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Abstract

Fast event ordering is critical for delay-sensitive edge

computing applications that serve massive geographi-

cally distributed clients. Using a centralized cloud to

determine the event order suffers from unsatisfactory la-

tency. Naive edge-centric solutions, which designate one

edge node to order all the events, have scalability and

single point of failure issues. To address these problems,

we propose EdgeCons, a novel consensus algorithm opti-

mized for edge computing networks. EdgeCons achieves

fast consensus by running a sequence of Paxos instances

among the edge nodes and dynamically distributing their

leadership based on the recent running history. It also

guarantees progressiveness by incorporating a reliable,

backend cloud. A preliminary evaluation shows that

EdgeCons works more efficiently than the state-of-the-

art consensus algorithms, in the context of achieving fast

event ordering in edge computing networks.

1 Introduction

Edge computing (aka. fog computing [4], cloudlet [33]

and MEC [31]) is a concept that has gained lots of atten-

tion recently [32, 35, 43]. The basic idea of edge com-

puting is to provide elastic resources like cloud comput-

ing at the edge of network, such that the requests for the

resources from client devices will be handled by edge

computing nodes at places closer to the users. Modern

applications and services, such as real-time video pro-

cessing, cognitive analytics in critical missions and on-

line video games, can benefit a lot from the decentral-

ized edge computing paradigm. Clients connected to

the edge will experience faster service response. The

nearby access saves network bandwidth and lowers the

peak workload to the cloud. The deployment of appli-

cations can adapt to the geographic distribution of users

and make the most efficient usage of the resources on

the edge nodes. As edge computing possesses so many

advantages, we expect more and more applications and

services be deployed on edge computing platforms.

When massive client devices are connected to the

edge, a large volume of events will be generated at the

edge that need to be synchronized in a consistent order

among all the edge nodes. Event ordering is fundamental

for the correctness of distributed systems [17]. A cloud-

centric solution employs cloud servers to order all the

events. The drawback is that it may take a long time to

determine the order of the events, as massive events have

to go to the cloud in the first place. Because many mod-

ern applications and services are human-centric, latency

has a huge impact on the user experience. For example,

lower latency will greatly improve the user experience

of games which highly rely on the fast reaction of the

players [6]. Therefore, in this paper, we study how to

achieve fast event ordering for large-scale delay-sensitive

distributed applications in edge computing networks.

It is quite challenging to achieve this goal. In contrast

to cloud networks and the cloud servers, edge computing

networks are usually heterogeneous, and the edge com-

puting nodes are less reliable. Events transmitted over

such a network are subject to unpredictable delivery time

and packet loss rate, not to mention the large amount of

events received by all the edge nodes for ordering. To

be noted that, while edge nodes are less reliable, edge

node failures are still rare. Therefore, opportunistically

using a local edge computing network to order the events

has performance gain compared to barely using a remote

cloud. In our previous study [41], we have shown that the

Amazon EC2 cloud leads to much higher latency than

a locally-built edge computing network. A naive edge-

centric solution can simply select an edge node to order

all the events. The drawback is that the designated edge

node will become the performance bottleneck of the sys-

tem and a single point of failure. Using timestamps to

order the events is also a bad idea, which has been thor-

oughly discussed in the literature [29, 18].

To the best of our knowledge, we are the first to study

the consensus approaches for edge computing networks.

Most existing researches of edge computing focus on

the client-to-edge interactions, such as how to accom-

modate computation and storage tasks for the clients on

edge nodes. Our problem concentrates on event order-

ing in the scope of interconnected edge nodes, and we

will show the traits of this problem via an online gam-

ing application. Existing consensus protocols can hardly

meet the latency requirements imposed by this problem.

Multi-Paxos [19] runs Paxos instances with a designated



leader. Since edge nodes are not as reliable and powerful

as cloud servers, the leader edge node will encounter the

same issues as in the naive edge-centric solution. Men-

cius [24] addresses the issues by assigning the leadership

evenly among the system nodes. The main problem of

Mencius is that a slow system node will deteriorate the

overall system performance. E-Paxos [25] avoids this

problem by opportunistically executing Fast Paxos [21]

instances instead of Paxos instances. Nevertheless, it suf-

fers from heavier network burdens than Multi-Paxos and

Mencius for achieving consensus.

