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Abstract—The rise of edge computing gives birth to a spectrum
of delay-sensitive applications. Many of these applications build
their services atop the functionality that the edge nodes quickly
negotiate a unique order on the events received from a massive
number of client devices, even under very high event rates. To this
end, we propose a protocol, called Nomad, for achieving fast event
ordering in edge computing environments. Nomad is designed as
a consensus protocol that employs a lease-based approach to take
advantage of the locality of the unbalanced workload across the
system. It also dynamically adjusts the leadership distribution on
the edge nodes based on the recent running history, and relies
on a cloud-based arbitrator to resolve contentions. Experiments
demonstrate that Nomad outperforms the existing solutions, such
as Multi-Paxos, Mencius and E-Paxos, in achieving fast event
ordering for large-scale, delay-sensitive edge-cloud applications.

I. INTRODUCTION

Edge computing, also known as cloudlets [1], fog comput-

ing [2] and mobile-edge computing [3], is a new paradigm of

distributed computing. The basic idea of edge computing is to

provide elastic resources at the edge of network, serving the

end devices with lower network latency than cloud computing.

Since its birth, edge computing has drawn plenty of attention

from the industry, because it is able to fulfill the requirements

on network latency imposed by many distributed applications.

More notably, edge computing is viewed as the enabler of a

spectrum of emerging applications, such as IoT applications,

big data analytics, and real-time mobile-edge applications.

Many of such applications are large-scale, geo-distributed

ones. There could be dozens of separate edge networks in the

system, backed by several interconnected cloud data centers.

Massive end devices may simultaneously connect to the sys-

tem via edge servers located at different places. Information

is rapidly exchanged between the end devices and the edge

servers, and some of the messages sent to the edge need to

be spread across the entire system. In fact, many large-scale

edge applications build their services atop the functionality

that the system orders the messages received by the edge in a

timely manner. However, implementing such a functionality is

challenging. This is not only because the system may receive

messages at a prohibitively high rate, but there may also be a

good number of parties involved in, including both the cloud

data centers and the edge servers in the edge networks. How to

make a consistent decision in a distributed system is a classic

problem in the distributed computing area, which is known

as the consensus problem. This problem has been studied for

decades and is still an attractive topic in the academia.

Among the existing consensus approaches in the literature,

the Paxos-based ones ensure strong consistency, i.e., conflict-

ing states will never occur in the system, and they complete

the decision-making process as soon as all the conditions

have been met, effectively reducing the user-perceived latency.

Because we aim at achieving fast ordering on the messages

for geo-distributed edge-cloud applications, and many of such

applications cannot tolerate inconsistency on the message

order, choosing a proper Paxos-based approach seems to be a

plausible solution. However, existing Paxos-based approaches

have a severe drawback that they fail to support large-scale

distributed systems, because the message complexity grows

dramatically with the increase of the number of system nodes.

As mentioned previously, the applications we study may run

on a great number of distributed parties, so the Paxos-based

approaches cannot be directly utilized to solve this problem.

To this end, we propose Nomad, a consensus approach that

achieves fast message ordering for geo-distributed edge-cloud

applications. The main idea of Nomad is to divide the system

into two levels, the cloud level and the edge level, and at each

level, Nomad runs a consensus protocol that fits the network

traits of that level. The two protocols also cooperate to adapt

to and take advantage of the workload change in the system.

To summarize, the contributions of this paper are fourfold.

• We formulate a problem of achieving fast message ordering

for geo-distributed delay-sensitive edge-cloud applications,

and propose two realistic application scenarios to show the

significance of studying this problem.

• We design a novel Paxos-based consensus protocol for the

edge level, which rapidly orders the messages in individual

edge networks. It dynamically distributes the leadership of a

sequence of Paxos instances among the edge servers, based

on the recent running history, and introduces a cloud-based

arbitrator to quickly resolve the contentions on the edge.

• We design a consensus protocol for the cloud level, which

works with the edge-level protocol as a whole. It adopts a

lease-based method to opportunistically transfer the control

from the cloud data centers to the most heavily-loaded edge

network, based on the recent running history.

• We implement a prototype of Nomad, and evaluate it on a

testbed. The results show the high efficiency of Nomad. In

particular, the edge-level protocol outperforms the existing

Paxos-based solutions, such as Multi-Paxos [4], Mencius [5]

and E-Paxos [6], under different experimental settings.



II. BACKGROUND

Before elaborating the design of Nomad, we first introduce

some preliminaries about edge computing and consensus.

