
1308 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 8, OCTOBER 2010

Keychain-Based Signatures for Securing BGP
Heng Yin, Member, IEEE, Bo Sheng, Member, IEEE,

Haining Wang, Senior Member, IEEE, and Jianping Pan, Senior Member, IEEE

Abstract—As a major component of Internet routing infras-
tructure, the Border Gateway Protocol (BGP) is vulnerable
to malicious attacks. While Secure BGP (S-BGP) provides a
comprehensive framework to secure BGP, its high computational
cost and low incremental deployment benefits seriously impede its
wide usage in practice. Using a lightweight symmetric signature
scheme, SPV is much faster than S-BGP. However, the speed
boost comes at the price of prohibitively large signatures. Aggre-
gated path authentication reduces the overhead of securing BGP
in terms of both time and space, but the speed improvement is
still limited by public key computation. In this paper, we propose
a keychain-based signature scheme called KC-x. It has low
CPU and memory overheads and provides strong incentive for
incremental deployment on the Internet. As a generic framework,
KC-x has the flexibility of using different signature algorithms,
which can even co-exist in a hybrid deployment. We investigate
two implementations of KC-x: KC-RSA based on RSA and KC-
MT based on Merkle hash tree. Using real BGP workloads,
our experimental results show that KC-RSA is as efficient as
SAS-V (the most efficient software approach for aggregated path
authentication), and KC-MT is even three times faster than SPV
with 40% smaller signatures. Through the hybrid deployment of
KC-MT and KC-RSA, KC-x can achieve both small signature
and high processing rate for BGP speakers.

Index Terms—BGP, Keychain-based Signature, Secure Routing
Protocol, Performance Optimization

I. INTRODUCTION

THE INTERNET is a global-scale and decentralized net-
work comprised of numerous smaller inter-connected

networks, each of which is an autonomous system (AS) under a
single authority of administration. The routing process among
ASes is called interdomain routing. The dominant interdomain
routing protocol is the Border Gateway Protocol (BGP), and
the current version, BGP-4, has been widely used for over
a decade [1], [2]. However, due to its initial design for a
“trusted” environment [3], BGP is vulnerable to a variety of
malicious attacks. For instance, the communication between
BGP peers is subject to wiretapping attacks, and a BGP
speaker can be compromised to launch a blackhole attack.
These attacks cause transmission of fictitious BGP messages,

Manuscript received 7 November 2009; revised 1 May 2010. This work
was partially supported by ONR grant N00014-09-1-0746 and NSF grant
0901537.
Heng Yin is with the Department of Electrical Engineering and Com-

puter Science, Syracuse University, Syracuse, New York 13244 (e-mail:
heyin@syr.edu).
Bo Sheng is with the Department of Computer Science, University of

Massachusetts Boston, Boston, MA 02125 (e-mail: shengbo@cs.umb.edu).
Haining Wang is with the Department of Computer Science, College of

William and Mary, Williamsburg, VA 23187 (e-mail: hnw@cs.wm.edu).
Jianping Pan is with the Department of Computer Science, University of

Victoria, BC, Canada (e-mail: pan@cs.uvic.ca).
Digital Object Identifier 10.1109/JSAC.2010.101008.

TABLE I
COMPARISON OF S-BGP, SAS-V, SPV, AND KC-X

Incremental Benefit Speed Memory Usage
S-BGP Weak Lowest > SAS-V
SAS-V Weak 2X speedup = KC-RSA
SPV Strong 13X largest
KC-RSA Strong 2X Smallest
KC-MT Strong 34X < SPV
KC-Hybrid Strong ≥ SPV < KC-MT

modification or replay of valid messages, or suppression of
valid messages.
Many countermeasures [4]–[9] have been proposed for

securing BGP. Among them, Secure BGP (S-BGP) [7], [10] is
the first comprehensive framework for securing BGP. The S-
BGP protocol and its associated architecture have been under
consideration for standardization by the Internet Engineering
Task Force (IETF). However, due to its extensive use of
certificates and asymmetric cryptography, S-BGP is costly in
both computation and storage. Moreover, while S-BGP can be
deployed incrementally, it provides little incremental benefit if
the deployment is not contiguous. Using an efficient symmet-
ric signature scheme (Merkle hash tree), SPV [6] is far more
efficient than S-BGP in processing BGP UPDATE messages
and provides stronger benefits for incremental deployment,
but at the price of significantly greater storage demands, due
to its much larger signature. Seeking for efficiency in both
computation and storage, aggregated path authentication [9]
has been proposed. Among its software options, the Sequential
Aggregated Signature with bit Vector (SAS-V) yields the
best performance. The improvement in computation, however,
is limited, due to the use of asymmetric cryptography. By
exploiting BGP’s natural path stability, Butler et al. [5] signif-
icantly reduced the computational cost of BGP path authen-
tication, but at the expense of higher bandwidth cost. With
the reasonable bandwidth cost, its performance improvement
is still limited. In general, a viable BGP security scheme faces
at least the following three challenges. First, since some BGP
routers at certain times have very critical performance demand,
it should provide sufficiently high processing speed. Second,
with high processing speed, the storage and bandwidth over-
head should be affordable. Third, it should provide incremental
benefits even when not all routers participate. However, none
of the existing countermeasures have addressed all these issues
successfully.
This paper proposes a novel keychain-based ASPATH pro-

tection scheme, called KC-x, for securing BGP. The distinct
feature of KC-x is that the keys used for signature generation
and verification form a chain by themselves, resulting in a
strong tie between signatures. Such a construction provides

0733-8716/10/$25.00 c© 2010 IEEE

YIN et al.: KEYCHAIN-BASED SIGNATURES FOR SECURING BGP 1309

strong benefits for incremental deployment. It can still provide
some security protection even with a sparse deployment, and
the protection is strengthened with the deployment of KC-
x on more routers. As a generic signature framework, KC-
x can be implemented using any efficient digital signature
algorithm. Multiple implementations can co-exist in a hybrid
deployment. Indeed, we implement two variants of KC-x using
RSA (KC-RSA) and Merkle hash tree (KC-MT). On one hand,
based on RSA-1024, KC-RSA achieves the same performance
as SAS-V. Moreover, KC-RSA achieves aggregated signature
without modifying the existing RSA implementation, which
is required by SAS-V. On the other hand, KC-MT is much
simpler in design and more efficient in both computation
(i.e., a factor of 3 faster) and storage (i.e., 40% less) than
SPV, because it constructs smaller trees and reuses them over
multiple signatures.
After characterizing the overheads of KC-RSA and KC-MT,

we evaluate their performance under three types of realistic
BGP workloads: normal, pathological, and heavy. Note that
KC-RSA and KC-MT can co-exist in a single BGP router.
KC-Hybrid refers to the hybrid deployment of KC-RSA and
KC-MT across the Internet, in which KC-MT is primarily used
in the BGP routers having critical demand for performance,
while KC-RSA plays a major role in the remaining routers.
KC-Hybrid can achieve both small signature to save space,
and high processing rate for handling a high volume of
UPDATE messages. Overall, KC-x provides strong benefits
for incremental deployment and satisfactory processing speed
with modest storage cost and small bandwidth cost, making
it a very promising BGP security mechanism for practical
deployment. In comparison with S-BGP, SAS-V, and SPV, we
summarize the advantages of KC-x in Table I.
The main contributions of this papers are as follows:
• We propose a new keychain-based signature scheme, KC-
x for securing BGP. KC-x is efficient in computation and
storage, and provides security benefits for incremental
deployment.