To this end, we design EdgeCons, a consensus algo-

rithm that achieves fast event ordering for large-scale dis-

tributed applications in edge computing networks. Sim-

ilar to Mencius, EdgeCons runs a sequence of Paxos in-

stances on the edge, but it distributes the leadership of

the Paxos instances based on the recently running history

of the consensus process. EdgeCons also guarantees the

progressiveness of consensus, which is indispensable for

the edge computing scenario. It achieves so by employ-

ing a backend cloud that never fails or becomes network-

partitioned as a reliable conflict resolver in the system.

To summarize, we make the following contributions.

• We formulate the problem of achieving fast event or-

dering for large-scale delay-sensitive distributed appli-

cations in edge computing networks, and propose re-

alistic application scenarios related to this problem.

• We design a novel consensus solution to this prob-

lem, which dynamically distributes the leadership of a

Paxos instance sequence among the edge nodes based

on the recent running history, and guarantees progres-

siveness by incorporating a reliable, backend cloud.

• Preliminary simulation results reveal that our solution

works more efficiently than existing consensus solu-

tions in the literature, in the context of achieving fast

event ordering in edge computing networks.

2 Preliminaries

Before digging into our solution, we briefly introduce

some preliminaries on edge computing and consensus.

Edge Computing. Edge computing aims at serving the

end users at the edge of network, providing better net-

work conditions than cloud computing. It has attracted

a lot of research effort recently [2, 14, 26, 36, 28, 1, 15,

10, 7, 34, 40, 22, 44, 12, 11, 42, 23]. Figure 1 depicts a

typical architecture of edge computing. Client devices,

such as wearables, smartphones, tablets and laptops, are

connected via wireless links to the level 1 edge nodes,

which are mostly wireless access points and cellular base

stations with extra hardware resources. Level 1 edge

nodes are backed by level 2 edge nodes, which possess

more powerful hardware resources but have longer net-

work distances to the client devices. Level 2 edge nodes
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Figure 1: A typical architecture of edge computing.

are further backed by a cloud at the core of network. It

is worth mentioning that Figure 1 only showcases one

typical architecture of edge computing among many oth-

ers. Other edge computing architectures may contain less

than or more than two levels of edge nodes. In addition,

some architectures may have no cloud at the backend.

Consensus. Consensus is a fundamental problem in dis-

tributed computing: How to achieve overall system reli-

ability in the presence of a number of faulty nodes? It

has been studied for decades but remains a hot research

topic in academia [18, 19, 21, 20, 3, 24, 25, 30, 16, 46,

8, 45, 38]. Among existing consensus solutions, we fo-

cus on the Paxos-based ones. On one hand, to the best of

our knowledge, most, if not all, consensus solutions that

achieve strong consistency under the typical FLP [9] set-

ting are essentially variants of Paxos, such as Raft [30].

On the other hand, other consensus solutions, such as the

blockchain-based ones [27, 39], cannot guarantee strong

consistency, thus violating our design goal. Note that

an execution of the Paxos algorithm is usually called a

Paxos “instance” in the literature. There are two types of

phases in a classical Paxos instance: Phase 1 is for elect-

ing the leader, while Phase 2 is for deciding a value on

behalf of the entire system.

As the Paxos-based solutions employ the so-called

“state machine replication” method, consensus is also re-

lated to the research problem of how to build replicated

and reliable services for the users across a large geo-

graphic area. Among the literature on consensus, three

Paxos-based consensus solutions, i.e., Multi-Paxos [19],

Mencius [24] and E-Paxos [25], are more related to our

solution than the others. Multi-Paxos runs a sequence of

Paxos instances with a designated leader. Mencius im-

proves Multi-Paxos by distributing the leadership evenly

among the nodes. E-Paxos opportunistically runs Fast

Paxos [21] instances instead of Paxos instances, and im-

proves the system performance by delaying the resolu-

tion of conflicts. EdgeCons shares some similarities with



Mencius. Nevertheless, it is different from all the afore-

mentioned consensus solutions, because it is optimized

for the application scenarios found in edge computing

environments. In-depth discussion will be provided in

the following part of the paper.

