to double-spend her ether e, rather than the
bitcoin c used in Figure 1’s example. In what follows, we will
describe the four phases in detail.

3.1 The Prepare Phase

Before providing the fast payment service, the Broker needs
to establish a łFastPayž smart contract on the blockchain.
This FastPay contract essentially encodes all the actions that
should be performed upon receiving messages from the sys-
tem users. Such actions include:
• Deposit: A user transfers money to the smart contract as
its deposit.

• Withdraw: A user retrieves a speciied amount of money
from its deposit in the smart contract.

• Transfer: A user asks the smart contract to transfer the
payment from another user’s deposit to its own account.

• Add Security Deposit: The Broker transfers money to
the smart contract as available security deposit.

• Retrieve Security Deposit: The Broker retrieves a speci-
ied amount of money from the available security deposit.

• Increase Insurance: A user asks the smart contract to
take a speciied amount of money from the Broker’s avail-
able security deposit and use the money as the insurance

for the subsequent fast payments in which the user acts
as the payee. This action should be done in advance, e.g.,
a restaurant using FastPay should have acquired enough
insurance before it starts selling food.

• Decrease Insurance: A user asks the smart contract to
revoke the insurance on its account by a speciied amount.

• Cancel: A user asks the smart contract to cancel a pay-
ment it has made to another user, with the conirmation
from that user.
The irst three actions listed above are the basic operations

for the fast payment service. The other ive actions are used
to manage the security deposit, which ensure that the Broker
will get punished if it violates the rules of the protocol. More
details will be discussed later.

After creating the FastPay contract on the blockchain, the
Broker must wait until the smart contract is 6-conirmed.
When the smart contract is 6-conirmed, the Prepare phase
ends, and the Broker can provide the fast payment service
to the system users. In Figure 2, the Prepare phase occurs
during [T0, T2].

3.2 The Deposit Phase

Any user intending to make fast payments via the FastPay
protocol must have enough deposit on the Broker’s side. In
other words, the user must have transferred enough money
(i.e., cryptocurrency) to the Broker, and the transaction(s)
transferring the money must have been 6-conirmed before
the payment is made. This is done during the Deposit phase.

In Figure 2, Alice initiates a Deposit phase at T3, transfer-
ring the ether e to the FastPay contract via a deposit message.
At T5, the transaction is 6-conirmed, and the Deposit phase
thus ends.

3.3 The Fast Payment Phase

Any user with enough deposit in the FastPay contract can
make a fast payment to another user, by initiating a Fast
Payment phase. The user is supposed to generate a signed
request, indicating the payer, the payee, and the amount to
transfer in the fast payment, and send the request to the
Broker. The Broker veriies whether the request contains
valid data and has been signed correctly, and whether the
payer has enough deposit. If both answers are łyesž, the
Broker generates a digital cheque for the request, signs it, and
sends it to the payee. All the communication is done through
speciied network links, not via the system blockchain or the
FastPay contract.

After receiving the digital cheque, the payee irst veriies
whether it is valid. If the digital cheque passes the veriication,
the payee further checks if he has enough insurance on his
account. If so, it is good for the payee to serve the payer. This
process implies that the protocol achieves safety through the
insurance mechanism, which works as follows.
• All security deposit belongs to the Broker. The FastPay
contract maintains a pool of the available security deposit.
The Broker can add/retrieve money to/from the pool.

• A user can ask the Broker to assign a speciied amount
of security deposit to its account as the insurance. Upon
receiving such a request, the Broker generates a conirma-
tion, indicating the target account (i.e., the user’s account)
and the amount of security deposit requested. It then signs
the conirmation and sends it to the user. The user then
sends the signed conirmation to the FastPay contract.
Note that only the Broker needs to sign, because the Fast-
Pay contract will verify whether the conirmation has been
sent by the target account. After the FastPay contract has
ensured that the conirmation is valid, it takes the speciied
amount of security deposit from the pool, and assigns it
to the user’s account.

• After the security deposit has been assigned to the user’s
account as an insurance, it becomes unavailable, i.e., it can-
not be retrieved by the Broker or assigned to another user.
On the other hand, the Broker may periodically charge the
user for the assigned security deposit. The more security
deposit has been assigned, the more charge is imposed.
The FastPay contract may automatically transfer a charge
from the user’s account to the Broker’s account when it is
time for the user to pay for it.