• We investigate two implementations of this scheme,
KC-RSA and KC-MT. Compared with other signature
schemes, KC-RSA generates the smallest signatures and
incurs modest computation overhead, whereas KC-MT is
the fastest and generates modest-sized signatures.

• We present a hybrid deployment of KC-MT and KC-
RSA, and show that in this hybrid deployment, we can
achieve both small signature and high speed.

• We use recent real-world workloads to demonstrate the
efficiency of KC-x and compare with other signature
schemes. Particularly, we show that only KC-x is capable
of dealing with the heavy workload, and all other schemes
including SPV (the most efficient scheme prior to KC-x)
fall short of processing speed.

The remainder of this paper is organized as follows. Sec-
tion II outlines the operation and security requirements of
BGP. Section III details the design of KC-x for securing
BGP. Section IV investigates two implementations of KC-
x. Section V characterizes their computation and memory
overheads, and evaluates their performance under the real BGP
workloads. Section VI surveys related work. Finally, the paper
concludes with Section VII.

R0 R1 R2 R3

K0-
K0+

K1-
K1+

K2-
K2+

K3-
K3+

K0- K1- K2-

authorize authorize authorize

Fig. 1. Overview of keychain-based signature scheme.

II. INTERDOMAIN ROUTING SECURITY

The primary function of the Border Gateway Protocol
(BGP) [1], [2] is to exchange network reachability information
among BGP speakers. The goal of protecting BGP is to ensure
the integrity, authenticity and availability of AS graphs. BGP
involves two types of control information exchange: one is
between peering speakers, and the other is relayed through a
series of intermediate speakers. Protecting the peer exchange
is just another variant of protecting data communications
between any two endpoints, and existing security measures
such as IPsec or SSL/TLS should apply. However, protecting
the relayed routing exchange among BGP speakers is much
more challenging: routing information is transformed when it
is propagated through intermediate speakers, some of which
may be misconfigured or even compromised. Therefore, BGP
routing messages are vulnerable to a variety of malicious
attacks, which can result in the injection of false routing
messages and the suppression of valid ones. Researchers have
studied possible attacks on BGP [3], [11], [12].
In this paper, we aim to propose an efficient protection

scheme for BGP routing protocol. In particular, we focus
on protecting ASPATH, by ensuring the integrity of BGP
UPDATE messages. There are two kinds of falsification at-
tacks on BGP UPDATE messages. One is the network layer
reachability information (NLRI)1 falsification attack, and the
other is the ASPATH falsification attack. For example, black
holing is one of the severe attacks using falsification, in which
adversaries can either advertise a more specific prefix (i.e.,
NLRI falsification) or shorten ASPATH to “persuade” other
routers to prefer the route otherwise not being preferred (i.e.,
ASPATH falsification).
Grayhole and colluding attacks are more advanced attacks.

In grayhole attacks, a malicious BGP router may selectively
drop traffic flowing through it. In colluding attacks, multiple
compromised BGP routers may collude and exchange BGP
messages and secrets through a tunnel. These colluding routers
can cooperate to launch a blackhole attack and other sophisti-
cated attacks. Unfortunately, these advanced attacks cannot be
prevented solely by adopting a secure routing protocol. Thus,
defending against such attacks is beyond the scope of this
paper.

III. KEYCHAIN-BASED SIGNATURE

In this section, we first present the fundamental design
of the proposed keychain-based signature scheme, and then

1NLRI refers to the IP prefixes that the UPDATE message and path
attributes pertain to.

1310 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 8, OCTOBER 2010

TABLE II
SUMMARY OF NOTATIONS

Nx AS number
Ri a BGP speaker
Vi a bit vector of BGP speaker Ri

H(M) hash value of the message M
{M}K− the message M signed by using the private key K−

K−(M) encrypt the message M by using the private key K−

K+(M) decrypt the message M by using the public key K+

discuss its security property. Finally, we describe how to esti-
mate the computation overhead of handling a BGP UPDATE
message.

A. Fundamental Design

In KC-x, each BGP speaker (Ri) generates a temporary
key pair (t+i /t−i). As shown in Figure 1, the speaker Ri

authorizes its next-hop speaker (Ri+1) and passes t−i to Ri+1

in plaintext. The UPDATE message and the temporary public
key t+i are signed with the private key (t−i−1), which is
authorized by its preceding speaker (Ri−1). In consequence,
the above construction forms a chain of authorization. For
each BGP speaker, instead of signing an UPDATE message
directly with its own private key as S-BGP, the speaker signs
the message using a temporary private key that is authorized
by its preceding speaker along the ASPATH, and verifies
the message by using temporary public keys of all previous
speakers along the ASPATH. The only exception is that the
speaker R0 from the origin AS still signs ASPATH with its
own private key that is authenticated by PKI, since there is no
preceding speaker before R0. For convenience, a temporary
key (private or public) is termed as an attestation key in the
following discussion.
In more detail, we describe how KC-x protects an UPDATE

message from the origin AS N0, and propagates it to AS Ni.
The notations we use in the following discussion are listed
in Table II. Here, K+

i /K−
i denotes the regular public/private

key pair of the BGP speaker of AS Ni, and t+i /t−i denotes
the attestation key pair generated by the speaker of AS Ni.
When the speaker R0 of AS N0 advertises some prefixes

it owns, it signs the UPDATE message using its own private
key K−

0 , which is the same as S-BGP. As proposed in [9],
a bit vector denoted as V0 here is included in the UPDATE
message to amortize signature cost. In addition, it carries an
attestation key pair t+0 /t−0 and signs the attestation public key
t+0 using K−

0 . To improve performance, this attestation key
pair can be generated offline or off-peak in advance, and the
next-hop speaker can use it to sign multiple messages. The
message that R0 sends to R1 is shown as follows:

R0 → R1 : {N0; V0; t+0 }K−
0

, t−0

Upon receiving the above message, R1 first verifies the
signature using R0’s public key K+

0 . If R1 decides to forward
this message to its external peers, R1 appends its own AS N1

to the ASPATH. Similarly, R1 also sends its attestation key
pair t+1 /t−1 to the next-hop speaker. Meanwhile, R1 uses R0’s
attestation private key to sign the UPDATE message. Like S-
BGP, the speaker of KC-x carries all route attestations (RAs)

from the received message, and appends its own attestation.
However, R1 needs to remove R0’s attestation private key t−0 ,
from the message to maintain the secrecy between R0 and R1.
The message that R1 sends to R2 is shown as follows:

R1 → R2 : {N0; V0; t+0 }K−
0

{N0, N1; V1; t+1 }t−0
, t−1

Generally speaking, the message received by speaker Ri

(0 < i ≤ n) has the following format:

Ri−1 → Ri : {N0; V0; t+0 }K−
0

,

{N0, N1; V1; t+1 }t−0
. . .