3 Deriving EdgeCons

In this section, we first propose an application scenario

for which EdgeCons is designed, and then discuss the

approach of EdgeCons in detail.

3.1 A Motivational Scenario

To achieve a better understanding on the problem Edge-

Cons tries to solve, consider the following scenario. A

game company operates a massive multi-player online

gaming service to the players located in a city. The play-

ers can connect their own devices, such as smartphones

and AR devices, to a remote game server through wire-

less links. The latency perceived by the players is critical

in achieving satisfactory gaming experience, and a large

number of players may play the game simultaneously.

As such, it is not a good choice to perform the main part

of the computation for each player on the remote server,

no matter it is a cloud server or an edge node. This is

because a cloud server cannot provide low enough la-

tency [41, 13], while an edge node cannot afford the

heavy computation for so many players. We hence make

the following assumptions for this scenario.

• The main part of computation for each player is done

locally on the player’s client device, and the main task

of the remote gaming service is to order the input from

all the online players.

More specifically, the client device runs a piece of

gaming software that forwards the player’s input to

the remote gaming service and receives the ordered

input by all the online players. The gaming software

also performs computation on the ordered input and

renders the result to the player. The computation per-

formed on the client device is deterministic, similar to

what has been discussed in the literature [8], such that

all the players have consistent views of the game.

• The input forwarded to the remote gaming service is of

a small size. It may include the data collected from the

touch screen, the accelerator, and/or the GPS equipped

on the client device, but does not contain any multime-

dia data such as the voice of the player. The output of

the remote gaming service is thus also of a small size,

compared to the video stream output typically seen by

existing remote gaming solutions. We also assume that

the client devices are powerful enough to perform the

computation of the game locally [37].

As such, the game company cannot adopt user-side

solutions, as long as it wants to guarantee strong con-

sistency on the event order across the system. The best

design choice that the game company can make, from

our point of view, is to build and utilize an edge com-

puting network for input ordering. To be more specific,

the company sets or rents several edge nodes in the city,

and deploys the input-ordering service on them. The

edge nodes are well scattered, such that their service re-

gions cover the whole city with modest overlapping, and

they can communicate with each other through a wide

area network (WAN). The players connect their client

devices to the nearest edge nodes, interacting with the

input-ordering service. As discussed in Section 1, naive

solutions cannot work properly or efficiently in such a

situation, while existing consensus algorithms likewise

cannot fully exploit the potential of the edge computing

network. This motivates us to design EdgeCons, a novel

consensus algorithm for achieving fast event ordering in

edge computing networks.

3.2 Approach

As mentioned previously, EdgeCons shares some simi-

larities with Mencius. In particular, EdgeCons distributes

the leadership of the Paxos instances among the edge

nodes, and when an edge node works as the leader, it

starts from the state in which it has already run Phase 1

for the initial round. Therefore, all the leader edge nodes

skip Phase 1 and start from Phase 2, which improves the

system performance.

Nevertheless, EdgeCons is different from Mencius in

the following aspects. First, EdgeCons does not dis-

tribute the leadership evenly like Mencius, but based on

the running history of the system. This allows Edge-

Cons to distribute the leadership more wisely, and makes

the system performance better. Second, unlike Mencius,

EdgeCons relaxes the assumption that the network links

between the edge nodes are FIFO. The edge nodes are

free to use non-FIFO links, such as links based on UDP,

and the messages transmitted via those links may be re-

ordered during the transmission. Last, EdgeCons as-

sumes that there is a cloud behind the edge network that

never fails or becomes network-partitioned. By incorpo-

rating such a backend cloud into the system, EdgeCons

breaks the assumption made by the FLP paper [9], and

guarantees the progressiveness of the consensus process.

We summarize the rules of EdgeCons as follows.

• EdgeCons divides the consensus process into epochs.

