
Statistical Characterization for Per-Hop QoS
�

Mohamed El Gendy, Abhijit Bose, Haining Wang, and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122�

mgendy,abose,hxw,kgshin � @eecs.umich.edu

Abstract

The Differentiated Services (DiffServ) architecture is designed to provide scalable network-level Quality
of Service (QoS) via service differentiation at intermediate nodes of a network (called Per-Hop Behaviors
(PHBs)). Per-hop QoS is measured in terms of throughput, delay, jitter, and loss rate experienced by traffic
crossing a PHB. In this paper, we use a statistical approach that is based on experiments on a real network
testbed to characterize the per-hop QoS of a given PHB. Specifically, we employ a full factorial statistical
design of experiments to study the effects of different PHB configurations and input traffic scenarios on per-
hop QoS. We use Analysis of Variance (ANOVA) to identify the input and PHB configuration parameters
that have the most significant influence on per-hop QoS. Then, multiple regression analysis is applied to
construct models for the per-hop QoS with respect to these parameters. The overall approach is shown to
be effective and capable of characterizing any given PHB, within the ranges of the experiments, and for
construction of functional relationships for the PHB output parameters. We are also able to identify the
operational differences between different realizations of a given PHB. The approach in this paper forms a
“fundamental” step towards achieving predictable end-to-end QoS when applying statistical QoS control at
intermediate nodes.

1 Introduction

Providing Quality of Service (QoS) in large-scale IP networks is the main motivation behind the Differenti-
ated Services (DiffServ) architecture [1, 2]. In this architecture, packets entering a DiffServ-enabled network
are marked with different DiffServ Code Points (DSCPs), and based on these markings, they are subject to
classification, traffic conditioning (such as metering, shaping, and policing), as well as to a small set of packet
forwarding techniques called Per-Hop Behaviors (PHBs). The DiffServ architecture achieves scalability by
performing traffic conditioning and per-flow management at edge routers only, and by applying PHBs to traffic
aggregates at core routers. Neither per-flow states nor signaling are required at core routers. This, in effect,
converts the large number of flows at the edge into a small set of Behavior Aggregates (BAs) or services across
the DiffServ network.

The IETF DiffServ Working Group has been standardizing the building blocks of the DiffServ architecture,
and a set of PHBs have been proposed in [1, 3, 4]. One of these PHBs, The Expedited Forwarding (EF), is a
building block for low loss, low delay, and low jitter services. On routers equipped with an EF PHB, incoming
packets marked with EF DSCP are expected to encounter short or empty queues. The Assured Forwarding
(AF) PHB is proposed to offer different levels of forwarding assurance in terms of packet loss. Under AF, each

�
The work reported in this paper was supported in part by Samsung Electronics and the ONR under Grant N00014-99-0465.

1



packet is marked with drop precedence according to a specific marking rule or algorithm. At core routers, if the
network is congested, the packets with higher precedence are preferentially dropped before packets with lower
precedence.

Service differentiation is achieved by allocating different amounts of network resources, such as link band-
width and buffers, to different types of traffic traversing the DiffServ-enabled routers. The output of this service
differentiation at each router in terms of throughput, delay, jitter, and loss of the output traffic, is called per-hop
QoS. The per-hop QoS can be determined if the resource allocation is well controlled. Given the per-hop QoS
for every node along an end-to-end path, the end-to-end QoS perceived by users can be calculated. This is sim-
ilar to Integrated Services [5], which uses RSVP signaling to estimate such end-to-end QoS on a hop-by-hop
basis.

A PHB is the key building block of the DiffServ architecture and is realized by a variety of traffic man-
agement components, such as queues, schedulers, buffer management, policer, and filters. These components
must be properly designed and implemented so that the per-hop QoS guarantees provided by the PHB can be
achieved. However, it is a challenging task to assemble these building blocks together, given the complex na-
ture of the interactions among the various components. Network architects often have to estimate per-hop QoS
when designing a network or making policy decisions for supporting specific types of IP-based services, e.g.,
Voice-over-IP or Video-on-Demand. It is also becoming more important for network operators to be able to
adjust the configuration parameters of intermediate nodes within their networks to address the needs of specific
services being offered, and to respond to dynamic changes of the input traffic. Characterizing a network node
accurately is, therefore, an important research problem to be solved in the field of QoS. The main goal of our
study is to demonstrate that careful statistical analysis coupled with an experimental framework can effectively
characterize any DiffServ PHB, and extract a statistical model that can predict the per-hop QoS for this PHB.

We use a generic quantitative approach for characterizing the per-hop QoS for any PHB realization under a
wide range of input traffic and configuration parameters. We first abstract the DiffServ PHBs into sets of inputs,
configuration and output parameters. These parameters can be controlled and/or measured via experiments.
Then, we design a set of full factorial [6] experiments to measure the effects of the inputs and configuration
parameters on the output of a PHB. By performing Analysis of Variance (ANOVA) and regression analysis of
the data from these experimental measurements, we can deduce functional relationships of the per-hop QoS
parameters and construct a statistical model of the PHB. Our approach has the advantage of capturing all
the effects in the PHB rather than ignoring some of the effects as commonly found in assumptions made by
traditional analysis methods. Once the PHBs are characterized and the operational limits for these PHBs are
determined, they can be concatenated together to build edge-to-edge Per-Domain Behaviors (PDBs). The results
thus obtained demonstrate the effectiveness of our approach in capturing the functional dependencies of per-
hop QoS on the input and configuration parameters. In addition, they point out the differences in performance
guarantees provided by different PHB implementations. The potential benefits of our approach are:

1. Facilitating the control and optimization of the PHB performance. This is done by identifying the most
important factors that control a certain PHB and by extracting the relationships between these factors and
the output of the PHB (per-hop QoS);

2. In addition to being able to control the PHB, one can use the statistical models of the PHBs, derived in
this study, in a per-hop admission control mechanism that contributes to the end-to-end admission control
decision.

The remainder of the paper is organized as follows. Section 2 presents our strategy for characterizing a
given PHB. Section 3 describes the experimental framework we use. Sample results and analysis of our study
are presented in Section 4. In Section 5, we discuss some of the related work and previous studies of DiffServ
PHBs and services. We conclude the paper with Section 6, and discuss extensions of our approach to studying
larger-scale QoS problems and related protocol-level mappings.

2



node

PHB
O

C
Configuration parameters

I

DiffServ
traffic c/c’s

Input
traffic c/c’s
Output

Figure 1: Model of per-hop QoS

Full
factorial
design

Run Exp. &
collect

data
ANOVA Tests Regression

Scenario
file

Adjust scenario parameters

Figure 2: Steps of the statistical approach

2 Approach to Statistical Characterization

This section describes the approach we have taken to statistically characterize per-hop QoS. As shown in Fig-
ure 1, the central idea is to abstract a given PHB as a system that consists of input (I) and output (O) traffic
characteristics, and a set of configuration parameters (C). The details of the internal implementation of per-hop
QoS are not considered explicitly, but their effects on the overall performance (i.e., the output traffic character-
istics) are modeled. We apply statistical analysis methods to identify the most influential parameters affecting
the per-hop QoS within the range and domain of our experiments and we estimate their relationships to the
output. In the context of our experiments, we refer to O as the per-hop QoS attributes experienced by traffic
crossing a DiffServ PHB. The basic steps of our approach are shown in Figure 2, and can be summarized as
follows.

