Observed Structure of Addresses in IP Traffic

CSCI 634, Fall 2010

More specific

- Structural characteristics of destination IP addresses seen on Internet links
 - Traces are omni-directional
 - Set of source addresses is roughly equal to set of destination addresses
- Destination address prefix based aggregation
Terminology

- **Active address**: an IP address visible in the trace as destination
- **p-aggregate**: a set of IP addresses that share the same p-bit address prefix
- **Active p-aggregate**: a p-aggregate containing at least one active address
- **N**: the number of active addresses in the trace
Problem statement

- How can we model the set of destination IP addresses visible on the access links?

- In particular, how can we model the addresses aggregate (address structure)?

Address structure

- The arrangement of active addresses in the address space

Example from a 4-hour trace at a university access link:
Trace collection

- A stable short-term fingerprint of a site
 - Different sites have different address structure

- Address structure is the most important factor affecting aggregate packet count distribution

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>ΔT</th>
<th># pkts</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>large university access link</td>
<td>~4 h</td>
<td>62M</td>
<td>69,196</td>
</tr>
<tr>
<td>U2</td>
<td>large university access link</td>
<td>~1 h</td>
<td>101M</td>
<td>144,244</td>
</tr>
<tr>
<td>A1</td>
<td>ISP</td>
<td>~0.6 h</td>
<td>34M</td>
<td>82,678</td>
</tr>
<tr>
<td>A2</td>
<td>ISP</td>
<td>1 h</td>
<td>29M</td>
<td>154,921</td>
</tr>
<tr>
<td>R1</td>
<td>link from regional ISP</td>
<td>1 h</td>
<td>1.5M</td>
<td>168,318</td>
</tr>
<tr>
<td>R2</td>
<td>link from regional ISP</td>
<td>2 h</td>
<td>1M</td>
<td>110,783</td>
</tr>
<tr>
<td>W1</td>
<td>large Web site access link</td>
<td>~2 h</td>
<td>5M</td>
<td>124,454</td>
</tr>
</tbody>
</table>

- Collected between 1998 and 2001
 - Most anonymized while preserving prefix and class relationships
 - $\$ means sampled (1 in 256)
Packet count distribution

- No. of packets per flow; (heavy-tail)
- per destination address; (heavy-tail)
- per destination address aggregate (MORE heavy-tail)

Factors affecting aggregate packet counts

- Address packet counts
 - No. of packet per destination address

- Address structure
 - No. of active addresses per aggregate

- Correlation between these two
Semi-experiments

- Manipulate the data, destroying one factor at a time; see which factors impact aggregate packet counts
- "Random counts": destroy per-address packet counts
 Replace the (heavy-tailed) per-address packet count distribution with a uniform distribution over $[0, 17.54]$.
- "Random addresses": destroy address structure
 Replace address structure with a uniform random distribution over the entire IP address space.
- "Permuted counts": destroy correlation
 Permute per-address packet counts among the active addresses.

Address structure matters most
Tour of U1’s address structure

Address structure looks self-similar

- Interesting structure all the way down
 - Visually self-similar characteristics
- Validate the intuition: multi-fractal model for address structure
 - An address structure viewed as a subset of the unit interval $[0,1)$
 - Cantor dust with two parameters
 - Dimension: active p-aggregates
 - Mass: active addresses within each prefix aggregate
Canonical Cantor Dust

Dimension for address space

- Let \(n_p \) equal the number of active \(/p \)s in a trace

 \[n_{32} = N \]

 \[n_p \leq n_{p+1} \leq 2n_p \]

 each \(/p \) contains and is covered by 2 disjoint \((/p+1) \)s

- Then \(D = \lim_{p \to \infty} \frac{\log n_p}{p \log 2} \)

 But \(p \leq 32 \) here, and expect sampling effects for high \(p \)

 Examine medium \(p \) to see if the limit exists
Fitness with prefix aggregates

Why multi-fractal

- Mono-fractal only captures global scaling behavior of aggregate counts
- Address structure has different local scaling behavior (active addresses)
- Besides (capacity) dimension, introduce another parameter: mass
Multi-fractal Model

- Start with a cantor dust with dimension D
 - Repeatedly remove middle subinterval with proportion $h = 1 - 2^{1-D}$

- Unequally distribute a unit of mass between subintervals
 - Unequal distribution of mass leads to different local scaling behaviors

The model fits well

![Graph showing the model fits well](image)
Causes

- Cascade effects:
 - A recursive subdivision plus a rule for distributing mass
- Procedure of address allocation
 - ICANN allocates short prefixes to providers
 - Providers allocates less shorter prefixes to customers
 - Share the same rule: left-to-right allocation

Is the model useful?

- Certainly the model doesn't look like real data:

 ![U1 Model]

 How do we know whether we've captured relevant properties?

- Develop application metrics for address structures
 - Contrast metrics among traces
 - Compare with model
How densely addresses are packed?

- Metrics: active p-aggregate counts for prefix p
 - n_p again equals the number of active /ps in a trace
 - n_p measures how densely addresses are packed
 - If $N = 2^{16}$ and $n_{16} = 1$, addresses are closely packed
 - If $N = 2^{16}$ and $n_{16} = 2^{16}$, addresses are well spread out
 - Useful for algorithms keeping track of aggregates—shows how many aggregates there tend to be
 - $\gamma_p = n_{p+1}/n_p$ more convenient for graphs
 - $N = \prod_{1 \leq p < 32} \gamma_p$

Aggregation ratio γ_p

![Aggregation ratio graph](image)
Characterize address separation

- Metrics: discriminating prefixes of an active address \(a \)
 - The prefix length of the largest aggregate whose only active address is \(a \)
 - \(\pi_p \): number of addresses that have discriminating prefix \(p \)

Example with 4-bit addresses:

CDF of address discriminating Prefix counts
Aggregate population distribution

- Population of an aggregate is the number of active addresses contained in it.
- Aggregates exhibit a wide range of population.
- Aggregate population distributions are the most effective test to differentiate address structures.

CDF of aggregate population distribution
Properties of γp

- Sampling effect
 - How does the shape of the γp curve depend on N?

- Short-term stability
 - Is γp stable over short time period?

Similar curves
Relatively stable

Worm changes the shape
Worm changes aggregate packet count