A. Edge Computing

Edge computing has been proposed as an extension of cloud

computing [2], [1], [7]. Its goal is to serve end users at the

edge of network, providing better network conditions such as

low network latency.
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Fig. 1. A hierarchical edge computing architecture.

Figure 1 shows a hierarchical edge computing architecture.

Client devices, including wearables, smartphones, tablets and

laptops, are wirelessly connected to the level 1 edge nodes.

Level 1 edge nodes are usually wireless access points and

cellular base stations, which are further connected to the level

2 edge nodes via wired links. There could also be a backend

block at the core of network. Note that there may be more

than two levels of edge nodes in some architectures.

B. Consensus

Consensus studies the problem of how to achieve overall

system reliability in the presence of a number of faulty nodes

in a distributed system. It has been studied for decades but

remains a hot research topic in the academia [8], [4], [5],

[6], [9], [10]. Among the existing consensus solutions in

the literature, the Paxos-based ones are widely adopted by

the industry [11], because they guarantee strong consistency

during execution, and can work efficiently in many settings.

There are essentially two phases in Paxos, i.e., Phase 1 and

Phase 2. In Phase 1, the replica that has received a value from

the client sends Prepare messages to the other replicas, and the

other replicas will send back a Promise message if they haven’t

accepted any value. After the original replica has received

the Promise messages from a quorum, i.e., a majority of the

replicas, Phase 1 succeeds, and the replica will start Phase 2

by sending Accept messages to the others. Similarly, the other

replicas will send back a Accepted message if they haven’t

accept any value. After the original replica has received the

Accepted messages from a quorum, the value is acknowledged

by the system, and the replica will commit it locally as well

as informing the other to commit it. Notably, Phase 1 is for

electing the leader, while Phase 2 is for making the system

accept a value.

Some Paxos-based solutions in the literature, such as Multi-

Paxos [4], Mencius [5] and E-Paxos [6], work in the way

that they run a sequence of Paxos instances, and therefore

they can be used to determine a unique order on the values

received across the system. Multi-Paxos runs the sequence

of Paxos instances with a fixed leader, skipping Phase 1 for

all Paxos instances, which greatly reduces the communication

costs for achieving consensus. However, the fixed leader will

become the bottleneck of the system. Mencius eliminates this

bottleneck by distributing the leadership evenly among the

replicas in a round-robin way. Nevertheless, a slow replica

in the system may greatly affect the performance of Mencius.

E-Paxos determines the dependencies on the Paxos instances,

working around this slow-replica problem. However, it im-

poses more communication costs, which may lead to worse

performance than Mencius in many cases.

III. MOTIVATIONAL SCENARIOS

To better explain the design of Nomad, we first describe the

following two application scenarios as examples.

A. Internet of Things (IoT) Payments

The Internet of Things (IoT) has grown rapidly in recent

years [12]. The concept of IoT is to manage a massive number

of smart devices with a global network infrastructure. Edge

computing is usually considered as the best enabler for IoT

systems, because IoT devices possesses limited hardware re-

sources, and edge computing can serve them with low network

latency [13], [14], [15]. As IoT devices become more and more

ubiquitous in our daily life, making digital payments through

IoT devices is considered an appealing application [16], [17].

With IoT payments, customers can make purchases anywhere

at any time, as long as their client devices have been wirelessly

connected to the nearby IoT devices.

Fig. 2. The edge computing infrastructure of the IoT payment application.

Figure 2 illustrates the edge computing infrastructure of the

IoT payment application in a global range. Big black circles

in the figure are cloud data centers, while small yellow circles



are edge nodes. Ellipses illustrate the “backing” range of the

clouds; edge nodes falling into an ellipse are backed by the

cloud at the center. IoT devices receive payment requests from

customers, and forward them to the nearest edge node. By this

means, payment requests are received by the edge computing

infrastructure, and a transaction is triggered by each payment

request. All payment transactions need to be globally ordered,

in order to guarantee the validity of those transactions.

Notably, the payment workload can be quite unbalanced in

such a scenario. The reason is that the payments are usually, if

not always, made during daytime, or even only during several

time periods, such as noon (lunch break) and evening (off

work). Therefore, it is likely that in most of the time, only one

cloud region receives very heavy workload, while the others

receive very low or even no workload.