Identification of the parameters in I and C that account for most of the effects on O : In experimental de-
sign, the parameters of I and C are termed as input factors and the attributes of O as response variables.
The values each factor takes are called levels. The most important factors are identified by calculating the
percentages of the total output variation caused by the factors and their interactions. We use the Analysis
of Variance (ANOVA) in this step.

Construction of appropriate models of the response variables based on the most important factors : This
step requires careful validation of the observed data so that the basic assumptions about the models hold
for the experimental data. We use regression analysis to find such models after performing suitable
transformations of the factors and response variables.

Our approach can also be used to evaluate alternative design choices. The IETF DiffServ Working Group
does not specify how to design traffic control elements, such as queues, schedulers and filters for any of the
proposed PHBs. One can, therefore, construct a PHB using a variety of traffic conditioning blocks as long as it
conforms to the traffic handling guidelines specified in the DiffServ standard. Figures 3(A), 3(B), and 3(C) show
different choices for EF and BE PHBs that share a single physical link. While these different implementations
are expected to provide similar qualitative behavior of the aggregated output traffic, the functional relationships
among the parameters are different due to the internal construction of the traffic handling blocks. We demon-
strate this point further through our experiments. Next, we explain why we repeat some of the experiments by
adjusting the parameters as shown in Figure 2.

For certain experiments, it is useful to start with a reduced number of levels for the full set of input factors.
Once the most significant factors are identified, the number of levels corresponding to these factors are increased
with the others fixed. This allows us to construct a higher-order regression model in the second stage of the
analysis. This repetition of factorial analysis is shown as the “Adjust scenario parameters” step in Figure 2. Note
that our approach and framework for data collection, designing the required set of experiments, and statistical
analysis, are general and mostly automated. This is a departure from most recent experimental studies of

3



TBF

Priority

EF

BE

RED

(A) An edge-based EF PHB
(EF-EDGE)

Priority

EF

BE

RED

FIFO

(B) A core-based EF PHB
(EF-CORE)

CBQ/
WFQ

EF

BE

RED

FIFO

(C) A CBQ-based EF PHB
(EF-CBQ)

Figure 3: Three different realizations for EF PHB sharing the a link with best-effort (BE)

Factor Symbol
Assured traffic average rate ar

Assured traffic peak rate ap

Assured traffic burst size ab
Assured traffic packet size apkt

Assured traffic number of flows an

Assured traffic type of traffic at
Best effort traffic rate ratio Rab

Best effort traffic burst size bb

Best effort traffic packet size bpkt

Best effort traffic number of flows bn

Best effort traffic type of traffic bt
Number of input interfaces to the PHB node NI

Table 1: Symbolic representation of the factors in I

DiffServ EF and AF PHBs for multimedia traffic where a set of experiments were performed on a given testbed
using a fixed configuration for traffic forwarding [7, 8].

2.1 Factors and Factor Levels

As mentioned above, the parameters in I and C affect the output response (O) of a PHB. Therefore, we need
to determine which parameter should be considered as factors and at what levels. The parameters of I may
include both marked and unmarked input traffic.1 We use the Dual Leaky Bucket (DLB) representation for the
input traffic, as shown in Table 1. For the best-effort traffic, the ratio Rab of assured traffic rate to best-effort
traffic rate is more meaningful than its absolute value. Since most QoS schemes do not provide any guarantee
for best-effort traffic, we are primarily interested in the performance of assured traffic. Note that some of the
parameters of I depend on the PHB node itself, such as the number of input interfaces.

The set of configuration parameters (C) usually consists of parameters such as queue length, drop probabil-
ity, and scheduling parameters. Choosing the parameters of C requires either knowledge of the traffic control
components of the node, or the use of vendor-supplied specifications. Alternatively, the definitions of PHBs in
the IETF standard RFCs and Internet drafts can be used for this purpose. We use routers based on the open-
source Linux operating system and, therefore, we can access all the configuration parameters as well as their
implementation details. The Linux traffic control module provides a flexible way to realize various PHBs with
the help of a number of queueing disciplines and traffic conditioning modules. The response variables in O
used in this study are throughput (BW ), per-hop delay (D), per-hop jitter (J), and loss rate (L).

An important issue is the choice of the levels for the factors in designing a set of experiments, which covers
the entire range of the expected performance of a PHB. In some cases, intuition can reveal the relationships be-

1Marked traffic is also called assured, and unmarked traffic is often best-effort.

4



tween the factors and the response variables. For example, if the configured service rate of the PHB forwarding
engine is higher than the total input traffic rate, the output throughput converges to the input rate. On the other
hand, if one considers delay (as part of O), it is not obvious a priori as to how it will be affected by the relative
difference between the input and configured rates. Our approach provides a generic solution for this issue, in
which polynomial models are derived to represent such complex relationships. It may not be possible to cover
all possible ranges and various modes of operation of a specific PHB in this manner. However, the experiments
should capture the expected ranges of operation for the node.2

A full factorial design utilizes every possible combination of all the factors [6] at all levels. If we have k
factors, with the i-th factor having ni levels, and each experiment is repeated r times, then the total number of
experiments to perform will be ∏k

i � 1 ni
� r. One of the drawbacks of the full factorial analysis is, therefore,

the number of experiments growing exponentially with the number of factors and their levels. Moreover, in
the context of network measurements, the total duration of an experiment can be prohibitively long, and often
taking several days. To reduce the number and the execution time of experiments, we use a combination of
factor clustering and iterative experimental design techniques. In factor clustering, the input and configuration
parameters having similar effect on the output, are grouped together. This is similar to [9] in which the authors
clustered ten congestion and flow control algorithms in TCP Vegas into three groups, according to the three
phases of the TCP protocol. The iterative design technique is used to investigate three distinct types of network
provisioning (see Section 3). Nevertheless, even with both experimental reduction techniques used, the number
of experiments can still be large. To efficiently handle a large volume of experimental data, and to study all
possible interactions, we automate the entire process of traffic generation, configuration of intermediate per-hop
traffic handling mechanisms, trace collection and cataloging into an integrated framework.

2.2 Statistical Analysis

We now briefly describe the statistical methods we used, namely, ANOVA and regression analysis. A more
detailed description of these methods can be found in [6, 10]. For any three factors (i.e., k � 3) denoted as A, B,
and C with levels a, b, and c, and with r repetitions of each experiment, the response variable y can be written
as a linear combination of the main effects and their interactions:

yi jkl � µ � αi � β j � εk � γABi j � γACik � γBC jk � γABCi jk � ei jkl

i � 1 ��������� a; j � 1 ��������� b; k � 1 ��������� c; l � 1 ��������� r (1)

where
yi jkl = response in the l-th repetition of experiment with factors A, B, and C at levels i, j, and k, respectively.
µ = mean response = ȳ	 	 	 	
αi = effect of factor A at level i = ȳi 	 	 	�
 µ
ȳi 	 	 	 = average response at the i-th level of A over all levels of other factors and repetitions.

β j = effect of factor B at level j = ȳ	 j 	 	�
 µ
γABi j = effect of the interaction between A and B at levels i and j = ȳi j 	 	�
 αi 
 β j 
 µ
γABCi jk = effect of the interaction between A, B, and C at levels i, j, and k

= ȳi jk 	�
 γABi j 
 γBC jk 
 γACik 
 αi 
 β j 
 εk 
 µ
ei jkl = error in the l-th repetition at levels i, j, and k,

and so on. Squaring both sides of the model in Eq. (1), and summing over all values of responses (cross-product
terms cancel out) we get:

∑
i jkl

y2
i jkl � abcrµ2 � bcr∑

i
α2

i � acr∑
j

β2
j � abr∑

k

ε2
k � cr∑

i j
γ2

i j � br∑
ik

γ2
ik � ar∑

jk

γ2
jk

2Given by a network administrator.