In each epoch, EdgeCons executes a sequence of

Paxos instances, with their leadership pre-distributed

among the edge nodes. The number of Paxos in-

stances in each epoch is predefined and fixed, denoted

by NPaxos. Similar to Mencius, the Paxos instances are
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Figure 2: The leadership distribution method of EdgeCons. The edge computing system in the example consists of

three edge nodes (A, B and C) and a backend cloud. The first two epochs are shown in the example.

executed from Phase 2; Phase 1 is considered already

executed by the leader for the initial round.

• Unlike Mencius, which distributes the leadership of

the Paxos instances evenly among all the nodes, Edge-

Cons distributes the leadership dynamically according

to the running history of the system. More specifically,

EdgeCons counts the number of the effective Paxos in-

stances under the leadership of each edge node in the

previous Nepoch epochs (Nepoch is a predefined positive

value), denoted by Nef,i for edge node i (i = 1, ..,n),

and distributes the leadership for the next epoch ac-

cordingly, proportional to the Nef,i values. Note that a

Paxos instance is considered effective if and only if it

has made the system agree on a proposed value.

• To distribute the leadership for the next epoch, Edge-

Cons arranges the upcoming Paxos instances in a way

that the Paxos instances are assigned to each edge node

as evenly-scattered in the epoch as possible, such that

they are separated by the same or similar numbers of

Paxos instances assigned to the others. Because of the

deterministicity of this algorithm, the edge nodes can

learn the distribution of leadership for the upcoming

epoch independently, without the need of interacting

with the other edge nodes.

• EdgeCons also involves a backend cloud into the al-

gorithm. The cloud resides at the core of network, and

is therefore less efficient than the edge nodes in ex-

changing the messages of events. Nevertheless, it is

far more reliable than the edge nodes. We assume that

the cloud never fails or becomes network-partitioned,

so it is always reachable to the edge nodes.

• In addition to the Paxos instances assigned to the edge

nodes, there are also quasi-Paxos instances assigned to

the cloud in each epoch, which work as follows. When

an edge node has failed to make the system agree on

a value it intends to propose for Nfail times (Nfail is a

pre-defined positive value), it transmits the value to the

cloud. The cloud collects all such values, orders them

by their arrival time, and announces them to the edge

nodes in the next quasi-Paxos instance.

• When a quasi-Paxos instance is over, the cloud will

initiate the next quasi-Paxos instance by sending the

values it has collected in-between the two quasi-Paxos

instances to all the edge nodes. In case that no value

has been collected, the cloud will send a SKIP mes-

sage to the edge nodes. The edge nodes must accept

the values (or the SKIP message), and reply an OKAY

message to the cloud. Having collected the OKAY

messages from a majority of the edge nodes, the cloud

considers that the current quasi-Paxos instance is over,

and starts the next quasi-Paxos instance.

• The edge nodes cannot skip the quasi-Paxos instances.

In other words, they cannot execute the Paxos in-

stances posterior to each of the quasi-Paxos instances

they have encountered, until they have received either

the ordered values or a SKIP message from the cloud.

The consensus instances assigned to the cloud are

called quasi-Paxos instances, because they are similar

to at first glance, but fundamentally different from the

Paxos instances in Multi-Paxos. Being highly reliable,

the cloud can actually guarantee consensus without col-

lecting the OKAY messages from a majority of the edge

nodes. We design EdgeCons in a way that the cloud col-

lects the OKAY messages only for the performance con-

siderations. Moreover, the cloud is not included in any

quorum, no matter the consensus instance is a Paxos one

or a quasi-Paxos one. The main purpose of involving the

backend cloud, as it can be seen, is to help the edge nodes

propose values when their Paxos instances have been fre-

quently skipped by the others for whatever reasons. This

guarantees the progressiveness of the consensus process,

and sets a logical “upper bound” on the latency perceived

by the clients. Note that this statement does not violate

the FLP result [9], because EdgeCons makes a different

assumption by involving the cloud. The cloud is barely

an arbitrator, but not a replica as the edge nodes, because



it does not maintain a local state for the event log. Fi-

nally, in EdgeCons, the leader edge node proposes at

most one value in a Paxos instance, but the cloud can pro-

pose potentially many values in a quasi-Paxos instance.

Since the values are of small data amount, proposing

many values does not make a big difference in the trans-

mission time with proposing one value.