B. Location-based Massively Multiplayer Online Games

Consider the following scenario. A game company is plan-

ning to launch an online augmented reality (AR) game in the

US. Players connect their AR devices, such as smartphones

and AR glasses, to the gaming service. The game is location-

based, meaning that the map in the game is generated from the

real world, and any player’s character is at the corresponding

location of the player’s real world location. The game is sep-

arated by cities, and most operations by the players are done

inside cities they are residing in. Inter-city communications do

exist, but are rare.

The game is designed to support a massive number of simul-

taneously online players in each city. As the number of such

players can be very large, the game software is designed to run

on the players’ client devices, performing heavy computations

such as video processing. The computations are deterministic,

so the game software always yields the same output given that

it starts from the same initial state and is fed the same input.

For each city, all the relevant operations from the players,

regardless of inside the city (e.g., hunting monsters) or outside

the city (e.g., teleporting to the city), should be ordered and

fed into the relevant players’ client devices. Only in this way,

can the consistency on the game’s logic for all the players be

guaranteed. For this reason, the game company is supposed to

build the gaming service for each city as an operation-ordering

service. The service can be built completely on a cloud basis,

but in order to provide satisfactory user experience under the

potentially very high operation rate, relying on edge computing

could be a good choice.

Figure 3 depicts the edge computing infrastructure of such

a location-based multiplayer online game in the US. Similarly,

big black circles are cloud data centers, and ellipses are the

“backing” range of the clouds at the center. Suppose the three

clouds shown in the figure cover all the cities in which the

operation-ordering service is provided. As an example, one

such city, namely the New York City, is enlarged and shown

at the top right part of Figure 3. Five edge nodes, represented

by small yellow circles in the figure, are deployed in the city.

Clearly, the operation-ordering service for any city, such as the

New York City, always receives highly unbalanced workload,

Fig. 3. The edge computing infrastructure for a location-based multiplayer
online game in the US. The New York City is shown at the top right part.

because intra-city operations are overwhelmingly more than

inter-city operations.

IV. THE DESIGN OF NOMAD

In this section, we first formulate the problem using the two

application scenarios given in Section III, and summarize the

assumptions made by our solution. After that, we describe the

design of Nomad in detail.

A. Problem Formulation

For both application scenarios described in Section III, we

observe that the edge computing infrastructure, including both

the cloud data centers and the edge nodes, is used to order

the data received across the system. More specifically, all the

data is initially received by the edge nodes, and then spread

into the system for ordering. The workload of the applications

possesses the following features.

• Every piece of data being ordered is of a small data amount.

It is reasonable to consider that the payment transactions and

the operations are always less than 1 KB, and in most cases,

only tens of bytes.

• The workload can be very heavy. Consider the IoT payment

application, for example. It should be designed to support

high transaction rates, as it aims to serve many customers in

the global range. Similarly, the location-based game should

be able to support a large number of simultaneously online

players, who generate operations frequently and rapidly.

• The workload can be highly unbalanced. For example, the

IoT payment application serves customers at different time

zones, but it is likely that most payments are made during

several fixed time periods. In the location-based online game

case, intra-city operations are far more frequent than inter-

city operations.

• The workload may change dramatically from time to time.

Notably, the workload of the IoT payment application may

be sometimes concentrated in one region and later switches

to another, leading to changing workload unevenness. The

workload of the location-based online game does not change

so dramatically, but the workload distribution on the edge



nodes may still change from time to time, e.g., during the

daytime, many players appear in the office area, while after

evening, most of they appear in the residential area.

For both applications, it can also be observed that the user-

perceived latency is the most significant indicator of achieving

satisfactory user experience. For the IoT payment application,

the customers usually make payments while they are walking

or driving. If the payments cannot be acknowledged in a short

time, the benefits of using the application will be undermined.

Similarly, for the location-based game, if a player performs

an operation, such as attacking a monster, she would expect

to see the outcome as quickly as possible. If the outcome is

generated after a long time, the gaming experience will be

greatly damaged. If this frequently happens, the game will be

soon deserted by the players. In fact, edge computing has been

proposed as an extension of cloud computing mainly because it

provides lower latency. For this reason, the goal of employing

edge computing in most cases, from our understanding, is to

achieve good user-perceived latency for the application.

To summarize, the problem we study is how to achieve fast

event ordering in an edge-cloud computing environment, under

the conditions that 1) the events being ordered are all of small

data amounts, and 2) the workload can be very heavy, highly

unbalanced, and ever-changing at both the cloud level and the

edge level. Note that we employ the term “events” to indicate

the data being ordered, rather than using any other word such

as “transactions” or “operations”.

B. Assumptions

To design an effective solution to the problem, we make the

following assumptions on the edge-cloud computing system.