5



� r∑
i jk

γ2
i jk � ∑

i jkl

e2
i jkl

which can be written as:

SSY � SS0 � SSA � SSB � SSC � SSAB � SSAC � SSBC � SSABC � SSE

The total variation of y, denoted as the sum of square total or SST , is then:

SST � ∑
i jkl

�
yi jkl 
 µ � 2 � SSY 
 SS0 �

The error in the k-th repetition is ei jkl � yi jkl 
 ȳi jk, and the sum of squared errors (SSE) is equal to:

SSE � ∑
i jk

e2
i jkl � SST 
 SSA 
 SSB 
 SSC 
 SSAB 
 SSAC 
 SSBC 
 SSABC �

The percentages of variation can be calculated as 100 � � SSA
SST � for the effect of factor A, 100 � � SSAB

SST � for
the interaction between A and B, and so on. From these percentages of variations, we can identify the most
important factors. The factors with small or negligible contributions to the total variation of the output can
be removed from the model. Using ANOVA also allows us to calculate the mean square error (MSE) and
compare it with the mean square of the effect of each factor to determine the significance of these effects
against the experimental errors. This is called the F-test in ANOVA and usually leads to the same conclusion if
we compare the percentage of variations of the factors with those of errors.

The above linear model used in ANOVA is based on the following assumptions [6]: (1) the effects of the
input factors and the errors are additive, (2) errors are identical and independent, normally distributed random
variables, and (3) errors have a constant standard deviation. Therefore, an important step after the ANOVA
analysis is to validate the model by inspecting the results. This can be done using several “visual tests”: (1)
the scatter plot of the residuals (errors), ei jkl , versus the predicted response should not demonstrate any trend
and (2) the normal quantile-quantile (Q-Q) plot of residuals should be approximately linear (after removing
the outliers). The ANOVA method itself does not make any assumption about the nature of the statistical
relationship between the input factors and the response variables [10].

Once the most important factors have been identified, we use regression models [10] to capture possible
relationships between each output response variable and the most significant input factors. Basically, we use
a variant of the multiple linear regression model called the polynomial regression for this purpose. The jus-
tification for this is that any continuous function can be expanded into piecewise polynomials given enough
number of terms. We use a number of simple transformations [6] such as inverse, logarithmic, and square
root, to capture non-linearity in these relationships and convert them into linear ones. However, more complex
transformations [6, 10] can be used for complex models. We choose the transformation that best satisfies the
visual tests, minimizes the error percentage in ANOVA, and maximizes the coefficient of determination (R2) in
the regression model. We also calculate the confidence intervals for the mean response as well as the extracted
parameter estimates of the regression model. These results are presented in Section 4.

3 Experimental Framework

An automated framework is necessary to expedite our experiments due to the complexity of the tasks involved,
such as the experimental scenarios setup, network elements configuration, traffic generation, and collection
and analysis of very large data sets. To the best of our knowledge, our framework is the first to integrate all
the essential components for large-scale network analysis. Since networks are inherently complex with many
different types of equipment, protocols, traffic sources and QoS architectures, the framework has been designed
to meet the following requirements:

6



� The framework components have to be distributed — the placement of the components depend on their
functionalities and domain of operation;

� The framework have to be scalable, i.e., it can be used across many hosts and network elements in a given
network;

� The design of the middleware3 have to be modular and flexible so that the components can be added/removed
(e.g., with commercial or open-source routers) easily, without requiring major changes to the underlying
protocols and measurement probes;

� The framework components have to be coordinated and controlled using message passing from a Con-
troller agent (to be described next) and internal messaging among the components themselves.

3.1 Framework Components

Figure 4 illustrates the framework components used in our study and their locations. Each component in this
framework essentially builds an abstraction for a particular service, and the components communicate with
each other by exchanging messages. Such an approach allows us to incorporate new devices and replace any of
the underlying software without changing the overall architecture. We can characterize other QoS frameworks,
such as MPLS, by simply replacing the DiffServ-specific parameters in C with appropriate MPLS-specific
parameters. The experimental framework components are described as follows:

Traffic Generation Agent is a modified version of Iperf [11], and it can generate both TCP and UDP traffic
as constant bit rate (CBR), ON/OFF (fixed, exponential, and Pareto), and video traffic from trace files
(MPEG, H.261 and H.263). UDP traffic can be optionally policed with a built-in leaky bucket so that
the output traffic follows a specific average rate r and burst b. Parameters, such as peak rate, packet
sizes and the duration of each flow, are controllable within the traffic generator agent. The agent has
built-in routines for measuring throughput, one-way delay, jitter, and loss rate. In case of UDP traffic,
these measurements are enabled through the use of a RTP-like header that includes sequence numbers
and timestamps. The end-to-end jitter is calculated in the same way as the RTP protocol does, J �
J �

���
D

�
i 
 1 � i � � 
 J ��� 16, where D

�
i 
 1 � i � is the end-to-end delay variation between packets i and

�
i 
 1 � .

Controller and Remote Agents are set of distributed agents are placed in the network, typically one at each
host or router, that are controlled remotely through a Controller agent to execute and keep track of
the experiment steps. The Controller agent resides on host H, as shown in Figure 4, and sends periodic
messages to the remote agents at the other hosts and routers according to the scenario of each experiment.
It reads in a scenario file, that defines the parameters (factors) and their values (levels), and run the
experiments accordingly.

Network Configuration Agent is a domain-level agent, responsible for configuring the traffic conditioning ele-
ments in a given network domain. It receives information from the Controller agent about each test to
be performed for a set of experiments, and sends messages to each of the routers under its administrative
control with instructions for the set of traffic control (router configuration) parameters to be installed
for this test. For a DiffServ PHB, these parameters are often the configuration parameters for setting up
appropriate queuing disciplines, buffer sizes, traffic classes and filters.

Router Configuration Agents are placed on the individual routers in the network that participate in the exper-
iments, and are based on a set of APIs called DiffAgent. These APIs are used to configure the traffic
control blocks in each router. Currently, our implementation is based on the traffic control (tc) APIs in

3PHB configuration middleware.

7



M

switch

Router Configuration
Agent

Network Configuration
Agent

NI

S

H

1 2 3 4 5 6

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Controller
Agent

Analysis
Module

Traffic
Agent

Remote
Agent

Figure 4: Framework network

the Linux kernel [12]. Upon receipt of a configuration message from its Network Configuration agent,
the DiffAgent issues a Netlink socket call to the kernel with the appropriate instructions for setting up
queuing disciplines, classifiers and traffic classes. This design allows inclusion of routers based on op-
erating systems other than Linux, such as Cisco IOS, in which case, the DiffAgent maps the incoming
messages to OS-specific calls before transmitting them to the router.

Analysis Module performs ANOVA, model validation tests and polynomial regression on the experimental
output data. Once a set of experiments have been completed, the Controller agent invokes this module.
The outcome of the module is the set of functional relationships between factors and response variables.

3.2 Network Setup and Testbed Configurations

Our network testbed consists of Linux-based software routers and end-hosts. The traffic conditioning and
handling mechanisms built into the Linux kernels [12] give us two advantages: (i) a wide variety of standard
traffic management components are supported, such as Token Bucket Filters (TBF), Weighted Fair Queuing
(WFQ), and Priority Queuing (PQ) schedulers to name a few; and (ii) the flexibility of fine-grained specification
of individual PHB components allows us to study in great detail the functional relationships between the factors
and the response variables.