• The user can freely decrease the insurance assigned to its
account. The decreased part of the insurance will be put
back to the pool of the available security deposit. By doing
this, the user can reduce the charges on its insurance.

• When a user sends a valid digital cheque to the FastPay
contract, the FastPay contract checks whether the payer
indicated by the digital cheque has enough deposit. If not,
the Broker has violated the rules, probably colluding with
the payer to launch a double-spending attack. In such
a case, the FastPay contract converts all the insurance
assigned to the user’s account to the user’s property, i.e.,
it transfers the security deposit previously belonging to
the Broker to the user. By doing this, the FastPay contract
punishes the Broker and compensates the user.

• Any payee is responsible for tracking the states of the in-
surance on his account. For example, an insurance cannot
be used as the guarantee for any fast payment until the
transaction assigning the insurance is 6-conirmed, as the
transaction can be invalidated by a blockchain fork. More
importantly, a payee should track the fast payments made
to him, because the insurance on his account is used to
guarantee all the fast payments that have been made to
him but are not 6-conirmed yet. The payee must ensure
that the total amount of the outstanding fast payments
is less than that of the insurance he has received. Other-
wise, he may still sufer an economic loss even though he
receives all the insurance as the compensation in case he
has experienced a double-spending attack.

• If a payee has decided to reject a fast payment due to the
lack of the insurance on his account, he cancels the fast
payment by signing a conirmation and sending it to the
payer. The payer can contact the FastPay contract at any
time with the conirmation to get her money back.

We would highlight that the FastPay contract has been
established on the blockchain before the protocol is put into
action, which means that the FastPay contract is public and
immutable during the execution of the protocol. For this rea-
son, it cannot be modiied by attackers, and if the Broker dare
collude with a malicious payer to launch a double-spending
attack, it will receive a severe penalty as long as the victim
payee sends the FastPay contract the digital cheque it has re-
ceived from the Broker, as the proof of the attack. Moreover,
the Fast Payment phase is initiated by the payee through a
client device. More speciically, the client device sends a fast
payment request to a nearby IoT device, which accomplishes
the request by interacting with the FastPay contract on the
blockchain. All resource-intensive computations, such as
generating and verifying digital signatures, are done on an
edge server close to the IoT device.
In Figure 2, a Fast Payment phase occurs during [T6, T8].

At T6, Alice sends a request to the Broker, asking the Broker
to transfer the ether e to Bob. In order to double-spend e, later
at T6

′, Alice sends another request to the Broker, asking it to
transfer e to Carol. The Broker, however, accepts only the irst
request at T7, while rejects the second one at T7

′, according to
the protocol rules. It then generates the corresponding digital
cheque for the irst request and sends it to Bob. Bob receives
the digital cheque at T8, which closes the Fast Payment phase.

3.4 The Transfer Phase

After receiving the digital cheque from the Broker, the payee
can initiate a Transfer phase at any time to retrieve the pay-
ment, by sending a transfer message with the digital cheque
to the FastPay contract. The FastPay contract then veriies
the digital cheque and submits the embedded transaction to
the miners. If the transaction has been invalidated due to a
blockchain fork, the payee can resend the transfer message,
asking the FastPay contract to re-submit the transaction. It
can keep doing so until the transaction is 6-conirmed.
In Figure 2, a Transfer phase occurs during [T8, T11]. At

T8, Bob sends a transfer message with the digital cheque he
has received to the FastPay contract. At T10, the miners re-
ceive the transactions. At T11, the transaction is 6-conirmed,
which indicates that Bob has successfully received the ether
e from Alice’s deposit.

4 EVALUATION

To examine whether FastPay works well in the real world, we
have implemented a prototype and deployed it on a testbed.
Evaluation on the prototype reveals that FastPay is as efec-
tive and eicient as expected.