It is also worth mentioning that the quasi-Paxos in-

stances should be well distributed in each epoch, such

that the cloud executes them continuously, and the edge

nodes cross them naturally without being blocked for a

long time. In addition, EdgeCons makes a strong as-

sumption that the cloud never fails or becomes network-

partitioned. In fact, clouds in the real world sometimes

do experience temporary outages [5]. However, we be-

lieve that it is still possible to build a highly reliable

cloud-based arbitrator in practice, e.g., by employing the

clouds from different companies (Google, Amazon, Mi-

crosoft, etc.) and utilizing Paxos to coordinate them.

Figure 2 depicts a simple example of how EdgeCons

works. Due to the space limit, the figure only shows the

first two epochs of the consensus process, and each epoch

only contains 24 Paxos instances and 2 quasi-Paxos in-

stances. In spite of its simplicity, Figure 2 depicts some

important aspects of EdgeCons. In Epoch 1, for exam-

ple, the leadership of the Paxos instances is distributed

in a round-robin way as Mencius. When Epoch 1 ends,

Edge Node A has contributed 6 effective Paxos instances,

Edge Node B has contributed 2 and Edge Node C has

contributed 4. Consequently, in the upcoming Epoch 2,

Edge Node A possesses half of the Paxos instances, Edge

Node B possesses one sixth and Edge Node C possesses

one third. Since Epoch 1 is the only epoch before Epoch

2, EdgeCons can only refer to this epoch when deter-

mining the leadership distribution in Epoch 2. For the

following epochs, however, more epochs can be referred

to as long as Nepoch is larger than 1.

4 Evaluation

To examine the efficiency of EdgeCons, we conduct a

first-step simulation experiment with the following set-

tings. The round-trip time (RTT) between the client and

the edge is 10 ms, and the edge nodes have a RTT of 10

ms to the others, except a slow one, which has a RTT of

40 ms to the others. The cloud has a RTT of 60 ms to the

edge. Each edge node can only transmit no more than

10,000 messages to the others in one second. The work-

load is that 2,000 events have been sent from the client

to each edge node in one second, with their intervals uni-

formly distributed. Two cases, i.e., a system with 5 edge

nodes and another with 7 edge nodes, are tested. The

edge nodes in EdgeCons will ask the cloud to propose

a value after two failures, those in Mencius will try to

skip a Paxos instance after waiting for 80 ms, and those

in E-Paxos will try to urge the execution of a consensus

instance after waiting for 80 ms. With these settings, we

compare the user-perceived latency under different con-

sensus algorithms. Figure 3 depicts the results.
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Figure 3: A comparison of the user-perceived latency.

It can be seen from Figure 3 that EdgeCons achieves

the best performance in both cases. Note that the edge

network is assumed non-FIFO: Mencius cannot piggy-

back SKIP messages on other messages. Consequently,

Mencius sends more messages than EdgeCons, espe-

cially when there is a slow edge node in the system. E-

Paxos also needs to deal with more messages, and it is

likely to encounter more conflicts than EdgeCons. Multi-

Paxos suffers from the problem that the leader is the per-

formance bottleneck. It is also worth mentioning that in

the second case of the experiment, Mencius, E-Paxos and

Multi-Paxos are overwhelmed by the workload, which

lasts for one second in the simulation. With the increase

of the workload duration, the user-perceived latency of

these three algorithms will increase dramatically.

5 Conclusion & Future Work

In this paper, we propose a novel consensus protocol,

EdgeCons, for achieving fast event ordering in edge

computing networks. A preliminary evaluation reveals

that EdgeCons works better than the state-of-the-art con-

sensus algorithms.

We will improve EdgeCons in the following two di-

rections in our future work. First, the current leadership

distribution method has a drawback. If an edge node has

experienced a network congestion but later recovers, it

may take a long time to re-gain its “leadership share”.

For this reason, a deterministic, randomized method that

can tune the leadership share in a timely manner should

be designed in the future. Second, how to monitor the

system effectively, such that EdgeCons can quickly ad-

just the number of the quasi-Paxos instances in the up-

coming epochs, in response to the dramatic changes on

the workload received by the edge, is a challenging task

and requires more considerations.
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