• At any time, at most a minority of the cloud data centers may

become unreachable, i.e., experiencing failures or network-

partitions.

• A cloud data center may back many edge networks that are

geographically separated.

• At any time, at most a minority of the edge nodes in the

same edge network may become unreachable, i.e., experi-

encing failures or network-partitions.

• At any time, for any edge network, at least one living cloud

can access all the living edge nodes in that edge network.

• The RTT in an edge network may be uneven, i.e., some

edge nodes in the edge network may have a longer network

delay when communicating with the other.

These assumptions are reasonable from our point of view.

The first and the third assumption are similar to those made by

other distributed computing solutions [8], [4], [5]. The second

one is derived from the application scenarios described in

Section III. The fifth one is derived from the fact that the edge

nodes in an edge network may be geographically scattered and

have different network distances to the others. The forth one,

however, needs more inspections. We make this assumption

for the failover purpose. It is possible in the real world that a

network partition makes all the edge nodes in an edge network

unreachable to the outside. However, as failover is important

in many cases, service providers, such as those described in

Section III, have the motivation to fulfill this assumption. They

may employ some engineering methods, such as setting a

backup satellite network in the system, to work around the

full network partitions of the edge networks.

C. Consensus on the Edge

As discussed above, the workload across the system can be

highly unbalanced and sometimes concentrated in a particular

edge network. Therefore, it could be beneficial to opportunis-

tically order the events at the heavily-loaded edge networks

and only involve the remote clouds when necessary. For this

reason, we first suppose that the system only consists of one

edge network and one backend cloud, and discuss how to

achieve fast event ordering in such a situation. A general-case

discussion will also be given in the sequel.

When the system contains only one edge network and one

backend cloud, it falls back to the typical form of distributed

system. There are several Paxos-based consensus solutions in

the literature that can effectively order the data received by

a distributed system, such as Multi-Paxos, Mencius and E-

Paxos. Their goals, however, are to achieve low latency when

the workload is low and high throughput when the workload

is heavy. The goal of our solution, in contrast, is achieve as

low user-perceived latency as possible in any cases, especially

when the workload is heavy.

As such, we design a new Paxos-based consensus protocol

for ordering the events on the system containing only one

edge network and one backend cloud. Similar to the existing

Paxos-based ordering protocols, our protocol also executes a

sequence of Paxos instances among the system nodes. More

specifically, the Paxos instances are pre-assigned to the edge

nodes, i.e., when they are executed, they start from Phase 2

and Phase 1 is considered already finished. As mentioned in

Section II-B, Phase 1 is for electing the leader while Phase 2

is for proposing a value. Therefore, the leader nodes of the

Paxos instances are artificially determined in advance in our

consensus protocol, which reduces the communication cost

and thus improves the ordering performance. This does not

violate the correctness of consensus, as proved by Mencius.

Unlike Mencius, which distributes the leadership of the Paxos

instances among the system nodes in a fixed round-robin way,

however, our protocol distributes the leadership dynamically

according to its running history, for achieving as low ordering

latency as possible. The design philosophy of our consensus

protocol is summarized as follows.

• To adapt to the workload change on the edge, our protocol

dynamically distributes the leadership of the Paxos instances

on the edge nodes according to its running history, assigning

more leadership to more heavily-loaded edge nodes.

The intuition of doing so is that the workload has temporal

and spatial locality when it is changing, which can be used

to predict the workload condition in the near future.

• Any edge node can proactively skip a Paxos instance that

belongs to another if no event has been committed in this

Paxos instance.



The intuition of doing so is to guarantee low latency in the

presence of differences between the predicted workload and

the real workload.

• If an edge intends to commit an event but fails for many

times because its Paxos instance has been skipped by the

others, it delegates the event to the backend cloud.

The intuition of doing so is to reduce the side effects caused

by the skipping scheme.

We call this consensus protocol the “adaptive edge consen-

sus protocol”, because it is designed for the edge network and

can adapt to the workload change on the edge. The protocol

divides the sequence of Paxos instances into epochs, i.e., sub-

sequences of Paxos instances with a fixed length Nepoch. At

the beginning of each epoch, the protocol examines the past

running history and decides how to distribute the leadership

among the edge nodes for this epoch. When an edge node

receives an event from the client, it tries to commit the event

in its next Paxos instance in the sequence. If an edge node has

already committed an event e in its Paxos instance ins, but

some Paxos instances belonging to the others and ahead of ins
in the sequence have no event committed yet, the order of e is

still undetermined, and ins is blocked by the Paxos instances.