4.1 Latency Comparison

We have irst examined the minimum latency a payer must
wait for until the payee ensures that the payment is safe
and is about to provide his good/service to the payer. Two
cases are considered. In the irst case, the payment is done
through the common practice, i.e., the payer transfers money

to the payee by submitting a transaction to the miners and
the payee waits until the transaction is 6-conirmed. The
latency in this case is therefore the time diference of when
the transaction is 6-conirmed and when the payer submits
the transaction. In the second case, the payment is done
through FastPay, and the latency is exactly the duration of
the Fast Payment phase.
Two experiments are conducted for the two cases. In the

irst experiment, the miners receives money-transferring
transactions from the payers, while in the second experiment,
the Broker receives FastPay-style fast payment requests from
the payers. In both experiments, the requests are generated
by the four machines expect the one where the Broker re-
sides, and the payer and the payee involved in each payment
process are assumed to be located at the same machine. The
requests are generated on each machine with the time in-
tervals following a normal distribution, which has a mean
of 40 seconds and a standard deviation of 10 seconds. Both
experiments generate 1,000 requests in total.

Table 1: Metrics of the Secure Latency.

Common Practice FastPay

Minimum (sec) 39.45 8.89

Maximum (sec) 31389.89 9.68

Average (sec) 3452.01 9.11

Std. Dev. (sec) 3397.18 0.11

Table 1 shows the comparison results of the latency re-
quired by the common practice and FastPay. It can be seen
that the average latency of FastPay is only about 9 seconds,
and is quite stable, with a standard deviation of only 0.11
seconds. This result is quite satisfactory for the IoT payment
scenario from our point of view. In contrast, the average la-
tency of the common practice is about 58 minutes, 379 times
of that of FastPay. Furthermore, the latency of the common
practice varies a lot during the experiment, because the block
intervals are exponentially distributed. These results are in
accord with our analysis on the common practice of how
payments are currently done in a blockchain-based cryp-
tocurrency system, and are far from satisfactory for the IoT
payment scenario. Note that we adopt the Bitcoin settings as
the common practice, because it is the most widely-adopted
blockchain-based cryptocurrency system, and is thus worth
being adopted as the baseline. Moreover, although Bitcoin
does not support smart contract at the current stage, we ex-
pect that it will introduce such a support in the near future.

4.2 The Safety of FastPay

To determine whether FastPay can indeed protect the payees
from double-spending attacks, we have conducted the fol-
lowing experiment. We only run a one-thread miner on two
of the machines, and execute a program on both machines
so that the communication between them are periodically
disabled and enabled. When the communication between the

two miner machines is cut of, they mine independently, so
that a blockchain fork is artiicially generated. To guarantee
that no blockchain fork invalidates more than 6 blocks, the
program stops the miner after it has generated 3 blocks since
the latest communication cut-of, and restarts it after the
communication has been recovered.

Each payer generates a pair of fast payment requests, try-
ing to transfer all its funds to diferent payees. As there are
500 payers in the system, totally 1,000 requests are generated.
The requests are then sent to the Broker, which colludes with
the payers to launch double-spending attacks. The Broker
runs on a machine other than the two running miners, and
we also use this machine to perform any processing for the
payers and the payees. Fast payment requests are generated
by this machine on behalf of the payers, and their time inter-
vals follow a normal distribution with a mean of 10 seconds
and a standard deviation of 10 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 3 6 9 12 15

C
u
m

u
la

ti
v
e

P
ro

b
ab

il
it

y

Latency (min)

Figure 3: The cumulative probability of the successful

requests.

Figure 3 illustrates the cumulative percentage of successful
requests. A request is considered successful when the corre-
sponding payment or compensation the payee has received
is 6-conirmed, i.e., when the payee holds the money for real.
The latency shown on the X axis is the time diference of
when request becomes successful and when the payee irst
submits the transfer transaction to one of the miners.
During the experiment, 381 transaction re-submissions

have occurred. It can be seen from Figure 3 that when the
latency is 9 minutes, the cumulative percentage of success-
ful requests is only 22.7%. When the latency > 9 minutes,
however, the cumulative percentage increases dramatically
with the increase of latency, partially because of the expo-
nential distribution of the block intervals, and partially be-
cause more and more transactions previously invalidated by
blockchain forks eventually become 6-conirmed. When the
latency reaches 14 minutes, all requests become successful,
i.e., all payees eventually receive their money.