{N0, ..., Ni−1; Vi−1; t+i−1}t−i−2
, t−i−1

Upon receiving the above message, Ri first verifies the re-
ceived RAs sequentially in the order of that they are signed—
one RA is verified using the attestation public key included in
the preceding RA. When forwarding the UPDATE message,
Ri appends its AS Ni to the ASPATH, including the next-hop
AS Ni+1 and its attestation public key t+i in the RA, and signs
the RA using Ri−1’s attestation private key t−i−1.
The attestation private key ti needs to be protected from

eavesdropping, especially for multi-hop BGP peering con-
nections. Conventional security schemes such as IPsec and
SSL/TLS can be used to ensure the secrecy of attestation
private keys.
Note that the attestation keys are sent in every UPDATE

message. This design simplifies the handling of the cases in
which some next-hop speakers are down and then up, because
these speakers can always receive the refreshed attestation
keys from the latest UPDATE message. A straightforward
optimization could be sending attestation key pairs only if
necessary to save bandwidth consumption. Since the extra
bandwidth consumed by attestation keys is small, we do not
include such an optimization in the paper.

B. Integration with BGP

Like the other secure BGP routing protocols, e.g., S-BGP
and SPV, the authentication information in KC-x is transmit-
ted in an optional transitive path attribute in the UPDATE
message.
KC-x employs the similar approaches as S-BGP to handle

route aggregation and expiration. When generating an aggre-
gated route from several individual routes, a KC-x speaker
needs to attach the authentication of all individual routes to
the aggregated one. Route announcements and withdrawals are
vulnerable to replay attacks, in which a BGP speaker replays a
previously-heard UPDATE message. To defend against replay
attacks, KC-x incorporates into the signature an expiration
date, after which the corresponding route is no longer valid.
When the route is about to expire, the original speaker must
re-announce this route with a new signature.

C. Security Analysis

We first discuss the security property of KC-x in full
deployment and partial deployment respectively. Then we talk
about the incremental deployment of KC-x.

YIN et al.: KEYCHAIN-BASED SIGNATURES FOR SECURING BGP 1311

1) Full Deployment: ASPATH falsification is infeasible,
when all BGP speakers are deployed with KC-x. Even if an
adversary compromises one ore more BGP routers and steals
their attestation private keys, she cannot forge ASPATH with
any adverse effect. Recall that KC-x incorporates bit vectors
to reduce sign operations. For bit vectors to work properly,
each BGP speaker pre-establishes an ordered list of its next-
hop speakers and distributes the neighbor list to the other
speakers via the speaker’s X.509 certificate. Therefore, even
if an adversary steals one or more attestation private keys, the
forged ASPATH still has to be “valid” in the sense that for
any consecutive two ASes in it, the latter speaker must be in
the former’s neighbor list.
2) Partial Deployment: When only part of BGP speakers

are deployed with KC-x, ASPATH falsification is feasible in
a very limited way.

. . . Ni−1, X(i−1,1), X(i−1,2), . . . Ni, X(i,1), X(i,2), . . . , X(i,m), M

Consider the above generalized ASPATH, in which Nj is
KC-x capable speaker, X(i,j) is legacy, and M is malicious.
Since M does not know the attestation private key of Ni−1,
she cannot modify and remove any AS number before and
including Ni. However, she can arbitrarily modify the portion
from X(i,1) to X(i,m) inclusively, as long as the AS number
following Ni satisfies Ni’s bit vector. Generally speaking,
the room for the adversary to forge an ASPATH is between
the preceding KC-x capable AS to itself. With the increased
deployment of KC-x capable speakers, such a security hole
becomes smaller. Therefore, KC-x provides strong incentive
for incremental deployment.
3) Incremental Deployment: We imagine that only a small

portion of BGP speakers are deployed with KC-x at beginning
and gradually more and more BGP speakers participate. From
the above discussion, we know that the room for ASPATH
falsification attacks depends on the gap of two adjacent KC-x
capable speakers. Therefore, an evenly scattered deployment
provides better overall protection than a clustered or uneven
deployment. For example, “N1, X1, N2, X2, N3, X3” is better
than ”N1, N2, N3, X1, X2, X3”, where Ni is a KC-x capable
router and Xi is not.

D. Computational Overhead

When receiving an incoming BGP UPDATE message, a
BGP speaker needs to validate this message, i.e., check
the authenticity of NLRI and ASPATH. The authenticity of
NLRI is validated by matching with the cached AA (Address
Attestation) information without cryptographic computation.
The validation of ASPATH involves a certain number of
signature verifications, which depend on the number of ASes
in the ASPATH. Note that the first signature is different from
the following signatures, because it is generated using the
originating speaker’s private key K−

0 . In the implementation,
K+

0 /K−
0 is an RSA key pair, and the verification of the first

signature is lightweight, as we will show in Section IV-A. In
addition, to avoid unnecessary overhead, KC-x only validates
those UPDATE messages that cause routing table changes, as
S-BGP does [13].
When propagating an UPDATE message to the next-hop

speakers, the BGP speaker appends its own AS number into

the ASPATH and signs the UPDATE message. Due to the use
of a bit vector, only one signing operation is required.
When signing an UPDATE message, the speaker needs to

attach an attestation key pair for the next-hop speakers. Since
the generation of attestation key pairs can be performed offline
in advance, its computation overhead is negligible in process-
ing UPDATE messages. Therefore, the estimated computation
overhead of handling an outgoing UPDATE message is given
below:

C ≈ Length(ASPATH) × T ime(verify) + T ime(sign) (1)

IV. TWO IMPLEMENTATIONS

We apply two signature algorithms, RSA and Merkle hash
tree, to the design of KC-x. We call these two implementations
KC-RSA and KC-MT, respectively.

A. KC-RSA

1) DSA vs. RSA: S-BGP chooses DSA rather than RSA
to protect UPDATE messages mainly due to its smaller
signature. Specifically, RSA-1024 yields a 128-byte signature,
whereas DSA yields only a 40-byte signature. In addition,
DSA supports pre-computation, which greatly reduces the cost
of signing operation. On the other hand, while RSA is about
twofold slower than DSA in signing with the same key length,
it is one order of magnitude faster in verifying. In a simple
experiment, in which we use a Pentium-4 1.8GHz CPU, RSA-
1024 takes 6.8ms in signing but only 0.35ms in verifying.
By contrast, DSA takes 3.8ms (0.03ms with pre-computation)
in signing, but 4.6ms in verifying. Assuming that each route
contains an average of 3.7 ASes [14], RSA-1024 is still 2-fold
faster than DSA-1024 even when pre-computation for DSA is
enabled.
2) Signature Aggregation: Zhao, et al. proposed two

schemes, general aggregate signature and sequential aggre-
gate signature, to aggregate multiple signatures into one
signature [9]. The signature aggregation reduces the length
of UPDATE messages and memory consumption of routing
tables. Although these two schemes can also be applied to
KC-RSA, they require the modification of the existing RSA
signature algorithm. In this paper, we propose a new scheme
of signature aggregation that eliminates this requirement. The
proposed scheme leverages the exclusive-OR operation and is
termed as XOR-ed aggregate signature.
We still use the previous example to illustrate how XOR-

ed aggregate signature works. A new symbol Si denotes the
signature generated by Ri. There is no change for R0, which
sends S0 and its attestation private key t−0 as follows.