Figure 4 shows the network testbed used in our study. A ring topology is used so that the one-way delay
can be measured without sophisticated time synchronization techniques such as GPS. Since the objective of our
experiments is to characterize per-hop QoS of a single DiffServ PHB, we need only one router (M) implement-
ing the PHB. We are primarily interested in finding out how a single EF or AF flow, which we refer to as the
designated flow, is influenced by PHB configuration parameters, other traffic in the same aggregate, number of
interfaces, etc. This designated flow is always generated from host H. In order to build the ring network, we
add a second router S (i) to forward outgoing packets from M back to host H using iptables in Linux, and (ii) to
act as a destination for the background traffic. The variable number of input interfaces (NI) at M is considered
as one of the input factors. Since we do not perform admission control, router M performs PHB-related traffic
conditioning at its egress interface. Hosts 1 through 6 are used to generate background traffic (both assured
and best-effort) that share the links between routers M and S along with the designated flow. The experimental

8



EF

EF-EDGE EF-CORE EF-CBQ

Ia+C Ib

OP
1

UP
2

FP
3

OP
4

Ia+C
5

Ib
6

Ia+C Ib

OP
7

UP
8

FP
9

OP
10

experiment
number

Figure 5: Experiments scenarios for EF PHB

module in the Controller agent can generate any experiment plan involving one or multiple background flows
of particular types depending on the experiment scenario.

3.3 Design of Experiments

As discussed earlier, we use clusters of input factors to reduce the parameter space and duration of the exper-
iments. The I set can be partitioned into two subsets: the assured traffic factors (Ia), and the best-effort traffic
factors (Ib). Along with these, we also choose a few parameters from the configuration set (C). If the size of C
is large (depending on the particular choice of traffic components used), one may also decide to partition this
set.

One can envision three different operating modes for a given PHB configuration with respect to the assured
input traffic: The PHB can be over-provisioned (OP), fully-provisioned (FP), or under-provisioned (UP). In
the OP mode, the total assured input traffic rate is less than the configured rate of the PHB. It is larger than
the configured PHB rate for the UP mode. In the FP mode, they are nearly equal. Although we have only
investigated static modes, the modes of a PHB are dynamic in practice, depending on the current level of traffic
passing through it and the configuration of this PHB. These three modes can be further investigated for different
scenarios of input traffic type and the degree of flow aggregation. Figure 5 illustrates the organization of the
experiment scenarios for the EF PHB.

In the first scenario, we investigate the interaction between sets Ia and C in the absence of any best-effort
traffic. This experiment is performed for the two modes of OP and UP. The purpose of this scenario is to identify
the most important factors in sets Ia and C that affect the output per-hop QoS. This is our base scenario for the
assured traffic.

Next, we target a specific type of assured traffic, e.g., set Ia to certain constant values and vary the factors
in Ib around these constant values. The factors in the best-effort traffic (such as rate, burst size, packet size and
number of flows) range in values that include both higher and lower levels than their corresponding parameters
in the assured traffic. The purpose is to investigate the effect of best-effort traffic on the assured traffic within
a given range. This scenario is investigated for OP and FP modes only, since the per-hop QoS of an already-
overloaded PHB is not going to change significantly due to changes in the best-effort traffic.

In addition to these two scenarios, we analyze different realizations of a given PHB to investigate how the
choice of different traffic conditioning elements affect the overall performance of a PHB. Different choices of
schedulers, classes and filters give rise to different functional configurations and therefore, constitute different
sets of parameters in C. For the EF PHB, we consider three different configurations:

� EF-EDGE: an edge router configuration consisting of a TBF served by a priority scheduler as shown in
Figure 3(A). Table 2 lists the parameters of C for this realization.

� EF-CORE: a core router configuration consisting of a single priority scheduler as shown in Figure 3(B).

9



Factor Symbol
Token bucket rate e fr

Bucket size e fb

Maximum Transfer Unit e fmtu

Table 2: “C” set for an EF PHB
at edge router

Factor Symbol
EF service rate e fr

Burst size e fb

Average packet size e favpkt

Table 3: “C” set for an EF PHB
based on CBQ

Factor Symbol
Minimum threshold minth

Maximum threshold maxth

Drop probability prob

Table 4: “C” set for the AF PHB

The only parameter in C for this realization is the length (e f limit ) of the FIFO queue in the priority
scheduler. The service rate for the PHB queue is the same as the link speed.

� EF-CBQ: a CBQ-based configuration as shown in Figure 3(C). Table 3 lists the parameters of C for this
realization.

We also repeat similar performance analysis for the AF PHB. We use a multi-color RED (or GRED) queue
for each AF class served by a CBQ scheduler. Table 4 lists the C set for the AF PHB. It includes the parameters
for the AF11 RED virtual queue only. We choose the AF PHB as another instance of a DiffServ PHB to
demonstrate the generality of our measurement framework and analysis approach. We assume that the multiple
PHBs configured at a single node do not affect the performance of each other. Such isolation can be achieved
in practice by suitable choice of traffic handling blocks and forwarding policy.

4 Results and Analysis

The results from our experiments are presented in the same order of the scenarios described in Section 3.3 and
the chart in Figure 5. We first present results for the three different implementations of the EF PHB, followed
by a single configuration of the AF PHB. Unless otherwise mentioned, each experiment is repeated five times
(i.e., r = 5) and each traffic trace is collected for 20 seconds. We use a rest period of three seconds in-between
successive runs so that the network is empty of packets from a previous run. Depending on the experiment
scenario, the input traffic enters router M from one or multiple input interfaces (i.e., NI � 1).

4.1 Characterizing EF PHB

For each of the EF PHB realizations, we group the results into two categories: the interaction between sets Ia

and C, and the effect of background traffic (Ib) on the fixed assured traffic (Ia). The input factors (Ia and C) used
in each experiment scenario are listed in Tables 13, 14, and 15 in Appendix A for EF-EDGE, EF-CORE, and
EF-CBQ, respectively.

4.1.1 Over-Provisioned (OP) EF-EDGE PHB without Background Traffic

This scenario corresponds to experiment 1 in Figure 5. The PHB is over-provisioned (OP), i.e., the throughput
of the assured traffic is less than the configured rate for the PHB.

The effects of significant factors and their significant interactions4 are identified by using ANOVA and listed
in Table 5. The transformation applied to each response variable, satisfying the basic assumptions of the linear
ANOVA model, is indicated in the second column. The mean, standard deviation (SD), and 90% confidence
interval (CI) are listed in Table 6. The loss (L) in this experiment is basically zero (no loss) since this is an
over-provisioned case.

4We neglect any factor or interaction with a percentage of variation less than 2%.

10



Response Variable Transformation ar apkt an (ar,an) (ar,apkt ) Error
BW linear 48.55% � 0% 34.23% 17.21% � 0% � 0%
D linear � 0% 83.15% � 0% � 0% � 0% 13.53%
1

�
J inverse 4.12% 12.52% 46.58% � 0% 2.88% 25.34%

Table 5: ANOVA results for experiment 1

Response Variable Mean SD of Mean 90% CI for Mean
BW 948.81 Kbps 0.125 (948.60,949.015)
D 0.262199 msec 0.001088 (0.260409,0.263989)
1

�
J 311.21 3.74 (305.05,317.37)

Table 6: Mean, standard deviation (SD), and 90% confidence interval (CI) for the response variables in experi-
ment 1

To verify the linearity of the ANOVA model, the visual tests for jitter (J), as an example, are shown in
Figures 6 and 7. After the inverse transformation, there is no trend in the residual versus predicted response
scatter plot. Moreover, the errors are normal since the normal Q-Q plot is almost linear. The tests for the
throughput and the delay show linearity as well.