5 CONCLUSION

We have introduced FastPay, a secure fast payment method
for blockchain-backed edge-IoT platforms. Preliminary eval-
uation on our prototype reveals that FastPay works efec-
tively and eiciently. It requires only 9 seconds to conirm a

payment. Most importantly, it can work directly using the
existing blockchain platforms, such as Ethereum, without
any modiication to the system.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by US
National Science Foundation grant CNS-1816399.

REFERENCES
[1] Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. Fog computing: A

platform for internet of things and analytics. In Big data and internet of

things: A roadmap for smart environments. Springer, 2014, pp. 169ś186.

[2] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. Fog computing

and its role in the internet of things. In Proceedings of the First Edition

of the MCC Workshop on Mobile Cloud Computing (2012), MCC ’12,

pp. 13ś16.

[3] Christidis, K., and Devetsikiotis, M. Blockchains and smart con-

tracts for the internet of things. IEEE Access 4 (2016), 2292ś2303.

[4] Conirmation. https://en.bitcoin.it/wiki/Conirmation, 2017.

[5] Conoscenti, M., VetrÃš, A., and Martin, J. C. D. Blockchain for the

internet of things: A systematic literature review. In 2016 IEEE/ACS

13th International Conference of Computer Systems and Applications

(2016), AICCSA ’16, pp. 1ś6.

[6] Decker, C., andWattenhofer, R. Information propagation in the bit-

coin network. In Proceedings of the 2013 IEEE International Conference

on Peer-to-Peer Computing (2013).

[7] Dorri, A., Kanhere, S. S., and Jurdak, R. Towards an optimized

blockchain for iot. In Proceedings of the Second International Conference

on Internet-of-Things Design and Implementation (2017), IoTDI ’17,

pp. 173ś178.

[8] Dorri, A., Kanhere, S. S., Jurdak, R., andGauravaram, P. Blockchain
for iot security and privacy: The case study of a smart home. In 2017

IEEE International Conference on Pervasive Computing and Communi-

cations Workshops (2017), PerCom Workshops ’17, pp. 618ś623.

[9] Hsu, C.-L., and Lin, J. C.-C. An empirical examination of consumer

adoption of internet of things services. Comput. Hum. Behav. 62, C

(2016), 516ś527.

[10] Huh, S., Cho, S., and Kim, S. Managing iot devices using blockchain

platform. In 2017 19th International Conference on Advanced Commu-

nication Technology (2017), ICACT ’17, pp. 464ś467.

[11] Lightning network. https://lightning.network/, 2018.

[12] Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. Making

smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (2016).

[13] Mining. https://en.bitcoin.it/wiki/Mining, 2017.

[14] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf, 2008.

[15] Samaniego, M., and Deters, R. Hosting virtual iot resources on

edge-hosts with blockchain. In 2016 IEEE International Conference on

Computer and Information Technology (2016), ICCIT ’16, pp. 116ś119.

[16] Secure Technology Alliance. Iot and payments: Current market

landscape. https://www.securetechalliance.org/wp-content/uploads/

IoT-Payments-WP-Final-Nov-2017.pdf, 2018.

[17] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. Edge computing: Vision

and challenges. IEEE Internet of Things Journal 3, 5 (2016), 637ś646.

[18] The internet of things (iot) in payment. https://www.optile.net/blog/

internet-things-iot-payment/, 2018.

[19] The raiden network. https://raiden.network/, 2018.

[20] Van Kranenburg, R. The Internet of Things: A Critique of Ambient

Technology and the All-Seeing Network of RFID. Institute of Network

Cultures, 2008.

[21] Wood, G. Ethereum: A secure decentralised generalised transaction

ledger. http://gavwood.com/paper.pdf, 2014.

https://en.bitcoin.it/wiki/Confirmation
https://lightning.network/
https://en.bitcoin.it/wiki/Mining
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.securetechalliance.org/wp-content/uploads/IoT-Payments-WP-Final-Nov-2017.pdf
https://www.securetechalliance.org/wp-content/uploads/IoT-Payments-WP-Final-Nov-2017.pdf
https://www.optile.net/blog/internet-things-iot-payment/
https://www.optile.net/blog/internet-things-iot-payment/
https://raiden.network/
http://gavwood.com/paper.pdf

