














end of the test. Thus, we re-implemented the cache moni-
tor using C, the libmemcached library [7], the UriParser [9]
library, and straightforward C data types. The C implemen-
tation, by comparison, requires only 2.5 seconds to process
the trace, and peaks at 39MB RAM usage for the 2 weeks
worth of web server logs. With this implementation, the
overhead from the cache monitor is negligible. The crawler
cache script is implemented in php, and since it is not in the
critical path, it is not optimized for performance.

Our use of the memcached server allows both the C cache
monitor and php crawler cache implementations to commu-
nicate with the same server with no language translations.
Memcached is not a requirement, however, as the cache
could easily be implemented using another web object cache
with appropriate language bindings, or even shared mem-
ory. On the other hand, memcached is scalable to multiple
servers, available on a variety of platforms, and supports
multiple language interface libraries.

4.1 Space Requirements
The test site in our case study consists of about 153,100

accessible thread pages, ranging in size from 50K to well
over 250K for the HTML alone. After gzip-compression, the
average page size is around 14K. Most (if not all) high-load
crawlers accept gzip encoding, and as such, the cached pages
are all stored in a pre-compressed state, rather than wast-
ing cycles by compressing pages at the time of the request.
As an added advantage, we found that the compression en-
ables storage for 5-6 times more content in the L1 cache,
dramatically improving hit ratios.

As each php process consumes anywhere between 30MB
and 300MB of RAM, we deemed 120, 250, and 500MB to
be reasonable sizes for the memcached server. Most impor-
tantly, the cache size should be set so as not to cause mem-
cached to swap, which can produce very undesirable results
(one order of magnitude slower processing time). Our cho-
sen cache size is 500MB for our production server. With
12GB of RAM available, this amount is only 4.1% of the to-
tal primary memory resource. Recall that crawlers account
for 33% of all server processing time, and this number is
easily justified.

To store all of the static pages in the L2 cache, it requires
2.2 GB of storage in the file system for our test site. This
number is small considering our test site produces nearly
4GB worth of access logs per week, and serves 15GB of image
attachments. In order to prevent running out of inodes, the
numeric ID of each page is used to determine a file’s location
in the file system modulo some maximum number of files.
For instance, an ID of 20593 (mod 250) = 93 can be stored
in the file system under the directory /cache/9/3/20593.gz,
saving inodes in the process and providing some degree of or-
ganization. Of course, the crawler cache can easily interface
with a lightweight database if desired.

5. EVALUATION
We evaluated the effectiveness of our approach using a

live, busy web server. Our test site is a very busy online
community with over 65,000 members, running the popular
vBulletin [18] forum software. The site receives on average of
2 million hits per day, with around 900 users online contin-
uously. Like many dynamic websites, the server hardware
can be excessively taxed when crawled by multiple search
engines. For instance, in January 2011, overload conditions

were introduced to the server when Microsoft Bing 2.0 crawl-
ing agents were released to crawl the site. Yahoo’s Slurp has
been routinely blocked around the Internet in previous years
for similar reasons. Excessive slowdowns appeared sporad-
ically for nearly three weeks until the crawl subsided to a
more manageable rate.

The two primary benefits of our approach from the per-
spective of performance are reduced response time and in-
creased throughput. Under extremely heavy crawler load,
targeting crawlers directly with caching is very effective at
staving off overload conditions, enabling uninterrupted ser-
vice to human users.

5.1 Experimental Setup
We developed a parallel tool written in php to test our

cache setup, which takes as input the web server traces gath-
ered over a two week window. The script is parameterized
by the number of child threads to use, with each child thread
responsible for a portion of the trace, and allows a test with
nearly 90% CPU utilization on all cores. A snapshot of
the online community database is configured and used along
with the traces pulled from the web server logs. As a result,
we created a live and accurate environment for experimen-
tal tests. We limited our trace to only dynamic requests for
page listings. The trace includes 2, 208, 145 bot requests and
1, 052, 332 human requests for the page.php script, which is
the primary workhorse for our case study.

5.2 Reduced Response Time
We first run the trace through the web server to gather

baseline measurements, and we found the mean page gener-
ation time to be 162, 109µs, on order with our production
server. This is the average latency experienced for all hu-
man users, as well as crawlers without the cache. With the
addition of the crawler cache, we gained a reduction in la-
tency of three orders of magnitude for crawler requests, to
1, 367µs. As an additional benefit of the crawler cache, the
user-perceived response time for human users is reduced by
31%, to 111, 722µs. These results are summarized in Figure
8.

5.3 Increased Throughput
Achieving the reduced latency, we also observed a consid-

erable increase in server throughput, as shown in Figure 9.
The throughput for the traces without the crawler cache is
117 satisfied requests per second. With the addition of the
crawler cache, throughput nearly doubles to 215 requests
per second. With a higher throughput, overall aggregate re-
sponse time for the entire trace is cut in half. Under periods
of heavy load, this added capacity would be enough to stave
off overload conditions caused by benign-yet-heavy crawlers.