The polynomial regression models for the response variables are calculated, and the parameter estimates
for the BW model are listed in Figure 8. The surface plot corresponding to this model is shown in Figure 9.
The coefficient of determination (R2) is 96%. Eq. (2) represents the model for jitter, with the corresponding
value of R2 � 84%. Note that we use the same transformation from ANOVA while performing the regression
analysis. We also normalize the input factors by their maximum values to provide a scaled version of the model
equations.

1 � J � 620 � 62 � 1343 � 58ar 
 1024 � 12apkt 
 2212 � 85an 
 1586 � 15a2
r 
 231 � 39arapkt


 574 � 60aran � 913 � 48a2
pkt � 717 � 55apkt an � 3485 � 72a2

n � 281 � 31a3
r � 583 � 23a2

r apkt

� 700 � 89a2
r an 
 133 � 74ara2

pkt 
 249 � 64arapkt an 
 51 � 79ara2
n 
 268 � 81a3

pkt


 307 � 76a2
pkt an 
 106 � 48apkt a

2
n 
 1768 � 39a3

n (2)

As shown in Table 5, the throughput (BW ) depends mostly on the sending rate of the assured traffic (ar)
and number of EF flows (an). The reason for the dependency of BW on an is that, in this experiment, we divide
the total EF rate (ar) specified in Table 13, by the number of flows (an) to get an equal share for each EF flow.
Because we only measure a single designated EF flow, the resulting throughput depends on the number of flows.
The per-hop delay is mainly affected by the EF packet size. On the other hand, jitter is affected mostly by an

and apkt , but little by ar. This follows our intuition about jitter: the packets from the monitored flow have to
wait in the queue because of other EF flows sharing the same queue, as well as due to the relative difference
of their packet sizes. Larger values of an and apkt result in larger jitter. This can be seen in the regression
results as well, since the corresponding coefficients are negative in the model equation given that an inverse
transformation is applied to jitter. The statistical analysis also provides us with confidence intervals for each
of the parameter estimates in the regression equation. The confidence intervals determine the accuracy of the
models extracted, and therefore constitute an important part of model checking. However, we omit these values
due to space limitation.

4.1.2 Under-Provisioned (UP) EF-EDGE PHB without Background Traffic

In this scenario (experiment 2), the EF PHB is under-provisioned (UP), i.e., the throughput of the assured traffic
is greater than the configured rate for the PHB. Here we present the results for loss (L) only. The effects of

11



-500

-400

-300

-200

-100

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900 1000

re
si

du
al

predicted response

scatter plot residuals vs. predicted response (jitter)

Figure 6: Residuals versus predicted response for
jitter – experiment 1

-500

-400

-300

-200

-100

0

100

200

300

400

-4 -3 -2 -1 0 1 2 3 4

re
si

du
al

 q
ua

nt
ile

normal quantile

normal quantile-quantile plot for residuals (jitter)

Figure 7: Normal Q-Q plot for jitter residuals –
experiment 1

BW Parameter
Intercept 299733.48
ar 3246957.34
an -2318542.4
a2

r -32371.95
a2

n 2223351.57
ar an -2815325.9

Figure 8: Parameters for BW

regression model for BW

experimental output
surface plot

0
0.2

0.4
0.6

0.8
1

ar/4*1060
0.2

0.4
0.6

0.8
1

an/4

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

BW

Figure 9: Response service for BW

significant factors and their significant interactions are listed in Table 7. The transformation used is indicated in
the second column as before. The visual tests for L are shown in Figures 10 and 11. The polynomial regression
model for loss is given in Eq. (3) with R2 � 74%. The model for loss clearly shows that by increasing the sending
rate, the loss increases (due to the negative sign of ar and the inverse of L). A similar effect was observed with
the number of flows (an). Note that intuitively, the loss can be reduced by increasing the EF service rate (e f r).
The positive coefficient of e fr in Eq. (3) clearly indicates this.

1 � L � 0 � 06 
 0 � 63ar 
 0 � 2an � 0 � 63e fr � 1 � 48a2
r � 0 � 79aran 
 2 � 05are fr � 0 � 3a2

n


 0 � 69ane fr � 0 � 43e f 2
r 
 1 � 14a3

r 
 0 � 73a2
r an � 2 � 37a2

r e fr 
 0 � 42ara2
n � 1 � 23arane fr


 1 � 69are f 2
r 
 0 � 18a3

n � 0 � 46a2
ne fr 
 0 � 57ane f 2

r � 0 � 57e f 3
r (3)

4.1.3 Over-Provisioned (OP) EF-EDGE PHB with Background Traffic

Next, we investigate the effect of background (e.g., best-effort) traffic on the assured traffic for the EF PHB. As
shown in Table 8, the throughput (BW ) of the EF traffic is affected heavily by the number of background traffic
flows sharing the link with it. Since the PHB is over-provisioned, the effect of the ratio Rab or the size of the
background traffic itself is not dramatic. As a result of over-provisioning too, the percentage of variation due to
experimental error is high. This is because of the weak interaction between the inputs and the output BW . The

12



Response Variable Transformation ar an e fr (ar,an) (ar,e fr) (an,e fr) (ar,an,e fr) Error
1

�
L inverse 6.06% 20.81% 6.63% 15.1% 8.9% 16.21% 25% � 0%

Table 7: ANOVA results for experiment 2

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.05 0.1 0.15 0.2 0.25 0.3

re
si

du
al

predicted response

scatter plot residuals vs. predicted response (loss)

’./loss.data.tst’ using 2:3

Figure 10: Residuals versus predicted response
for loss – experiment 2

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

-4 -3 -2 -1 0 1 2 3 4

re
si

du
al

 q
ua

nt
ile

normal quantile

normal quantile-quantile plot for residuals (loss)

’./loss.data.tst’ using 4:5

Figure 11: Normal Q-Q plot for loss residuals –
experiment 2

results also indicate that the priority scheduler does a good job in isolating the EF traffic from the background
flows. There are no significant EF losses for the same reason above. Later, we will compare these results with
the results of Section 4.1.6 that employs CBQ, instead of priority scheduling. Both delay and jitter values show
very little experimental errors due to repetition, and strongly depend on the background traffic characteristics,
such as the packet size, number of background flows, and their interactions. Note that a linear transformation fits
jitter well with respect to the background traffic parameters, where a logarithmic transformation is appropriate
for delay. This is different from what we found in Section 4.1.1 with EF-EDGE, where jitter is inversely related
to the EF traffic parameters. Similar results are observed in Sections 4.1.4, 4.1.5, and 4.1.6 (to be shown).

4.1.4 EF-CORE PHB without Background Traffic

The purpose of experiment 5 is to demonstrate how different implementations of a specific PHB can differ
in their extracted input/output relationships. We present the results for jitter (J) as an example. The most
important factors affecting J are listed in Table 9. Note that there is no effect due to ar, unlike the scenario
in Section 4.1.1 using EF-EDGE PHB. The visual tests are shown in Figures 12 and 13 to test the validity of
the ANOVA model. The jitter model is given in Eq. (4) with a coefficient of determination (R2) of 64%. The
response surface is shown in Figure 14. The inverse relationship also holds here with respect to the EF traffic
parameters as mentioned earlier.