S0 = K−
0

(
H(N0; V ; t+0)

)
. (2)

For each following Ri, instead of appending Si to the existing
sequence of signatures S0, S1, ..., Si−1, Ri incorporates the
preceding signature Si−1 into its own signature Si, which is
shown as follows:

Si = t−i−1

(
Si−1 ⊕ H(N0, ..., Ni; V ; t+i)

)
(3)

Ri+1 verifies Si in the following steps: (1) decrypt Si:
t+i−1(Si) = Si−1 ⊕ H(N0, ..., Ni; V ; t+i); (2) compute the

1312 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 8, OCTOBER 2010

Fig. 2. An example of HORS signature. A hash tree with 8 leaf nodes
is derived from a secret value, and two leaf nodes are disclosed for each
signature. The filled circles denote the disclosed values in a signature. Using
these values, a verifier can recalculate the root value.

hash value of the message: h = H(N0, ..., Ni; V ; t+i); (3)
recover Si−1: t+i−1(Si)⊕h = Si−1⊕H(N0, ..., Ni; V ; t+i)⊕
H(N0, ..., Ni; V ; t+i) = Si−1 ; (4) i = i−1, if i �= 0, go to step
(1); (5) use R0’s public keyK+

0 to verify S0. All the signatures
are correct only if S0 passes the verification. Since exclusive-
OR is very lightweight, the cost of additional exclusive-
OR operations induced by XOR-ed aggregate signature is
negligible.

B. KC-MT

Invented by Ralph Merkle, a Merkle hash tree [15] cre-
ates secure signatures based on hash functions (e.g. SHA-
1). Due to the use of lightweight hash functions, Merkle-
tree-based signature scheme is far more efficient than those
based on asymmetric crypto-systems. The basic Merkle-tree-
based signature works as follows: Alice populates n leaf
nodes from a secret and builds a hash tree; when signing a
message, Alice hashes the message and maps it into a leaf
node, and then discloses the leaf node accompanying with
some corresponding intermediate nodes to Bob; after receiving
the leaf node and the intermediate nodes, Bob can compute
the root value, and compare it with the value given by Alice.
Since the chance of a forged message mapping to the same
leaf node as a legitimate message is 1

n , we need a large hash
tree to achieve high security.
To reduce tree size, a few variants have been proposed.

The HORS signature [16] is one of them, which can achieve
fast verification with a smaller hash tree. Instead of disclosing
one leaf node, the HORS signature discloses m leaf nodes
for each signature. There is only a chance of 1/

(
n
m

)
that two

messages yield the same signature. Figure 2 shows an example
of (n = 8, m = 2).
KC-MT makes use of HORS signatures in conjunction with

a hash tree. For a Merkle hash tree of KC-MT, the secret
used to populate all leaf nodes is treated as a private key,
and the root value of the tree is a public key. According to
the fundamental design of KC-x, a speaker Ri generates an
attestation key pair by building a Merkle hash tree based on a
secret t−i (i.e. attestation private key) and calculates the root
value t+i (i.e. attestation public key). It then signs the ASPATH
and t+i using the hash tree derived from the secret t−i−1 given
by its preceding speaker Ri−1, and then forwards the signed
message and t−i to the next-hop speaker.
For a Merkle hash tree, security degrades when more sig-

natures are generated, because more leaf nodes are disclosed.

SPV chooses (n = 256, m = 6) to ensure the forgery
probability of 2−11 after 15 signatures. Similarly in KC-
MT, we limit the maximum number (Σ) of signatures a
single tree can yield. We will discuss the selection of n and
m and the corresponding maximum number of signatures
in Section V-A1. To ensure that one tree signs at most Σ
messages, the issuing speaker generates a new attestation key
pair after sending Σ UPDATE messages.

1) KC-MT vs. SPV: SPV is also based on Merkle hash
tree [6]. Based on a different security construction, KC-MT
is simpler in nature than SPV in three aspects. First, in
SPV, the concept of epoch is introduced to thwart repeatable
and predictable fraud. Adding an epoch number to each
hash operation makes the probability of forgery independent
between epochs. The costs are two-fold: 1) one more hierarchy
has to be constructed in the Merkle tree; 2) more values
are included into the signature, and more hash operations
are required to authenticate an ASPATH. In contrast, KC-
MT prevents this attack implicitly by its inherent rekeying
mechanism. That is, in KC-MT, each speaker independently
builds a tree, authorizes its next-hop speaker to use it, and
periodically reconstructs the tree.

In addition, the design of SPV is vulnerable to multi-path
truncation attack, in which a single-ASN private key obtained
from a shorter ASPATH can be used to truncate a longer
ASPATH from the same origin. To counter such an attack, SPV
introduces an additional level to the ASPATH authenticator,
and degrades private values to semi-private values gradually
along the path. Obviously, this induces design complexity and
extra performance overhead to SPV. In contrast, KC-MT is not
vulnerable to this kind of attack, and no additional protection
is needed.

The design simplicity of KC-MT brings performance ben-
efits. The costs of both verifying and signing are reduced,
as compared to SPV. The overhead reduction of verifying
lies in fewer hash operations: for each AS in the ASPATH,
KC-MT needs only to compute the root value of each small
tree, whereas SPV needs more hash operations to compute
the multi-epoch public key from the single-ASN public keys
and several other intermediate values. The cost reduction of
signing is achieved by caching the intermediate values during
the first signing operation, and then the number of hash
operations for the subsequent signing operations on the same
tree can be greatly reduced. The number of cached trees can
be determined by AS degree, which follows a power law
distribution. As shown in [17], 90% of ASes have less than
10 neighboring ASes. Even for the ASes (about 0.01%) with
over 1000 neighbors, only about 1MB buffer is required to
cache all trees with 512 leaf nodes. By contrast, the Merkle
tree in SPV is substantially larger, and different origin BGP
speakers use different trees. Thus, it would be unaffordable for
SPV to cache all trees. Note that as mentioned in Section III,
attestation key pairs for next-hop speakers can be generated
offline. Even for online computation, its small cost is further
amortized over Σ outgoing UPDATE messages. So, the cost
of key generation is negligible.

YIN et al.: KEYCHAIN-BASED SIGNATURES FOR SECURING BGP 1313

KC-RSA
KC-MT

KC-RSA
KC-MT

KC-RSA
KC-MT

KC-RSA
KC-MT

KC-RSA
KC-MT

KC-RSA
KC-MT

K

Backbone

Fig. 3. Hybrid deployment on BGP speakers in the Internet. The
BGP routers serving high volume of BGP messages use KC-MT to sign
UPDATE messages, while the other BGP routers use KC-RSA. By exploiting
benefits of these two algorithms, the hybrid deployment can achieve faster
speed in processing UPDATE message and smaller footprint in storage and
transmission.