5.4 Cache Generation
Ideally, most sites dependent on human activities (blogs,

online communities, social networks) will have considerable
dips in server load, providing an opportunity for L2 cache
generation. In our case, based on diurnal usage patterns,
we chose 4am to generate or update any new cache entries,
though this parameter will depend heavily on the site’s usage
characteristics. To fully generate our cache from scratch on
our test machine, we spent 1 hour and 22 minutes in using
a parallel php script with 8 threads. This initialization need
only be performed when the cache is deployed.

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

178



Figure 8: Crawler cache reduces server latency, improv-

ing user response time for human users.

Cache refreshing will also depend heavily on the site’s
database write characteristics. In our case, human users
only modify around 200 unique threads per day on aver-
age (with multiple updates to those threads throughout the
day). With only 200 modified pages to generate daily, this
implies that the L2 cache can be refreshed in under 1 sec-
ond. For sites like ours, the L2 cache can be updated mul-
tiple times per day, always providing fresh content to the
crawlers as threads are updated.

5.5 Limits to Our Approach
For busy dynamic sites such as online communities, fo-

rums, and blogs, caching can be very beneficial to mitigate
crawler overload risk. Unfortunately, for sites with an ex-
tremely high degree of transient data, such as event times
and stock prices, static caching may not be the best ap-
proach. However, given the archival nature of the search
engines, sites with a large amount of transient data are not
well suited to crawling in general. These sites might better
benefit from rewriting the URL to a static page explaining
the possible benefits of visiting the page live.

In our live site, each dynamic request requires loading ses-
sion and site configuration data, validating the security of
the request, and making several trips to the database to as-
semble a complete page from various compound templates.
This induces a considerable disparity between the time re-
quired to serve dynamic and static requests, between two
and three orders of magnitude. Very simple, lightly-featured
templated systems may have a smaller gap, and might not
benefit as drastically from our approach. However, the cur-
rent trend is toward richer, more complex, programmable
content management systems.

In our case (as in most dynamic communities), the static
cache is not applicable to human users. We rely on the prop-
erty that crawlers are fed “guest-level” content, which makes
this segment of the population cacheable. For instance, each
page loaded by a logged-in human user includes a check for
private messages and online chat updates, as well as filter-
ing out posts from “ignored” users, and an applied security
model to control access to paid-subscription areas; this tran-
sient data and high degree of customization make the pages
uncacheable for human users with these techniques.

Figure 9: Crawler cache reduces server workload and as

a result increases throughput.

6. RELATED WORK
Caching has long been studied and recognized as an ef-

fective way to improve performance in a variety of environ-
ments and at all levels of abstraction, including operating
system kernels, file systems, memory subsystems, databases,
interpreted programming languages, and server daemons.
Caching in general is a method for transparently storing
data such that future requests for the same data can be
served faster. Our work, to our knowledge, is the first to
methodically study crawlers in the context of caching to re-
duce server load, and to suggest how these crawler over-
load can be mitigated as a result of a few readily observable
crawler properties. A distinguishing feature of our work is a
uniform increase in throughput without resorting to caching
for human users.

Caching techniques for static websites have been studied
thoroughly [12, 21, 24]. Most of these techniques do not
apply generally to dynamic websites, due to the inherent
customization in dynamic sites. As a result, many differ-
ent caching approaches for dynamic websites have been pro-
posed. Research into caching for dynamic websites is usually
implemented at various layers of abstraction. For instance,
a dynamic website may include a half dozen cache mecha-
nisms: at the database layer [11, 25], data interface layer
[11], scripting layer, virtual file system, and the network
proxy layer [14]. Several cache systems for dynamic web-
sites attempt to map underlying queries to cache objects for
intelligent invalidation [13, 20, 25]. The web application as
a whole may also include several programmatic caches to
cache repeated function results, web objects, and templates
[3].

One phenomenon related to our work is the Flash Crowd;
non-malicious, sudden onslaught of web traffic that can crip-
ple server performance [19]. While burdensome to servers,
high load crawlers are relatively uniform in their accesses
and do not fall under the guise of flash crowds. Other recent
works study the mitigation of flash crowds [15, 26], but these
techniques rely on CDN’s and additional servers to disperse
load. Furthermore, our work targets crawlers specifically,
which allows server throughput to increase uniformly while
still providing dynamic content for human users.

Our work includes a measurement study of web crawler
access characteristics on a busy dynamic website to motivate

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

179



our two-level cache design. Previous work measures crawler
activity [17] in detail, but do not study dynamic sites at
our scale, and as a result, the crawlers behave differently.
Our work shows that crawlers can consume a considerable
percentage of overall server load, and hence, should be han-
dled differently than human users. Other works include de-
tection of crawlers through examination of access logs and
probabilistic reasoning [22, 23]. Our requirements are more
relaxed, only that we can detect high-load crawlers quickly
and efficiently.

