Motivation

TTL-Based Cache Consistency:
- Originally designed for static domain name mapping
- Only weak consistency provided

Current DNS Cache Updates:
- Set a short TTL before update (2-3 days)
- Resume to a normal TTL after update (2-3 days)
- Long update delays even changes are anticipated!

Problems: (in the changing world!)
- Unpredictable mapping changes: many changes are unexpected while critical services need always-on availability
- Dynamic domain name mapping: widely deployed dynamic DNS solution sets up servers on temporal IPs from DHCP
- Emergence events to support: Web servers are closed/moved at emergence (e.g. 911, nature disaster, etc.)
- Redundant DNS traffic: Content Delivery Network providers use small TLLs to achieve load balance among their surrogates

Objective
An effective solution for DNS cache consistency!

DNS Dynamics Measurement

How often does a domain name to IP address mapping change?

- **SOA:** authority indication for a zone;
- **A:** hostnames to IP address mappings;
- **PTR:** IP addresses to hostname mappings;
- **NS:** domain name server reference lists for a zone;
- **MX:** mail exchangers for a domain.

- DNS resource records are changed for different purposes
 - 'A' records -- most used, have significant effects if changed
 - our measurements are focused on 'A' records

Methods

- **Domain Name Collection**
- **IRcache:** Nov. 5 – Nov. 11, 2003
- **Domain Name Classification**
 - **TLDs:** .com, .net, .org, .edu, cc domains
 - **CDNs:** identified by specific strings of CDN providers
 - **Dyns:** identified by specific strings of dynamic DNS providers
 - **5 classes:** based on domains’ TLLs
- **Measurement Period**

Dynamic Lease

Lease: a combination of polling and invalidation

Challenge: lease length selection
- long leases: more storage overhead
- short leases: more network traffic

Assumption: request intervals follow Poisson distribution with average arrival rate λ.

Storage overhead: $P = t / (t + 1 / \lambda)$

Communication overhead: $M = 1 / (t + 1 / \lambda)$

Problem Definition:
- **Storage-constrained lease:** minimize the communication overhead given the storage allowance
- **Analysis:** equivalent to a Knapsack problem

Optimal solution: maximal lease length granted to the caches with the highest query rate (dynamic lease), because:

$$\Delta M = \Delta P$$

Implementation

- **Efficiency**
 - **UDP:** first choice
 - **Update propagation without NOTIFY**

- **Robustness**
 - **Name server repeats sending until ACK received**
 - **DNS cache validates all records after reboot**

- **Compatibility**
 - **Name server supports both TTL and DNScup mechanisms**
 - **DNS cache can use both TTL and lease**

- **Security**
 - Name server uses TSIG to control updates
 - DNS cache uses ACK to verify updates

Conclusion

Our Solution — DNScup

DNS Cache Update Protocol

Basic idea: an authoritative name server uses dynamic lease technique to notify relevant caches when its resource record changes.

Dynamic Lease Performance - Storage

Dynamic Lease Performance - Request

For more information, contact:
Xin Chen,
Department of Computer Science
College of William and Mary
Williamsburg, Virginia
Tel: 757 221-3477
E-mail: xinchen@cs.wm.edu

Computer Science

http://www.cs.wm.edu/~xinchen/DNScup.html