C. Hybrid Deployment

KC-MT is very fast but has relatively large signatures,
whereas KC-RSA yields very small signature but is slower
than KC-MT. Here we present a hybrid deployment approach
to achieving both small signature and high processing rate.
In the hybrid deployment, both KC-RSA and KC-MT are

installed on a BGP router, and hence the router knows how to
verify signatures of both KC-RSA and KC-MT. In addition,
it chooses either KC-RSA or KC-MT to be the primary
for signing UPDATE messages. The routers requiring high
processing rate can choose KC-MT to be the primary, while
the other routers may choose KC-RSA to sign messages.
Figure 3 illustrates such a layout.
For the hybrid deployment to work properly, when a speaker

chooses one algorithm as the primary, its preceding speaker
has to issue the corresponding attestation key pair for that
algorithm. Since the amortized cost of key generation for
either KC-RSA or KC-MT is negligible, it is feasible for the
preceding speaker to issue both kinds of key pairs and let the
receiver choose which one to use. This greatly simplifies the
hybrid deployment over the Internet.
As we will show in Section V, the speed of verifying a KC-

RSA signature is in the same order of magnitude as that of
KC-MT. Thus, with the hybrid deployment, the performance
of handling an UPDATE message on a router with KC-MT
as the primary will be comparable to that of pure KC-MT
deployment. The benefit, however, is much smaller footprint
of signatures, due to the signature aggregation in KC-RSA.

V. EVALUATION

In this section, we quantify the computation and memory
overheads of the keychain-based schemes, which include KC-
RSA, KC-MT, and the hybrid of these two, and compare them
with those of S-BGP, SAS-V, and SPV under real traces.

A. CPU Overhead

To accurately assess the computation overheads of these dif-
ferent schemes, we implement the HORS signature algorithm
using AES [18], [19], and conduct a series of experiments on
a modest PC with a Pentium-4 1.8GHZ CPU. We characterize
the computation overhead of each individual operation as
signing, verification, and key generation. Then, we evaluate

6/256 3/512 4/512 5/512 6/512 2/1024 3/1024 4/1024 5/1024 6/1024
0

500

1000

1500

2000

2500

Selections of m/n

P
ro

ce
ss

in
g

T
im

e
(in

 μ
s)

Initial Sign (S1)
Sebsequent Sign (S2)
Verify (V)
Overall (C)

(a)

6/256 3/512 4/512 5/512 6/512 2/1024 3/1024 4/1024 5/1024 6/1024
0

10

20

30

40

50

60

70
Maximal Number of Signatures

Selections of m/n

N
um

be
r

of
 T

im
es

(b)

6/256 3/512 4/512 5/512 6/512 2/1024 3/1024 4/1024 5/1024 6/1024
0

50

100

150

200

250

300

350

400
Size of Signature

Selections of m/n

S
iz

e
of

 S
ig

na
tu

re
 (

in
 b

yt
e)

(c)

Fig. 4. Operation cost of KC-MT with different (n, m).

and compare the BGP performance with different protection
mechanisms under real-world BGP workloads. Before present-
ing the experiment results of overhead estimation, we first
detail the parameter setting of Merkle tree in KC-MT. This is
because the operation overhead of KC-MT is highly dependent
upon the parameter setting of the Merkle tree.

1314 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 8, OCTOBER 2010

TABLE III
SPEED OF INDIVIDUAL OPERATIONS (IN µs)

S-BGP SPV SAS-V KC-RSA KC-MT
Sign 3,802/30 703 6,800 6,800 90
Verify 4,607 191 350 350 111

1) Merkle-tree Configuration: To achieve a forgery prob-
ability around p = 2−11 after yielding 15 signatures, SPV
selects n = 256 and m = 6 [6]. For KC-MT, by caching the
intermediate values of the first signing, we can significantly
reduce the overhead of subsequent signing operations. There-
fore, KC-MT may choose different (n, m) to run even faster
and yield smaller signature without degrading its security, i.e.,
achieving the same level of security as SPV. With different
selections of (n, m), the experiment results of KC-MT are
shown in Figure 4.
There are five factors affecting the CPU overhead of KC-

MT, including initial signing (S1), subsequent signing (S2),
verification (V), and the maximal number of signatures (Σ).
The average signing cost S is:

S = S1/Σ + (1 − 1/Σ) × S2 (4)

Since the cost of key generation is amortized over Σ mes-
sages, according to Equations 1 and 4, the overall computation
cost of handling one UPDATE message is:

C = Length(ASPATH) × V + S1/Σ + (1 − 1/Σ) × S2 (5)

Figure 4(a) shows the overhead breakdown of the first three
factors and the overall cost, while Figure 4(b) shows Σ the
maximal number of signatures, which a Merkle tree of (n, m)
needs to issue, to ensure the same forgery probability (around
p = 2−11) as SPV2.
The overhead of initial signing is proportional to n, since

most of the internal values of the tree need to be computed
for the intermediate values required by the signature. For the
subsequent signing operations, as the internal values have been
cached, its computational overhead is substantially decreased
(less than 50µs). Thus, considering the number of signing
operations on the same Merkle tree, we compute the average
overhead of signing, which is as low as 73µs when n = 512
and m = 4.
As shown in Figure 4(a), the overhead of verification is

between 103µs for (1024, 2) and 197µs for (1024, 6). Note
that the total CPU overhead of KC-MT for handling an
UPDATE message is under the assumption that the average
length of ASPATH is 3.7. In our experiments, the parameter
setting (n, m) with the lowest total CPU overhead is (512, 3).
In addition to processing speed, we also need to consider
memory consumption of KC-MT and balance these two met-
rics. Figure 4(c) shows the dynamics of signature size with
different Merkle-tree configurations, in which a Merkle tree
of (512, 3) yields the second smallest signature. Hence, we
set KC-MT as n = 512 and m = 3.

2Here we ensure the same forgery probability as SPV just for fair
comparison. With different parameters, KC-MT can definitely provide higher-
level security protection.