If ins has been blocked by the Paxos instances for a long

enough time Tskip, the edge node will try to skip those Paxos

instances. If an edge node intends to commit an event, but fails

for Nfail times because its Paxos instances have been skipped

by the others, it sends the event to the cloud. The cloud collects

all such events and orders them by their arriving time. By the

end of each epoch, the cloud sends the sequence of all such

events it has collected in this epoch to the edge nodes. When

receiving this event sequence, the edge nodes append it to their

local event sequence, and close the current epoch. This ending

interaction between the cloud and the edge nodes is similar

but different to the other Paxos instances in the sequence, and

is hence called a “quasi-Paxos instance” in the sequel.

Several details of the protocol should be highlighted. First,

the leadership distribution scheme is deterministic, so at the

beginning of each epoch, the edge nodes will generate the

same leadership distribution without communicating with each

other. This reduces the communication cost and improves the

protocol performance. Second, unlike the Paxos instances, the

quasi-Paxos instances cannot be skipped. This essentially sets

an upper bound on the latency for the events under contentions,

which is comparable to that of directly using the cloud for

event ordering. Third, the edge nodes cannot start the next

epoch until the quasi-Paxos instance of the current epoch is

closed, meaning that all the edge nodes have to wait for the

cloud at the end of each epoch. This is for the failure recovery

purpose, which will be discussed later. By carefully choosing

Nepoch, the quasi-Paxos instances will not block the protocol

at all, or at least will not block the protocol for a significantly

long time. Last, as the cloud is used to resolve the contentions

among the edge nodes, it is generally called the arbitrator of

the protocol.

Notably, all actions, including proposing an event, skipping

a Paxos instance, and closing an epoch, require the initial party

to collect the acceptance from a quorum, i.e., a majority of the

edge nodes, before succeeding. Because at any time, at most a

minority of the edge nodes may fail, there will always be some

living edge nodes that can tell the outcomes of the actions

that have ended. Therefore, the correctness of the consensus

protocol is guaranteed. Due to the space limit, we omit the

algorithms of the actions and the proof of their correctness.

When the current epoch has been closed, there are several

ways to determines the leadership distribution for the upcom-

ing epoch. We have designed three schemes for doing so.

• Previous Epoch Only. When using this scheme, the protocol

determines the leadership distribution completely based on

the running history of the previous epoch that has just

been closed. To be more specific, suppose there are Neff

effective (i.e., non-skipped) Paxos instances existing in the

previous epoch, while Ne,i of them belong to Edge Node

i. Moreover, suppose the cloud commits Ndel events at the

end of the epoch, and Nd,i of them are delegated by Edge

Node i. In such a case, Edge Node i will be the leader

of (Ne,i + Nd,i) ∗ Nepoch/(Neff + Ndel) Paxos instances.

These Paxos instances will be arranged from the beginning

of the upcoming epoch, interleaving with those assigned to

the other edge nodes as much as possible.

• Previous N Epochs. This scheme determines the leadership

distribution by looking at the running history of the previous

N epochs, denoted as Epoch N (the latest), Epoch N−1, ...,

and Epoch 1 (the earliest), respectively, and each Epoch X
(X = 1, ..., N ) is assigned a weight wX = X/

∑N

I=1
I . The

protocol first calculates the committed event ratio for each

Epoch X and each Edge Node i, i.e., ratioX,i = (Ne,i +
Nd,i)/(Neff +Ndel)|X . Then in the upcoming epoch, Edge

Node i will be the leader of (
∑N

I=1
wX ∗ ratioX,i)∗Nepoch

Paxos instances. Clearly, the Previous Epoch Only scheme is

a special case of the Previous N Epoch scheme, i.e., N = 1.

• Previous N Epochs with Random Weights. This scheme is

similar to the previous one, expect that the weights assigned

to the epochs are calculated in a (pseudo-)randomized way.

More specifically, for Epoch X , the protocol picks a number

rX from {1, 2, ..., f ∗N} with the same probability, where

f = 1000 is the broadening factor, and the weight assigned

to Epoch X is wX = rX/
∑N

I=1
rI . Note that this calcula-

tion is actually pseudo-randomized and hence deterministic,

not violating the rules of distributing the leadership.

The first scheme is the simplest one and can rapidly adapt to

the change on the workload. The drawback of this scheme is

that if an edge node has experienced some bad conditions, such

as network jitters, but later recovers, it may take a long time for

the edge node to regain its leadership share in the epochs. The

second scheme involves more previous epochs to deal with this

situation, but it may suffer when the workload changes rapidly.

