Electronic Mail Security

CSCI 454/554

Email Security

- email is one of the most widely used and regarded network services
- currently message contents are not secure
 - may be inspected either in transit
 - or by suitably privileged users on destination system
Email Security Enhancements

- confidentiality
 - protection from disclosure
- authentication
 - of sender of message
- message integrity
 - protection from modification
- non-repudiation of origin
 - protection from denial by sender

Pretty Good Privacy (PGP)

- widely used de facto secure email
- developed by Phil Zimmermann
- selected best available crypto algs to use
- integrated into a single program
- available on Windows, Unix, and Mac systems
- originally free, now have commercial versions available as well
PGP Operation – Authentication

1. SHA-1 used to generate 160-bit hash code of message
2. hash code is encrypted with RSA using sender’s private key, and attached to message
3. receiver uses RSA or DSS with sender's public key to decrypt and recover hash code
4. receiver generates new hash code for message and compares with decrypted hash code, if match, message is accepted as authentic

PGP Operation – Confidentiality

1. sender generates message and random 128-bit number to be used as session key for this message only
2. message is encrypted, using CAST-128 / IDEA/ 3DES with session key
3. session key is encrypted using RSA with recipient's public key, then attached to message
4. receiver uses RSA with its private key to decrypt and recover session key
5. session key is used to decrypt message
PGP Operation – Confidentiality & Authentication

- uses both services on same message
 - create signature & attach to message
 - encrypt both message & signature
 - attach RSA encrypted session key

PGP Operation – Compression

- by default PGP compresses message after signing but before encrypting
 - so can store uncompressed message & signature for later verification
 - because compression is non-deterministic
- uses ZIP compression algorithm
PGP Operation – Email Compatibility

- PGP will have binary data to send (encrypted message etc)
- however email was designed only for text
- hence PGP must encode raw binary data into printable ASCII characters
- uses radix-64 algorithm
 - maps 3 bytes to 4 printable chars
 - also appends a CRC
- PGP also segments messages if too big

PGP Session Keys

- need a session key for each message
 - of varying sizes: 56-bit DES, 128-bit CAST or IDEA, 168-bit Triple-DES
- uses random inputs taken from previous uses and from keystroke timing of user
PGP Public & Private Keys

- since more than one public/private keys may be in use, need to identify which is actually used to encrypt session key in a message
 - could send full public-key with every message
 - but this is inefficient
- rather use a key identifier based on key
 - is least significant 64-bits of the key
 - will very likely be unique
- also use key ID in signatures
PGP Key Rings

- Each PGP user has a pair of keyrings:
 - Public-key ring contains all the public-keys of other PGP users known to this user, indexed by key ID.
 - Private-key ring contains the public/private key pair(s) for this user, indexed by key ID & encrypted.

Figure I.5.5 PGP Message Generation (from User A to User B; no compression or radix 64 conversion)
PGP Public-Key Management

- PGP is anarchy
 - rather than relying on certificate authorities
- in PGP every user is own CA
 - can sign keys for users they know directly
- forms a “web of trust” (arbitrary mesh)
 - trust keys have signed
 - can trust keys others have signed if have a chain of signatures to them
- key ring includes trust indicators
- users can also revoke their keys
Arbitrary Mesh

S/MIME (Secure/Multipurpose Internet Mail Extensions)

- security enhancement to MIME email
 - original Internet RFC822 email was text only
 - MIME provided support for varying content types and multi-part messages
 - with encoding of binary data to textual form
 - S/MIME added security enhancements
- have S/MIME support in various modern mail agents: MS Outlook etc
S/MIME Functions

- enveloped data
 - encrypted content and associated keys
- signed data
 - encoded message + signed digest
- clear-signed data
 - cleartext message + encoded signed digest
- signed & enveloped data
 - nesting of signed & encrypted entities

S/MIME Cryptographic Algorithms

- hash functions: SHA-1 & MD5
- digital signatures: DSS & RSA
- session key encryption: RSA & ElGamal
- message encryption: Triple-DES, RC2/40 and others
- have a procedure to decide which algorithms to use
S/MIME Certificate Processing

- S/MIME uses X.509 v3 certificates
- managed using a **hybrid of a strict X.509 CA hierarchy & PGP’s web of trust**
- each client has a list of trusted CA’s certs
- and own public/private key pairs & certs
- certificates must be signed by trusted CA’s

Certificate Authorities

- have several well-known CA’s
- **Verisign** one of most widely used
- **Verisign** issues several types of Digital IDs
- with increasing levels of checks & hence trust

<table>
<thead>
<tr>
<th>Class</th>
<th>Identity Checks</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>name/email check</td>
<td>web browsing/email</td>
</tr>
<tr>
<td>2+</td>
<td>enroll/addr check</td>
<td>email, subs, s/w validate</td>
</tr>
<tr>
<td>3+</td>
<td>ID documents</td>
<td>e-banking/service access</td>
</tr>
</tbody>
</table>
Email Spam

- A majority of email messages delivered over the Internet are spam
- A message is spam only if it is both unsolicited and bulk
 - Unsolicited person-to-person messages are not spam
 - Subscription-based bulk messages are not spam

Anti-Spam Techniques

- Recipient-based
 - Filtering
 - Blacklist-based, Content-based, Rule-based
 - Source verification/authentication
 - DomainKeys, tempfailing, reputation-based
- Sender-based
 - Usage regulation
 - Cost-based defense
Domain Keys Identified Mail

- DKIM is transparent to end users
- Participating domains use public-key cryptography to sign outbound messages
- Public key provided by the domain’s DNS server
- Receiving servers look up the public key from the DNS server of the domain in the “From” field and use it to verify the signature

Summary

- have considered:
 - secure email
 - PGP
 - S/MIME
 - Anti-spam techniques
 - DKIM