2) Individual Operation Cost: The individual overheads
of signing, verification, and key generation, with respect to
S-BGP, SAS-V, SPV, KC-RSA, and KC-MT, are listed in
Table III. Without pre-computation in DSA, the signing cost
of S-BGP is 3,802µs. However, it is only 30µs with pre-
computation enabled. To be fair in comparison, the signature
amortization based on the bit vector is assumed to be available
for all candidates because it is compatible with all of them and
easy to implement. We also assume pre-computation in DSA
is enabled. To simplify evaluation, the signature cache is not
considered, which is also fair since it causes the same effect
to all of them.
Based on the above assumptions, we apply Equation 1 to

assess the performance of all schemes. Here we still assume
that the average ASPATH length is 3.7. We observe that S-
BGP is the slowest. SAS-V and KC-RSA are a factor of 2.2
faster than S-BGP, while SPV and KC-MT are 12 and 34 fold
faster than S-BGP, respectively. Compared to SPV, KC-MT
is about 3 fold faster. In the hybrid deployment, for a router
with KC-MT being its primary, even in the worst case that all
signatures in ASPATH are of KC-RSA, it is 12.3 fold faster
than S-BGP, and still slightly faster than SPV.
3) Performance under Real Workloads: With the knowl-

edge of individual operation cost for S-BGP, SPV, SAS-
V, KC-RSA, and KC-MT, we further evaluate the overall
performance under real workloads. One important metric is the
delay of handling an UPDATE message at a BGP router, which
includes the processing time and the waiting time. The delay
is crucial to the convergence speed of inter-domain routing
over the Internet.
The workloads are obtained from UPDATE message traces

from routeviews [20], in which the routeviews routers record
the outgoing UPDATE messages of the observed ASes they
peer with. From the knowledge of the workloads and the
cryptographic operation cost, we can derive the distribution
of delayed outgoing UPDATE messages caused by each BGP
protection scheme.
We choose three typical workloads to represent normal,

pathological, and heavy workloads, respectively. For normal
workload, we select the trace of a router (AS 3277) on Jun 1st,
2005. This trace represents the average traffic load among most
available BGP routers. For pathological workload, we choose
the trace of a router (AS 7911) on Jan 24th, 2003, when SQL
worms were spreading quickly across the Internet. The chosen
trace has the maximum number of UPDATE messages among
all observed BGP routers during that period. Finally, we select
a constantly heavy workload from AS 2914 on Dec 25th,
2008, which has the highest workload in routeviews’s database
in recent two years. The statistics of these three traces are
listed in Table IV. The distributions of UPDATE requests are
extracted from these three traces and shown in Figures 5(a),
(b), and (c). We have two observations: 1) UPDATE messages
are sent in burst even under normal condition, because of
the rate limiting mechanism in BGP [2]; and 2) the volume
and average rate of heavy workload are significantly higher
than those of pathological workload, whereas the pathological
workload is more bursty (i.e., its maximum rate is higher).
Figures 6 (a) and (b) illustrate the distributions of delayed

UPDATE messages under the normal condition caused by

YIN et al.: KEYCHAIN-BASED SIGNATURES FOR SECURING BGP 1315

0 200 400 600 800 1000
0

20

40

60

80

100

120

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s
Request Distribution in Normal Traffic

(a) .

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Request Distribution in Pathologic Traffic

(b)

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Time(s)

N
um

be
r

of
 C

om
in

g
R

eq
ue

st
s

Request Distribution in Heavy Traffic

(c)

Fig. 5. Request distributions in normal, pathological, and heavy traffic

different security schemes. Since the traffic load is relatively
light, SPV, SAS-V, and our keychain-based schemes (KC-RSA
and KC-MT) can handle all UPDATE messages within one
second. As shown in Figure 6 (b), the distribution of outgoing
messages exactly matches the one in Figure 5 (a), due to the
resolution of one second. For S-BGP, some peak bursty traffic
exceeds the processing capacity of DSA, leading to noticeable
delays as shown in Figure 6 (a). With respect to different
BGP secure mechanisms, we summarize their average and
maximum delay times under normal condition in the second

TABLE IV
CHARACTERISTICS OF TRAFFIC TRACES

Normal Pathological Heavy
AS Number 3277 7911 2914
Date 06/01/05 01/24/03 12/25/08
Duration(s) 871s 876s 870s
Total Announcements 1121 88777 508058
Average Rate(/s) 1.29 101.34 583.97
Maximum Rate(/s) 117 6764 5011

TABLE V
DELAY (AVG/MAX) IN NORMAL/HEAVY/PATHOLOGICAL TRAFFIC (IN s)

Normal Pathological Heavy
S-BGP 0.60 / 3.20 515.84 / 952.83 2927.98 / 5635.07
SPV 0.04 / 0.22 4.16 / 14.09 34.11 / 85.34
KC-RSA 0.18 / 1.04 251.9 / 454.30 1659.71 / 3077.80
KC-MT 0.02 / 0.09 0.81 / 3.22 0.20 / 1.70

column of Table V. In the average cases, all schemes can
handle an UPDATE message within one second. However, in
the worst cases, the delay time of S-BGP increases to 3.633s
while the others are still less than one second.
Figures 6 (c)-(f) show the results of different protection

schemes under the pathological condition. As shown in Ta-
ble IV and Figure 5 (b), the average message arrival rate of
the pathological traffic is two orders of magnitude larger than
that of the normal traffic, and the peak has 4000∼7000 arrivals
per second and lasts for 3 to 4 minutes. Under this extremely
bursty workload, S-BGP, SAS-V and KC-RSA reach their full
processing capacity. As Figure 6 (c) shows, on average S-BGP
can only process about 60 messages per second, while SAS-V
and KC-RSA can handle 120 messages per second, shown in
Figure 6 (d). Such low processing capacities of these three
schemes cause unacceptably large delays up to 21 minutes.
Using the efficient HORS signature based on Merkle tree,
SPV, shown in Figure 6 (e), can process about 800 messages
per second, while KC-MT, shown in Figure 6 (f), is able to
process around 2,500 messages per second. Both schemes have
some idle time during the peak period, and they can digest the
bursty traffic within a few seconds. Due to the accumulation
effect of highly bursty traffic under the pathological workload,
the average and maximum delays of KC-MT are a factor of
5 less than those of SPV. In the third column of Table V,
we summarize the average and maximum delays of different
secure schemes under the pathological condition.
Figures 6 (g)-(j) show the results under the heavy work-

load. This constantly heavy workload is completely beyond
the capabilities of S-BGP, SAS-V and KC-RSA. Even SPV
reaches its full potential. It takes SPV up to 86 seconds to
digest such constantly heavy workload. By contrast, KC-MT
can handle this heavy workload well (within 2 seconds). In
the hybrid deployment of KC-x, the performance of a router
with KC-MT as primary is between SPV and KC-MT.

B. Memory Consumption

In practice, BGP routers have limited memory space. A
BGP security mechanism that yields relatively large signa-
tures could easily exceed the memory limit of many BGP
routers, impeding its wide deployment. Therefore, memory
consumption is another important metric for evaluating BGP

1316 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 8, OCTOBER 2010

0 200 400 600 800 1000
0

20

40

60

80

100

120

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Normal Traffic (DSA)

(a) normal traffic with S-BGP

0 200 400 600 800 1000
0

20

40

60

80

100

120

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Normal Traffic (Other Four Schemes)

(b) normal traffic with SAS-V, SPV,KC-RSA, and
KC-MT

0 500 1000 1500
0

50

100

150

200

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Pathologic Traffic (DSA)

(c) pathological traffic with S-BGP

0 200 400 600 800 1000
0

50

100

150

200

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Pathologic Traffic (KC−RSA)

(d) pathological traffic with KC-RSA and SAS-V

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Pathologic Traffic (SPV)

(e) pathological traffic with SPV

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Pathologic Traffic (KC−MT)

(f) pathological traffic with KC-MT

0 2000 4000 6000 8000
0

50

100

150

200

250

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Heavy Traffic (DSA)

(g) heavy traffic with S-BGP

0 1000 2000 3000 4000
0

50

100

150

200

250

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Heavy Traffic (KC−RSA)

(h) heavy traffic with KC-RSA and SAS-V

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Heavy Traffic (SPV)

(i) heavy traffic with SPV

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

N
um

be
r

of
 O

ut
go

in
g

R
eq

ue
st

s

Process Capacity in Heavy Traffic (KC−MT)

(j) heavy traffic with KC-MT

Fig. 6. Outgoing UPDATE message rates under real-world workloads with various secure protections.

routing security mechanisms. Since the size of signature is the
dominant factor in determining the memory consumption, we
focus on the memory requirement of signatures.