1 � J � 727 � 74 
 810 � 85an 
 748 � 17apkt � 425 � 13a2
n � 322 � 99a2

pkt � 189 � 18apkt an (4)

The negative coefficients for both an and apkt in the above model indicate that an increase in either of them
will increase the value of jitter. A very important result can be deduced accordingly — the larger the number
of flows in an EF traffic, the larger the jitter.

13



Response Variable Transformation bpkt bn Rab (bpkt ,bn) (bpkt ,Rab) (bn,Rab) (bpkt ,bn,Rab) Error
BW linear � 0% 36.6% 2.65% � 0% � 0% 2.87% 4.4% 38.76%
log � D � logarithmic 3.28% 8.98% 36.3% 3.54% 10.01% 27.07% 10.69% � 0%
J linear 3.36% 7.5% 39.14% 3.7% 9.72% 12.13% 22.77% 1.4%

Table 8: ANOVA results for experiment 4

Response Variable Transformation apkt an (apkt ,an) Error
1

�
J inverse 29.37% 18.27% 6.97% 31.78%

Table 9: ANOVA results for experiment 5

4.1.5 Over-Provisioned (OP) EF-CBQ PHB without Background Traffic

In this experiment scenario, we evaluate the EF-CBQ implementation, corresponding to experiment 7 in Fig-
ure 5.

Table 10 shows the results from the ANOVA analysis. The throughput (BW ) has a square-root relationship
with the input EF traffic parameters, which is different from the previous two implementations. The delay (D)
model is also different. Another important difference is that the jitter is dependent on the PHB configuration
parameters (C) such as e fr for EF-CBQ, where as neither EF-EDGE nor EF-CORE shows such dependency.
On the other hand, the jitter (J) still has an inverse relationship with the input EF traffic parameters.

4.1.6 Over-Provisioned EF-CBQ PHB with Background Traffic

The purpose of experiment 10 is to investigate the effect of the background traffic on EF traffic. The character-
istics of the background traffic are listed in Table 15.

As shown in Table 11, the delay and jitter models, with respect to the input background traffic parameters,
are similar to those in Section 4.1.3, where the delay (D) logarithmically depends on the background traffic
volume and the jitter (J) linearly depends on the three factors, bpkt , bn, and Rab. The EF-CBQ implementation
also cannot protect the EF traffic against packet losses. The loss (L) depends mostly on the volume of the
background traffic and the interaction with other factors, as shown in Table 11.

The polynomial regression model for delay is presented in Eq. (5) with a coefficient of determination (R2)
of 89%. Although the delay does not depend on individual factors, such as b pkt and bn as seen from the ANOVA
table, it is dependent on their interactions with Rab and their interactions. Therefore, we need to include bpkt and
bn into the regression model. However, when comparing the coefficients values, we find that the coefficients for
Rab and their powers are orders-of-magnitude larger than the other factors, which is consistent with the ANOVA
analysis. Given that the normalized values of bn and bpkt are in the range of (0,1), we can exclude them from
the model and approximate the model as shown in Eq. (6).

log
�
D � � 1 � 91 
 46 � 65Rab � 2 � 33bn 
 6 � 03bpkt � 121 � 86R2

ab � 1 � 89Rabbn � 2 � 74Rabbpkt


 5 � 25b2
n � 1 � 19bnbpkt � 8 � 61b2

pkt 
 78 � 24R3
ab 
 1 � 34R2

abbn � 0 � 51R2
abbpkt

� 0 � 79Rabb2
n 
 1 � 89Rabbnbpkt 
 1 � 96Rabb2

pkt � 1 � 90b3
n � 1 � 99b2

nbpkt


 1 � 88bnb2
pkt 
 3 � 44b3

pkt (5)

log
�
D ��� 1 � 91 
 46 � 65Rab � 121 � 86R2

ab � 1 � 89Rabbn � 2 � 74Rabbpkt

14



-800

-600

-400

-200

0

200

400

600

0 100 200 300 400 500 600 700 800 900 1000

re
si

du
al

predicted response

scatter plot residuals vs. predicted response (jitter)

Figure 12: Residuals versus pre-
dicted response for jitter – exper-
iment 5

-800

-600

-400

-200

0

200

400

600

-4 -3 -2 -1 0 1 2 3 4

re
si

du
al

 q
ua

nt
ile

normal quantile

normal quantile-quantile plot for residuals (jitter)

Figure 13: Normal Q-Q plot for
jitter residuals – experiment 5

regression model for 1/J

experimental output
surface plot

0
0.2

0.4
0.6

0.8
1

apkt/1470
0

0.2
0.4

0.6
0.8

1
an/2

0
100
200
300
400
500
600
700
800
900

1000

1/J

Figure 14: J Response surface for
jitter – experiment 5

Response Variable Transformation ar apkt an e fr (apkt ,an) (an,e fr) Error�
BW square 96.73% � 0% � 0% � 0% � 0% � 0% � 0%

1
�
D inverse � 0% 94.55% � 0% � 0% � 0% � 0% 2.51%

1
�
J inverse � 0% 14.1% 37.5% 6.8% 2.0% 2.0% 22.55%

Table 10: ANOVA results for experiment 7


 78 � 24R3
ab 
 1 � 34R2

abbn � 0 � 51R2
abbpkt � 0 � 79Rabb2

n


 1 � 89Rabbnbpkt 
 1 � 96Rabb2
pkt (6)

4.2 Characterizing AF PHB

We present results for the AF PHB to show the generality of our approach and to provide an insight into the
behavior of the AF PHB. The relevant per-hop QoS attributes, according to the IETF standard, are throughput
(BW ) and loss (L). However, some applications may also impose delay and jitter requirements on AF-based
services, so we present results for them as well. In this experiment, we mark the designated flow with AF11
DSCP; and the background traffic (filling up the rest of the network capacity) with AF12 and AF13 DSCPs.
The input factors and their levels are listed in Table 16.

Table 12 lists5 the ANOVA results for the four QoS attributes. The results indicate that the throughput
(BW ) depends mostly on the average and peak sending rates, and their interactions. They also exhibit some
dependency on the threshold levels of the AF11 virtual queue. In another experiment (not shown here), we find
this dependency increases with the increase of the drop probability for the virtual queue. The results for loss
(L), delay (D), and jitter (J) show similar dependencies, although the percentages vary with each of the QoS
parameters. We notice a small, but non-trivial, interaction between the packet size of the designated and that of
the background traffic contributing to the jitter of the assured traffic.

4.3 Discussion

From the above results, we can capture the functional relationships of a number of PHBs and identify the
differences in their dependencies on the various input factors. To summarize: for the EF PHB cases, the results
for jitter (J) indicate an inverse relationship with the factors in set Ia, and a direct relationship with the factors
in set Ib. The delay (D) has a direct relationship with factors in set Ia and a logarithmic one with factors in
set Ib. Also, different PHB realizations exhibit different relationships among their inputs and the outputs. For
example, delay has a direct relationship with factors in set Ia in EF-EDGE and EF-CORE PHBs, while it has

5The error column is not shown due to space limitation.