7. CONCLUSION
Search engines are essential for users to locate resources

on the web, and for site administrators to have their sites
discovered. Unfortunately, crawling agents can overburden
servers, resulting in blank pages and crawler overload. For-
tunately, high load crawlers are easy to identify using sim-
ple heuristics. We conducted a measurement study to show
that crawlers exhibit very different usage patterns from hu-
man users, and thus can be treated differently than humans.
By generating a static version of a dynamic website during
off-peak hours, crawlers can be adequately served fresh con-
tent from the crawler’s perspective, reducing load on the
server from repeated dynamic page requests. Crawlers are
archival in nature and do not require the same level of up-
dates as human users, and this property should be taken
advantage of by site administrators. Since static requests
can be served two to three orders of magnitude faster than
dynamic requests, overall server load can be practically re-
duced by serving crawlers using a static cache mechanism.
We have developed a two-level cache system with an LRU
policy, which is fast, straightforward to implement and can
achieve a high cache hit ratio. Through a real website, we
have demonstrated that our caching approach can effectively
mitigate the overload risk imposed by crawlers, providing a
practical strategy to survive the search engine overload.

8. REFERENCES
[1] Robots.txt - standard for robot exclusion.

http://www.robotstxt.org, 1994.

[2] Apache ttfb module.
http://code.google.com/p/mod-log-firstbyte,
2008.

[3] Memcached - open source distributed memory object
caching system. http://memcached.org, 2009.

[4] Google official blog: Using site speed in web search
ranking. http:
//googlewebmastercentral.blogspot.com/2010/04/

using-site-speed-in-web-search-ranking.html,
2010.

[5] Apache httpd server. http://httpd.apache.org,
2011.

[6] Controlling crawling and indexing with robots.txt.
http://code.google.com/web/controlcrawlindex/

docs/robots_txt.html, 2011.

[7] libmemcached client library for the memcached server.
http://libmemcached.org, 2011.

[8] Php: Hypertext preprocessor. http://www.php.net,
2011.

[9] Uriparser, rfc 3986 compliant uri parsing library.
http://uriparser.sourceforge.net, 2011.

[10] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance
evaluation. In ACM SIGMETRICS’98, pages 151–160,
Madison, WI, 1998.

[11] S. Bouchenak, A. Cox, S. Dropsho, S. Mittal, and
W. Zwaenepoel. Caching dynamic web content:
Designing and analysing an aspect-oriented solution.
In Middleware’06, Melbourne, Australia, 2006.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In IEEE INFOCOM’99,
New York City, NY, 1999.

[13] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and
D. Agrawal. Enabling dynamic content caching for
database-driven web sites. In ACM SIGMOD’01,
pages 532–543, Santa Barbara, CA, 2001.

[14] P. Cao, J. Zhang, and K. Beach. Active cache: caching
dynamic contents on the web. In Middleware’98,
London, UK, 1998.

[15] C.-H. Chi, S. Xu, F. Li, and K.-Y. Lam. Selection
policy of rescue servers based on workload
characterization of flash crowd. In Sixth International
Conference on Semantics Knowledge and Grid, pages
293–296, Ningbo, China, 2010.

[16] E. Courtwright, C. Yue, and H. Wang. Efficient
Resource Management on Template-based Web
Servers. In IEEE DSN’09, Lisbon, Portugal, 2009.

[17] M. D. Dikaiakos, A. Stassopoulou, and
L. Papageorgiou. An investigation of web crawler
behavior: characterization and metrics. In Computer
Communications, 28:8, 80–897, Elsevier, May 2005.

[18] JelSoft, Inc. vBulletin Forum Software.
www.vbulletin.com.

[19] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
crowds and denial of service attacks: characterization
and implications for cdns and web sites. In WWW’02,
pages 293–304, Honolulu, HI, 2002.

[20] Q. Luo, J. Naughton, and W. Xue. Form-based proxy
caching for database-backed web sites: keywords and
functions. The VLDB Journal, 17:489–513, 2008.

[21] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of
web caching architectures: hierarchical and distributed
caching. In IEEE/ACM Transactions on Networking,
9(4):404–418, 2001.

[22] A. Stassopoulou and M. D. Dikaiakos. Crawler
detection: A bayesian approach. In ICISP’06, Cap
Esterel, France, 2006.

[23] A. Stassopoulou and M. D. Dikaiakos. Web robot
detection: A probabilistic reasoning approach. In
Computer Networks, 53:265–278, 2009.

[24] J. Wang. A survey of web caching schemes for the
internet. In ACM Computer Communication Review,
29:5, 36–46, 1999.

[25] I.-W. T. Yeim-Kuan Chang and Y.-R. Lin. Caching
personalized and database-related dynamic web pages.
In International Journal of High Performance
Computing and Networking, 6(3/4), 2010.

[26] K. Yokota, T. Asaka, and T. Takahashi. A load
reduction system to mitigate flash crowds on web
server. In International Symposium on Autonomous
Decentralized Systems ’11, Kobe, Japan, 2011.

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

180