To estimate the memory consumption in real scenarios, we
select several typical BGP routers from [21]. Then, we com-
pute the memory consumption of signatures in different BGP
security schemes under these real routers’ working condition.
The results are listed in Table VI. Among these four schemes,

KC-RSA and SAS-V are the most economical. Independent
of the length of ASPATH, the size of their signatures are
only 128 bytes. In all three selected BGP routers, the memory
consumption of KC-RSA is less than 26MB. Using DSA, S-
BGP yields 40-byte signature for each AS in the ASPATH.
Thus, S-BGP consumes slightly more memory than KC-RSA,
depending on the average length of ASPATH. SPV and KC-
MT also yield one signature for each AS, but signature size

YIN et al.: KEYCHAIN-BASED SIGNATURES FOR SECURING BGP 1317

TABLE VI
MEMORY CONSUMPTION OF SIGNATURES (IN MB)

ASN RIB entries ASPATH S-BGP SPV KC-RSA & SAS-V KC-MT Hybrid 1:1 (2:1)
1221 211721 3.555 28.7 253 25.8 152.5 102.1 (76.7)
4637 163918 3.356 21 185 20 111.5 75.7 (57.2)
7660 167288 4.46 28.5 250.8 20.4 151.2 96 (70.8)

may vary with different message content. In our implementa-
tion, on average, the Merkle tree of (256,6) selected by SPV
yields 353-byte signatures, while the tree of (512,3) selected
by KC-MT yields 213-byte signatures. Thus, SPV is the most
expensive, consuming as much as 253MB memory. Due to
smaller signatures, the memory consumption of KC-MT is
only 60% of that of SPV. The hybrid deployment of KC-RSA
and KC-MT can further reduce the total size of signatures.
Assume that on ASPATHs, the ratio of signatures of KC-RSA
to KC-MT is 1:1 or 2:1. The memory consumption of the
hybrid deployment is up to 102.1MB and 76.7MB.

VI. RELATED WORK

A great deal of research has been conducted to secure BGP
protocol. We refer interested readers to the following surveys
on security issues and solutions for BGP [22], [23]. The Secure
Border Gateway Protocol (S-BGP) [7], [10] was proposed
by BBN to provide strong security for BGP. S-BGP relies
on Public Key Infrastructure (PKI) to assign the ownership
of an IP prefix to an AS, and to authenticate the identity
of a BGP router. To protect the ASPATH from modification
and truncation, each enroute BGP speaker verifies route at-
testations issued by previous ASes in the ASPATH via their
public keys, and when propagating this message, appends its
own AS number, and creates its own route attestation via
its private key. However, due to public key cryptography, S-
BGP is expensive in both computation and storage [13], [14],
making it inefficient in realistic deployment.
Several efforts have been made to improve the performance

of S-BGP. Secure Path Vector (SPV) [6] is designed to
use symmetric cryptographic mechanisms to provide integrity
protection. While the prefix authentication still relies on PKI,
the route attestation is realized by employing a lightweight
symmetric one-time signature in conjunction with a Merkle
hash tree. SPV is claimed to be a factor of 22 faster than
S-BGP, at the price of significantly high storage demand.
Moreover, the fairly complicated design makes it challenging
to implement and deploy SPV in practice.
Still using public key cryptography, Zhao et al. [9] applied

several optimizations to improve the processing speed and
reduce the storage cost of S-BGP, by combining the time-
efficient scheme of signature amortization with the space-
efficient techniques of aggregate signatures. However, the
performance improvement is still limited by the expensive
public key computation.
By exploiting the stability of path advertisement, Butler et

al. [5] investigated several optimization solutions to amortize
cryptographic operations over many verifications. However,
the performance improvement is achieved at the expense of
higher bandwidth cost. For example, the all path scheme has
the biggest processing speed gain (97.3% load reduction), but

with prohibitively high bandwidth overhead (as much as 139
megabytes per minute). The origin path scheme, the second
fastest, has limited improvement (about 86.3% reduction),
with reasonable bandwidth cost. This approach can be applied
in conjunction with the other schemes, including KC-x, to
further improve the performance.
All the above schemes, including ours, assume a global

and public-key infrastructure (PKI). However, building such
an infrastructure is challenging. Some efforts have been made
to address this issue, and they are complementary to our
approach. Pretty Secure BGP (psBGP) [24] represents a new
solution for prefix authentication via the construction of a
decentralized authentication system, rather than a centralized
infrastructure employed by S-BGP. Each AS maintains a prefix
assertion list (PAL), which includes the address ownership
assertions of the local AS and its peers. The prefix information
is validated by checking the consistency of PALs of the
peers around the origin. Recently, Grassroots-PKI [25] has
been proposed as an evolutionary approach to enabling the
incremental construction of a global PKI.
Independent of S-BGP, a few completely different pro-

tection schemes have been proposed. Secure Origin BGP
(soBGP) [26] provides a secure registry mechanism against
which a BGP speaker can check the authenticity of an origi-
nating AS and the validity of an ASPATH. Interdomain Route
Validation (IRV) [27] proposes to setup an IRV server in each
AS responsible for validating the route information, and the lo-
cal IRV server queries other relevant IRV servers for the valid-
ity when necessary. “Listen and Whisper” [8] is a lightweight
protection with less guarantee. “Listen” detects invalid routes
in the data plane by detecting incomplete TCP connections,
while “whisper” uncovers invalid route announcements by
detecting inconsistency among multiple UPDATE messages
originating from the same AS. Pretty Good BGP [28] is
another lightweight protection scheme: its essence is to detect
suspicious advertisements using historical hints, and delay the
propagation of them. Suspicious origin ASes are temporarily
assigned a low preference, and suspicious sub-prefixes are
temporarily ignored. In addition, there is an approach [29]
using centralized servers with identity-based cryptography and
encrypted search to verify received BGP UPDATE messages.

VII. CONCLUSION

In this paper, we present KC-x, a keychain-based security
mechanism for securing BGP. KC-x builds a chain of key
authorization along an ASPATH. Such a key chain creates
a strong tie between the BGP speakers along the ASPATH.
Hence, KC-x provides strong incremental benefits for partial
deployment over the Internet. Moreover, as a generic security
mechanism, KC-x can be realized using any efficient digital
signature algorithm, and support the hybrid deployment. To

1318 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 8, OCTOBER 2010

demonstrate this approach, we investigate and evaluate two
implementations: KC-RSA and KC-MT. We use real-world
BGP workloads to demonstrate the efficiency of this new
signature scheme and compare with other schemes, including
S-BGP, SAS-V, and SPV. We believe that the inherent simple
design, easy implementation, strong benefits for incremental
deployment, high processing speed, and modest memory usage
will make KC-x a very promising BGP security mechanism
for wide deployment over the Internet.