15



Response Variable Transformation bpkt bn Rab (bpkt ,bn) (bpkt ,Rab) (bn,Rab) (bpkt ,bn,Rab) Error
BW linear 10.64% � 0% 15.76% 7.97% 31.44% 8.53% 23.65% 0.4%
log � D � logarithmic � 0% � 0% 83.23% 2.34% 3.53% 2.04% 7% 0.1%
J linear 11.88% � 0% 22.01% 5.63% 35.6% 5.68% 16.93% 0.27%�

L sqrt 8.87% 2.38% 36.89% 5.14% 25.84% 4.8% 15.45% 0.53%

Table 11: ANOVA results for experiment 10

Res. Var. Trans. ar ap apkt maxth minth (ar ,ap) (ar ,maxth) (ar ,minth) (ap,maxth) (apkt ,bpkt ) (ar ,ap,maxth)
BW linear 51.38% 12.51% � 0% 2.67% 2.38% 13.27% 3.27% 2% 2% � 0% 2.37%
D linear 38.2% 25.42% 2.85% � 0% 3.1% 25.06% � 0% � 0% � 0% � 0% � 0%
J inverse 14.75% 17.35% 34.82% � 0% � 0% 18.94% � 0% � 0% � 0% 4.09% � 0%
L linear 29.32% 17.12% � 0% 7.14% 4.17% 16.98% 7.4% 3.89% 3.91% � 0% 4.03%

Table 12: ANOVA results for AF PHB

an inverse relationship with Ia in EF-CBQ PHB. The throughput (BW ) has a square root relationship with Ia for
EF-CBQ only, but it has a direct relationship in the other EF PHBs.

Note that the purpose of the present study is not to cover all possible performance ranges or configura-
tions for a particular PHB. Instead, we present a technique for analyzing the PHB performance under different
situations. The levels of factors used in the experimental analysis represent only a certain range of the PHB
operation. Additional parameters – such as the expected loads, the type of physical links connected to the PHB
node, etc. – should be considered when applying this technique to characterize PHBs in real-world networks.

It is worth mentioning that the errors in our study can be divided into three categories as follows:

1. Experimental errors are due to the experimental methods and we use a reasonable number of repetitions
to minimize them. These errors are captured in the ANOVA analysis.

2. Model errors are due to factor truncation. When we discard the insignificant factors and perform regres-
sion with the most significant ones, small errors can be potentially introduced.

3. Statistical or fitting errors are due to difference between the fitted regression model and the actual data.
The regression usually fits an approximate model to the actual data by using the least-square fit to mini-
mize the deviation from the actual data.

Finally, we provide an example of the potential benefit of the statistical approach we proposed. This exam-
ple is beneficial for network operators as it provides a proof of using the above results in controlling the per-hop
QoS of a PHB. From the results of Section 4.1.6, we observe that for bpkt = 600 Bytes, bn = 1 and Rab = 2, the
average delay experienced by the designated EF flow is 0.4136 msec. Now, suppose we increase the number of
background flows from 1 to 3, and the average packet size of the background traffic from 600 to 1470 Bytes.
Can the PHB configuration be controlled in such a way that it provides the same delay value to the assured
traffic as in the first case? Basically, we have to find the right value for Rab which drives the PHB to deliver the
same delay. By applying the delay model in Eq. (6) to the two sets of levels, we calculate the required value for
Rab to be 0.494. Substituting this value back into the model, we get a delay value of 0.3652 msec which is within
the accuracy (1 
 R2 or 11%) of the model. Now, when we run the experiment again with this acquired value of
Rab, we get the same delay as the original controlled value. Therefore, by simply controlling the factors in the
derived model, we can achieve predictable per-hop QoS. Such scenario is quite realistic. Consider the assured
flow that belongs to a delay-sensitive application such as video-streaming. The adjusted Rab value suggests that
the streaming rate at the server needs to be lower for guaranteeing the same delay bound. Although, the focus
of our experiments is per-hop QoS while guaranteeing delay bounds for applications requires an end-to-end
approach, such per-hop delay bounds are essential for satisfying the end-to-end guarantees.

16



5 Related Work

Very few previous studies used ANOVA and nonlinear regression for experimental analyses and modeling of
IP QoS networks. The authors of [13] applied a full factorial design and ANOVA to compare a number of
marking schemes for TCP acknowledgments in a DiffServ network. The factors in their study were categorical
in nature. Their results suggested an optimal strategy for marking the acknowledgment packets for both assured
and premium flows. The performance of AF PHB was analyzed in [14] using the ANOVA method where the
authors compared the performance of different techniques for bandwidth and buffer management. Compared
with these previous studies, our approach is more general in dealing with different network topologies, QoS
frameworks, and network applications.

The authors of [15, 16] utilized a ring network topology, which is similar to the one used here for experimen-
tal studies on the EF PHB. Using incremental experiments, they investigated the effect of traffic aggregation, EF
traffic load, the number of EF streams, packet size as well as the scheduling algorithms used — Priority Queue-
ing (PQ) and Weighted Fair Queueing (WFQ) — on one-way delay, jitter, packet loss, and maximum burstiness
of the EF traffic. Their findings can be summarized as follows. The EF burstiness was greatly affected by the
number of EF streams and packet loss. Moreover, WFQ was found to be more immune to burstiness of traffic
than PQ, but had less timely delivery guarantees. Our work complements these studies and provide a more
rigorous way to identify these affects.

The authors of [8] conducted an experimental analysis of the EF PHB by incorporating a part of the Internet2
QBone and using the QBone Premium Service (QPS). They used the same QoS metrics (throughput, delay, jitter
and packet loss) we use. The difference, however, is that their metrics are measured as end-to-end quantities,
while ours are per-hop quantities. Moreover, they did not provide any functional relationships or models for
designing premium services over Internet2.

The AF PHB has been studied in [17]. The authors used modeling techniques to evaluate the performance
of AF-based services with respect to Round Trip Time (RTT), number of microflows, size of target rate, and
packet size. The performance metric was the throughput perceived by the AF traffic. Another study [18]
on the AF PHB was mainly concerned with interaction of TCP and UDP traffic within an AF service. The
authors investigated the use of different drop precedences and RED models to achieve fairness between AF-
marked UDP and TCP traffic. An earlier study [19] presented similar findings. Collectively, these studies
identified important effects on the performance of the AF PHB. By contrast, we have attempted to build simple
mathematical models to calculate the performance and response surfaces applying statistical procedures on the
experimental data.

In [20], the authors compared two different router mechanisms (threshold dropping and priority schedul-
ing), and two packet marking mechanisms (edge-discarding and marking). They used analytical methods in
estimating the loss and delay behaviors using different combinations of these mechanisms.

A rigorous theoretical study to find probabilistic bounds for EF was presented in [21]. The authors used
a combination of queueing theory and network calculus to obtain delay bounds for backlogs of heterogeneous
traffic as well as traffic regulated by a leaky bucket. They also derived bounds on loss ratio under statistical
multiplexing of EF input flows. Our approach is purely experimental; instead of providing bounds on delay or
packet loss, we seek to identify the parameters necessary to construct simple performance models of per-hop
QoS mechanisms, and eventually to control their run-time behavior.

6 Conclusions and Extensions

In this paper we have presented a framework for statistically characterizing the outcome of a PHB — the per-hop
QoS. We have conducted an experimental study followed by rigorous statistical analysis, including ANOVA and
regression models, to find the functional relationships for the per-hop QoS. We point out operational differences

17



among the different PHB implementations, and explain these differences based on the internal structure of the
PHBs. Our framework for measurement and experimental design is automated – the configuration of the PHBs
and the measurement of the corresponding output parameters are automatically performed. Our results are
promising since they can further quantify the end-to-end QoS by concatenating per-hop QoS attributes along
the path.