The third scheme adopts a randomized approach, and is thus

more resilient to the transient changes on the workload and on

the network conditions than the second one, but suffers from

the same problem as the second scheme.

Figure 4 illustrates how the adaptive edge consensus pro-
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Fig. 4. The adaptive edge consensus protocol. The leadership distribution scheme shown in the figure is the Previous Epoch Only scheme.

tocol works. Three edge nodes, i.e., Edge Node A, B, and C,

compose the edge network, and a cloud at the backend acts

as the arbitrator. Two epochs, Epoch (N – 1) and Epoch N,

are shown in the figure. Suppose the cloud does not commit

any event but merely closes Epoch (N – 1) at the end of

it. Because the protocol is using the Previous Epoch Only

scheme to distribute the leadership, in Epoch N, Edge Node

A is assigned 6 ∗ 24/12 = 12 Paxos instances, Edge Node B

is assigned 2 ∗ 24/12 = 4 Paxos instances, and Edge Node

C is assigned 4 ∗ 24/12 = 8 Paxos instances. Note that after

this calculation, the Paxos instances are scattered as evenly as

possible throughout Epoch N.

D. Working with the Clouds

As mentioned in Section IV-C, the adaptive edge consensus

protocol is designed for systems with only one edge network

and one backend cloud. When the system contains multiple

edge networks and multiple backend clouds, such as those

described in Section III, the adaptive edge consensus protocol

cannot work effectively without combining with another cloud-

level protocol. For this reason, we have designed a cloud-level

protocol to work around this problem.

We design the cloud-level protocol as follows. The system

initially works in the equality mode, i.e., all the clouds work

together using a Paxos-based consensus protocol, ordering

all the events across the system. Any Paxos-based consensus

protocol can be used here, but the leadership-sharing ones are

preferable, such as Mencius. The edge nodes are only used to

forward the events they have received to their backend cloud.

Because all the cloud can see all the events that have been

ordered, they can learn the workload condition of the system.

If a cloud notices that in the past Nob events that have been

ordered, more than ratiothresh ∗ Nob events come from the

same edge network it backs, the cloud will try to make the

system work in the master-slave mode. It does so by asking

for a lease from the other clouds using the same consensus

protocol for ordering the events. After the cloud successfully

receives the lease approvals from a quorum, it informs the

edge network, and the edge network will work with the cloud

using the adaptive edge consensus protocol. Now the edge

network and the cloud become the master, and all the other

parties become the slaves, i.e., the system is working in the

master-slave mode. The protocol is thus called the lease-based

master-slave protocol in our solution.

Notably, when the system is working in the master-slave

mode, all slaves, including both the other clouds and the other

edge networks backed by the master cloud, will forward the

events they have received to the master cloud. The master

cloud will order all such events locally, together with those re-

ceived from the master edge network for contention resolving,

based on the event arriving time. It will then commit all the

locally-ordered events in the upcoming quasi-Paxos instance,

thus determining the global order of them. After that, the order

of all the events will be broadcast by the master cloud to the

slave clouds.

Figure 5 shows how the leased-based master-slave protocol

works. It is worth mentioning that the lease can only be used

by the master for Nlease epochs. After the Nlease epochs, the

other parities consider that the lease is expired, and the system

will return to the equality mode unless the master cloud has

successfully received an extension for the lease from the other

clouds. The extension will be another Nlease epochs, and the

master can extend the lease for potentially many times. When

receiving a lease request or a lease-extension request, a cloud

will check if it has more than Nout events that are not ordered

yet. If the answer is yes, it will reject the request. Otherwise,

it will accept the request. Clearly, the lease-based master-

slave protocol can adapt to and take advantage of the highly

unbalanced workload, achieving low user-perceived latency in

the scenarios similar to those introduced in Section III. The

solution proposed by this paper, i.e., Nomad, is essentially the

combination of the adaptive edge consensus protocol and the

lease-based master-slave protocol.

E. Dealing with the Failures

As summarized in Section IV-B, at any time, a minority of

the clouds may fail or become network-partitioned simultane-

ously. Similarly, at any time, a minority of the edge nodes in

an edge network may fail or become network-partitioned. It

is essential to guarantee the correctness of Nomad, i.e., when
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Fig. 5. The lease-based master-slave protocol.

an event has been committed, any party in the system will

not observe a contradicting state of the event at any time

in the future. Otherwise, inconsistency occurs in the system,

violating the design rules of Nomad.