REFERENCES

[1] Y. Rekhter and P. Gross, “Application of the Border Gateway Protocol
in the Internet,” Request for Comments: 1772, Internet Engineering Task
Force, March 1995.

[2] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” Request
for Comments: 1771, Internet Engineering Task Force, March 1995.

[3] Sandra Murphy, “BGP security vulnerabilitis analysis,” Internet draft,
Internet Engineering Task Force, October 2004.

[4] William Aiello, John Ioannidis, and Patrick McDaniel, “Origin authen-
tication in interdomain routing,” in Proc. 10th ACM conference on
Computer and Communication Security (CCS 2003). 2003, pp. 165–
178, ACM Press.

[5] Kevin Butler, Patrick McDaniel, and William Aiello, “Optimizing BGP
security by exploiting path stability,” in Proc. 13th ACM conference on
Computer and Communications Security (CCS 2006), November 2006.

[6] Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu, “SPV: Secure path
vector routing for securing BGP,” in Proc. ACM SIGCOMM 2004,
September 2004.

[7] Stephen Kent, Charles Lynn, and Karen Seo, “Secure border gateway
protocol (S-BGP),” IEEE J. Sel. Areas Commun., vol. 18, no. 4, pp.
582–592, April 2000.

[8] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz, “Listen
and whisper: Security mechanisms for BGP,” in Proc. First Symposium
on Networked Systems Design and Implementation (NSDI 2004), March
2004.

[9] Meiyuan Zhao, Sean W. Smith, and David M. Nicol, “Aggregated
path authentication for efficient BGP security,” in Proc. 12th ACM
Conference on Computer and Communication Security (CCS 2005),
November 2005.

[10] Charles Lynn and Karen Seo, “Secure BGP (S-BGP),” Internet draft,
Internet Engineering Task Force, June 2003.

[11] A. Barbir, S. Murphy, and Y. Yang, “Generic threats to routing
protocols,” Internet draft, Internet Engineering Task Force, October
2004.

[12] S. Convery, D. Cook, and M. Franz, “An attack tree for the Border
Gateway Protocol,” Internet draft, Internet Engineering Task Force,
February 2004.

[13] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo, “Se-
cure Boder Gateway Protocol (S-BGP) – real world performance and
deployment issues,” in Proc. Network and Distributed System Security
Symposium (NDSS 2000), February 2000.

[14] Stephen Kent, “Securing the Boder Gateway Protocol: A status update,”
the seventh IFIP TC-6 TC-11 Conference on Communication and
Multimedia Security, October 2003.

[15] Ralph Merkle, “Protocols for public key crptosystems,” IEEE Symposum
on Security and Privacy, 1980.

[16] Leonid Reyzin and Natan Reyzin, “Better than BiBa: Short one-time
signatures with fast signing and verifying,” Information Security and
Privacy–7th Australasian Conference (ACSIP 2002), July 2002.

[17] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott J. Shenker, and
Walter Willinger, “Towards capturing representative AS-level Internet
topologies,” SIGMETRICS Performance Evaluation Review, vol. 30, no.
1, pp. 280–281, 2002.

[18] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” March 1999.
[19] S. Matyas, C. Meyer, and J. Oseas, “Generating strong one-way

functions with cryptographic algorithm,” IBM Technical Disclosure
Bulletin, 1985.

[20] “University of Oregon Route Views Project,” http://www.routeviews.org.
[21] “BGP reports,” http://bgp.potaroo.net.
[22] Kevin Butler, Toni Farley, Patrick McDaniel, and Jennifer Rexford, “A

survey of BGP security issues and solutions,” in Proc. IEEE, January
2010.

[23] Martin O. Nicholes and Biswanath Mukherjee, “A survey of security
techniques for the border gateway protocol (BGP),” IEEE Commun.
Surveys Tutorials, vol. 11, no. 1, pp. 52–65, 2009.

[24] Tao Wan, Evangelos Kranakis, and P.C. van Oorschot, “Pretty secure
BGP (psBGP),” in Proc.Network and Distributed System Security
Symposium (NDSS 2004), February 2004.

[25] Yih-Chun Hu, David McGrew, Adrian Perrig, Brian Weis, and Dan
Wendlandt, “(R)Evolutionary bootstrapping of a global PKI for securing
BGP,” in Proc. 5th Workshop on Hot Topics in Networks (HotNets-V),
November 2006.

[26] R. White and B. Akyol, “Deployment considerations for Secure Origin
BGP(soBGP),” Internet Draft, Internet Engineering Task Force, June
2003.

[27] Geoffrey Goodell, William Aiello, Timothy Griffin, John Ioannidis,
Patrick McDaniel, and Aviel Rubin, “Working around BGP: An
incremental approach to improving security and accuracy in interdomain
routing,” in Proc. Network and Distributed System Security Symposium
(NDSS 2003), February 2003.

[28] Josh Karlin, Stephanie Forrest, and Jennifer Rexford, “Pretty Good
BGP: Improving BGP by cautiously adopting routes,” in Proc. 14th
IEEE International Conference on Network Protocols (ICNP 2006),
November 2006.

[29] E yong Kim, Li Xiao, and Klara Nahrstedt, “Identity-based registry for
secure inter-domain routing,” in Proc. ACM Symposium on Information,
Computer and Communications Security’ 2006, March 2006.

Heng Yin is an assistant professor in the department
of Electrical Engineering and Computer Science at
Syracuse University, Syracuse, New York. He re-
ceived the PhD degree in Computer Science from the
College of William and Mary in 2009. His research
interests lie in computer and network security. He is
a member of the IEEE.

Bo Sheng is an assistant professor in the department
of Computer Science at University of Massachusetts
Boston. He received his Ph.D. in computer science
from the College of William and Mary in 2010.
His research interests include wireless networks and
embedded systems with an emphasis on efficiency
and security issues.

Haining Wang is an Associate Professor of Com-
puter Science at the College of William and Mary,
Williamsburg, VA. He received his Ph.D. in Com-
puter Science and Engineering from the University
of Michigan at Ann Arbor in 2003. His research
interests lie in the area of security, networking
systems, and distributed computing. He is a senior
member of IEEE.

Jianping Pan is currently an assistant professor
of computer science at the University of Victoria,
British Columbia, Canada. He received his Bach-
elor’s and PhD degrees in computer science from
Southeast University, Nanjing, China, and he did his
postdoctoral research at the University of Waterloo,
Ontario, Canada. He also worked at Fujitsu Labs and
NTT Labs. His area of specialization is computer
networks and distributed systems, and his current
research interests include protocols for advanced
networking, performance analysis of networked sys-

tems, and applied network security. He is a senior member of the ACM and
a senior member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