The approaches presented in Sections 2 and 3 can be extended to more complex systems, e.g., edge-to-edge
QoS building blocks such as a Per-Domain Behavior or PDB in DiffServ, especially if the PDB is constructed
by concatenation of multiple similar PHBs. Although we focused on per-hop QoS at the network layer, the
statistical characterization approach can be applied to parameters across the entire protocol stack, with suitable
instrumentation of the related layers. This will allow us to study end-to-end QoS parameters for any distributed
application in a given network. We are also exploring statistical controls based on the most important factor(s)
for controlling per-hop QoS of network nodes.

References

[1] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang, and W. Weiss, “An architecture for differentiated
services,” IETF, RFC 2475, Dec. 1998.

[2] K. Nichols, V. Jacobson, and L. Zhang, “A two-bit differentiated services architecture for the Internet,”
IETF, RFC 2638, July 1999.

[3] B. Davis, A. Charny, F. Baker, J. Boudec, W. Courtney, V. Firoiu, and K. Ramakrishnam, “Expedited
forwarding PHB group,” IETF, draft-ietf-diffserv-rfc2598bis-02.txt, RFC 2598, Sept. 2001.

[4] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding PHB group,” IETF, RFC 2597,
June 1999.

[5] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture: an overview,” IETF,
RFC 1633, June 1994.

[6] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley & Sons, Inc., 1991.

[7] W. Ashmawi, R. Guerin, S. Wolf, and M. Pinson, “On the impact of policing and rate guarantees in diff-
serv networks: A video streaming application perspective,” in Proceedings of ACM SIGCOMM’01, Aug.
2001.

[8] A. Mohammed et al., “Diffserv experiments: Analysis of the premium service over the Alcatel-NCSU
internet2 testbed,” in proceedings of the 2nd European Conference on Universal Multiservice Networks
ECUMN’2002, CREF,Colmar, France, Apr. 2002, pp. 124–130.

[9] U. Hengartner, J. Bolliger, and T. Gross, “TCP vegas revisited,” in Proceedings of IEEE INFOCOM’00,
Mar. 2000.

[10] J. Neter, W. Wasserman, and M. Kutner, Applied Linear Statistical Models: Regression, Analysis of Vari-
ance, and Experimental Designs. Homewood, R.D. Irwin, Inc., 1985.

[11] (2000, February) Iperf 1.1.1. [Online]. Available: http://dast.nlanr.net/Projects/Iperf/

[12] W. Almesberger, J. H. Salim, and A. Kuznetsov, “Differentiated services on Linux,” Internet draft (work
on progress),” draft-almesberger-wajhak-diffserv-linux-01.txt, June 1999.

18



[13] K. Papagiannaki et al., “Preferential treatment of acknowledgment packets in a differentiated services
network,” in Proceedings of the IWQoS 2001, June 2001.

[14] M. Goyal, A. Durresi, R. Jain, and C. Liu, “Performance analysis of assured forwarding,” Internet draft
(work on progress),” draft-goyal-diffserv-afstdy.txt, Feb. 2000.

[15] T. Ferrari, “End-to-end performance analysis with traffic aggregation,” Computer Network Journal, Else-
vier, vol. 34, no. 6, pp. 905–914, Dec. 2000.

[16] T. Ferrari and P. Chimento, “A measurement-based analysis of expedited forwarding PHB mechanisms,”
in Proceedings of IWQoS 2000, Pittsburgh, IEEE 00EXL00, June 2000, pp. 127–137.

[17] N. Seddigh, B. Nandy, and P. Pieda, “Bandwidth assurance issues for TCP flows in a differentiated services
network,” in proceedings of GLOBECOM’99, Mar. 1999.

[18] ——, “Study of TCP and UDP interaction for the AF PHB,” Internet draft (work on progress),” draft-
nsbnpp-diffserv-tcpudpaf-01.txt, Aug. 1999.

[19] J. Ibanez and K. Nichols, “Preliminary simulation evaluation of an assured service,” Internet draft (work
on progress),” draft-ibanez-diffserv-assured-eval-00.txt, Aug. 1998.

[20] S. Sahu, D. Towsley, and J. Kurose, “A quantitative study of differentiated services for the internet,” in
Proceedings of the IEEE Globecom’99, Rio De Janiero, Brazil, Dec. 1999.

[21] M. Vojnovic and J. L. Boudec, “Stochastic analysis of some expedited forwarding networks,” in proceed-
ings of INFOCOM’02, New York, June 2002.

A Appendix

The input factors (Ia and C) used in each experiment scenario are listed in Tables 13, 14, and 15 for EF-EDGE,
EF-CORE, and EF-CBQ, respectively. Table 16 lists the factors used in the AF PHB experiment. The factors
marked with (X) are not active in the corresponding experiment. An inactive factor is a factor with one level
only, and therefore, has no effect on the ANOVA results.

Factor Name (unit) Exp1 levels Exp2 levels Exp4 levels
Set Ia ar (Mbps) 0.5,1,2,4 3,3.5,4,4.5 1 (X)

ap (Mbps) 6 (X) 8 (X) 2 (X)
apkt (bytes) 100,400,600,900 800,900,1000,1200 1000 (X)
ab (bytes) 20000 (X) 40000 (X) 20000 (X)
an (flows) 1,2,3,5 1,2,3,5 1 (X)
NI 1,2,3,5 1,2,3,5 1,2,3,4

Set C e fr (Mbps) 20 (X) 2,2.2,2.5,3 3 (X)
e fb (bytes) 40000 (X) 20000 (X) 40000 (X)
e fmtu (bytes) 1000,1200,1400,1520 1520 (X) 1520 (X)

Set Ib Rab (X) (X) 2,1,0.1.0.01
bpkt (bytes) (X) (X) 200,1000,1200,1470
bb (bytes) (X) (X) 10000,20000,30000,40000
bn (flows) (X) (X) 1,2,3,4

Table 13: Factors and their levels for EF-EDGE

19



Factor Name (unit) Exp5 levels
Set Ia ar (Mbps) 0.5,1,2

ap (Mbps) (X)
apkt (bytes) 100,800,1470
ab (bytes) 5000,10000,60000
an (flows) 1,3
NI 1,3

Set C e flimit (packets) 5,100
Set Ib Rab (X)

bpkt (bytes) (X)
bb (bytes) (X)
bn (flows) (X)

Table 14: Factors and their levels for EF-CORE

Factor Name (unit) Exp7 levels Exp10 levels
Set Ia ar (Mbps) 0.5,1,1.5,2 1 (X)

ap (Mbps) 6 (X) 2 (X)
apkt (bytes) 100,400,600,900 1000 (X)
ab (bytes) 20000 (X) 20000 (X)
an (flows) 1,2,3,5 1 (X)
NI 1,2,3,5 1,2,3,4

Set C e fr (Mbps) 10,12,14,16 4 (X)
e fb (bytes) 10 (X) 10 (X)
e favpkt (bytes) 1000,1200,1470 1000 (X)

Set Ib Rab (X) 2,1,0.1.0.01
bpkt (bytes) (X) 200,1000,1200,1470
bb (bytes) (X) 10000,20000,30000,40000
bn (flows) (X) 1,2,3,4

Table 15: Factors and their levels for EF-CBQ

Factor Name (unit) Exp levels
Set Ia ar (Mbps) 50,100

ap (Mbps) 60,100
apkt (bytes) 600,1200
ab (bytes) 20000,40000
an (flows) 1 (X)
NI 3 (X)

Set C minth (Kbytes) 10,20
maxth (Kbytes) 40,55
prob 0.02 (X)

Set Ib Rab 0.01 (X)
bpkt (bytes) 600,1200
bb (bytes) 20000,40000
bn (flows) 2 (X)

Table 16: Factors and their levels for AF PHB

20