When the system is working in the equality mode, all the

clouds cooperate with each other using an existing Paxos-

based consensus protocol in the literature. In such a case, the

correctness of Nomad can be guaranteed by the Paxos-based

consensus protocol.

When the system is working in the master-slave mode,

however, two failure cases need to be taken into consideration.

First, when some master edge nodes fail or become network-

partitioned, the correctness of Nomad can be guaranteed. As

mentioned in Section IV-C, all actions, including proposing an

event, skipping a Paxos instance and closing an epoch, require

the initial party to collect the acceptance from a majority

of the master edge nodes before succeeding. Therefore, at

any time, at least one living master edge node can tell the

outcomes of the actions that have ended, so no contradicting

state will occur. Second, when the master cloud has failed,

the correctness of Nomad is still guaranteed, because the

master cloud can only commit events with the acceptance of

a majority of the master edge nodes.

Notably, a severe consequence resulted from the failure of

the master cloud is that the process of the Nomad protocol

will be completely blocked, because the master edge nodes

have to synchronize with the master cloud at the end of each

epoch. In contrast, other kinds of failures will not block the

process of Nomad. To work around this problem, Nomad treats

the slave clouds as the backups of the master cloud. When a

slave node suspects that the master cloud has failed, it will

directly contact the master edge nodes, asking them to accept

it as the new arbitrator. After the slave node has collected

the acceptance from a majority of the master edge nodes, it

becomes the new arbitrator, and works with the master edge

nodes until the lease expires. The correctness of this process

is guaranteed by requiring the acceptance from a majority of

the master edge nodes.

It should be mentioned that the aforementioned method for

arbitrator failover is possible because at least one living cloud

can access all the living master edge nodes at any time, as

assumed in Section IV-B. However, a network partition in the

real world may make all the master edge nodes unreachable to

the outside, and if no ad-hoc solution is employed for handling

this problem, such as setting a satellite network for backup,

arbitrator failover cannot be accomplished. In such a case, the

protocol cannot make any progress until the arbitrator recovers.

Nevertheless, the correctness of consensus will not be violated,

and the protocol will continue working as soon as the arbitrator

has recovered.

V. EVALUATION

To evaluate Nomad, we have implemented a prototype, and

deployed it on a testbed. Experiments on the prototype shows

the performance of Nomad under different situations.

A. Test Setup

We first build an edge-cloud testbed. Three PC servers are

used as three clouds, and several laptops are used as the edge

nodes that form an edge network. The edge network is backed

by one of the clouds. The RTT between the edge nodes is set

to 10 ms, expect a slow one, which has a 40 ms RTT to the

others. The RTT between the edge nodes and their backend

cloud is 60 ms. As the workload for testing is simulated, the

RTT between the client and the edge is assumed to be 10 ms.

The RTT between the clouds is set to 100 ms. The bandwidth

between any two parties is set to 100 Mbps, and the message

size is set to 1 KB across the system.

B. Performance of the Adaptive Edge Consensus Protocol

After building the testbed, we implement a prototype of the

adaptive edge consensus protocol, with the three leadership

distribution schemes described in Section IV-C, and deploy it

on the testbed. Nepoch is set to 100. Two types of workloads

are simulated. The first one is a stable one; every edge node

stably receives 1,000 events per second. The second one is a

changing one. Every edge node stably receives 500 events per

second, and another workload, which is the sum of all these

individual workloads, moves from one edge node to another

in a round robin manner, with a rate of 500 events per second.

For example, suppose there are five edge nodes in the system,
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Fig. 6. The average user-perceived latency of different consensus protocols under different settings.

denoted as Edge Node 1, 2, ..., 5. In the first second, Edge

Node 1 receives 500+500 ∗ 5 = 3000 events, and each of the

other edge nodes receives 500 events. In the second second,

Edge Node 1 receives 3000−500 = 2500 events, Edge Node 2
receives 500+500 = 1000 events, and each of the other edge

nodes receives 500 events. In the sixth second, Edge Node 1
receives 500 events, Edge Node 2 receives 3000 events, and

each of the other edge nodes receives 500 events. Then in

the seventh second, the workload starts to move from Edge

Node 2 to Edge Node 3, and so on. Using this workload, we

simulate the typical situation of the IoT payment application.

We feed the two workload to our prototype. Five leadership

distribution schemes are tested, i.e., Previous Epoch Only,

Previous 5 Epochs, Previous 10 Epochs, Previous 5 Epochs

with Random Weights, and Previous 10 Epoch with Random

Weights. For comparison purposes, we also implement Multi-

Paxos, Mencius and E-Paxos, and feed the workloads to them.

Note that we assume the edge network can utilize non-FIFO

network links, so for Mencius, piggybacking messages is not

allowed. With these settings, two groups of experiments are

conducted. In the first group, the edge network contains 5 edge

nodes. In the second group, it contains 7 edge nodes.

Figure 6 depicts the results of those experiments. Clearly,

the Nomad protocol outperforms the other three protocols in

all settings, especially when using the Previous Epoch Only

scheme. When using other leadership distribution schemes, the

average user perceived-latency is slightly larger than that of

using the Previous Epoch Only scheme. As the Previous N
Epoch and Previous N Epoch with Random Weights schemes

are designed for fast leadership recovery, this means that they

work with acceptable overhead.

C. Performance of the Leadership Distribution Schemes

To determine the effectiveness of the three leadership dis-

tribution schemes, i.e., the Previous Epoch Only scheme, the

Previous N Epochs scheme, and the Previous N Epochs

with Random Weights scheme, we conduct the following

experiment on the prototype. The edge network is configured

to have five edge nodes. The workload is that in the first

50 epochs, each edge node stably receives 1,000 events per

second. Then in the following 10 epochs, one edge node other

than the slow one receives no event at all, while the workload

on the others keeps unchanged. After that, the workload on

the unloaded edge node returns to 1,000 events per second.

This simulates the situation that an edge node experiences

a transient problem but soon recovers. Figure 7 shows the

changes on the leadership share of the temporally unloaded

edge node caused by the changing workload.
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Clearly, when the Previous Epoch Only scheme is being

utilized, the leadership share changes sharply with the work-

load change. On the other hand, when utilizing the other two

schemes, the leadership share changes in a moderate manner.

Moreover, the Previous 10 Epochs schemes produce the most

stable outcomes, while the results of the Previous 5 Epoch

schemes are in-between those of the Previous Epoch Only



scheme and those of the Previous 10 Epoch schemes. This

suggests that when the protocol takes more previous epochs

into consideration, it can resist the transient bad conditions to

a larger extent. On the other hand, this also suggests that the

protocol will adapt to the workload change more rapidly when

considering only one previous epoch.

D. Performance of the Leased-based Master-Slave Protocol

We also conduct an experiment to examine how the lease-

based master-slave protocol works. Three PC servers are used

as three clouds, denoted as Cloud #1, #2 and #3. Cloud #1

is set to be the backend cloud of the edge network. The edge

network is configured to have five edge nodes. The workload

is that in the first 5 seconds, every cloud receives 500 events

per second. For Cloud #1, the workload is completely from

the backed edge network, i.e., each edge node in the edge

network receives 100 events per second. For Cloud #2 and #3,

we merely simulate the condition that the events are received

by a virtual edge network backed by the cloud. Then in the

following 5 seconds, the five edge nodes backed by Cloud

#1 receives 1,000 events per second, so Cloud #1 receives

5,000 events per second, while the workload on the other two

clouds keeps unchanged. After that, the workload on Cloud

#1 returns to 500 events per second. This simulates a situation

similar to that of the IoT payment application. Furthermore,

ratiothresh is set to 0.5, Nob is set to 2,000, and Nlease is set

to 10. Mencius is implemented as the consensus protocol that

connects the three clouds. Figure 8 shows the changes on the

average user-perceived latency in this process.
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From Figure 8, it can be figured out that the lease-based

master-slave protocol can adapt to the change on the cloud-

level workload very quickly, in about only one second for both

entering and exiting the high-load phase. This proves that the

lease-based master-slave protocol can work quite efficiently.

Note that the lease granted to Cloud #1 is extended for several

times during the high-load phase before being revoked by the

system. Choosing a smaller ratiothresh and a smaller Nob can

help the protocol adapt to the workload change more quickly,

but may introduce undesirable overhead if transient changes

on the cloud-level workload frequently occur in the system.

VI. CONCLUSION

In this paper, we present Nomad, a consensus protocol

achieving fast event ordering for large-scale edge-cloud appli-

cations. Nomad consists of an edge-level adaptive consensus

protocol and a cloud-level master-slave protocol, which can

work together to efficiently order the events received across

the system. We have implemented a prototype of Nomad and

deployed it on a real-world testbed. Evaluation on the proto-

type reveals that Nomad outperforms the existing consensus

solutions in edge computing environments.
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