Design Patterns

What are Design Patterns?

Design patterns describe common (and
successful) ways of building software.

What are Design Patterns?

"A pattern describes a problem that occurs often,
along with a tried solution to the problem”

- Christopher Alexander, 1977

- Idea: Problems can be similar, therefore,
solutions can also be similar.

- Not individual classes or libraries
- Such as lists, hash tables

- Not full designs
- Often rely on Object-Oriented languages 3

Real-World Example: the “"door” pattern

- System Requirements:

- Portal between rooms

- Must be able to open and close

 Solution:
- Build a door

Real-World Example: the “"door” pattern

Doors have multiple components
- "main” part

- "hinge" part

- "rail” part

- "handle” part

The design pattern specifies
how these components interact
to solve a problem

Real-World Example: the “"door” pattern

+ The "door" design pattern is easy to reuse

* The implementation is different every time, the
design is reusable.

Advantages

» Teaching and learning

- It is much easier to learn the code architecture
from descriptions of design patterns than from
reading code

- Teamwork

- Members of a feam have a way to name and discuss
the elements of their design

What design patterns are not

* Not an architecture style:

- Does not tell you how to structure the entire
application

- Not a data structure
- e.g. a hash table

* Not an algorithm
- e.g. quicksort

References and resources

* GoF Design Patterns book:
- http://c2.com/cgi/wiki?DesignPatternsBook
- https://catalog.swem.wm.edu/Record/3301458

* Head First Design Patterns:

- http://shop.oreilly.com/product/9780596007126.do
- https://catalog.swem.wm.edu/Record/3302095

» Design Patterns Quick Reference Cards:

- http://www.mcdonaldland.info/files/

designpatterns/designpatternscard.pdf
+ Check SWEM: "Software design patterns”

Software Design Patterns from €S 301

1. Iterator
2.0bserver
3.Strategy
4.Composite
5.Decorator
6. Template
7.Singleton

also in Horstmann's book

* Adapter
+ Command
» Factory
* Proxy

- Visitor

10

Software Example: A Text Editor

- Describe a text editor using patterns
- A running example

* Introduces several important patterns

Note: This example is from the book "Design
Patterns: Elements of Reusable Object-
Oriented Software”, Gamma, et al. : GoF book

Text Editor Requirements

- A WYSIWYG editor
+ Text and graphics can be freely mixed
+ Graphical user interface

- Toolbars, scrollbars, etc.

» Traversal operations: spell-checking

- Simple enough for one lecturel

10

The Game

» I describe a design problem for the editor

* I ask "What is your design?"
- This is audience participation time

» T give you the wise and insightful pattern

11

Problem: Document Structure

A document is represented by its physical structure:
- Primitive glyphs: characters, rectangles, circles, pictures, . . .
- Lines: sequence of glyphs
- Columns: A sequence of lines
- Pages: A sequence of columns
- Documents: A sequence of pages

Treat text and graphics uniformly
- Embed text within graphics and vice versa

No distinction between a single element or a group of
elements

- Arbitrarily complex documents

What is your design?

12

A Design

+ Classes for Character, Circle, Line, Column, Page, ...

- Not so good
- A lot of code duplication

* One (abstract) class of Glyph
- Each element realized by a subclass of Glyph

- All elements present the same interface
* How to draw
* Mouse hit detection

- Makes extending the class easy

Treats all elements uniformly

13

Example of Hierarchical Composition

character picture
glyph L G ™~ glyph
— 8
— line glyph
(composite)
column glyph

(composite)

14

Logical Object Structure

composite

composite
(column)

composite ®
(row)

15

Diagram

Glyph

draw()

intersects(int x,int y)

Character

draw()

intersects(int x,int y)

Picture

children

Line

draw()

intersects(int x,int y)

draw()

intersects(int x,int y)

16

_ Composite Pattern

I

«interface»
Primitive |*
method() l
o
! Composite
=7 S e e
method() ~.

" Calls method () for

each primitive and
combines the results

The Composite pattern teaches
how to combine several objects into an object
that has the same behavior as its parts.

19

Composites

» This is the composite pattern

- Composes objects into tree structure

- Lets clients treat individual objects and
composition of objects uniformly

- Easier to add new kinds of components

17

Problem: Supporting Look-and-Feel Standards

- Different look-and-feel standards

- Appearance of rectangles, characters, etc.

- We want the editor to support them all

- What do we write in code like
Character Itr = new ?

What is your design?

18

Possible Designs

. Terrible + Little better

Character Itr = new MacChar(); Character Itr;
if (style == MAC)
scr = new MacChar();
else if (style == WINDOWS)
scr = new WinChar();
else if (style == ...)

19

Abstract Object Creation

» Encapsulate what varies in a class

+ Here object creation varies
- Want to create different character, rectangle, etc
- Depending on current look-and-feel

+ Define a GUIFactory class

- One method to create each look-and-feel
dependent object

- One GUIFactory object for each look-and-feel

- Created itself using conditionals 2

Diagram

GuiFactory

CreateCharacter()

CreateRegtangle()

MacFactory

WindowsFactory

CreateCharacter() {
return new MacChar();}
CreateRectangle() {

return new MacRect();}

CreateCharacter() {
return new WinChar();}
CreateRectangle() {

return new WinRect();}

21

Diagram 2: Abstract Products

‘ Glyph

/\

Character

WinChar

MacChar | |

22

Factory Pattern

* A class which «interface»
Creator »
- Abstracts the ISR 'gte”ace
) roduct
creation of a e
family of objects =2 Z el T
- Different i |
instances provide ; |
alternative i |
implementations : i
of that family Concrete Concrete
Creator | ?| Product
- Note

- The "current” factory is still a global variable
- The factory can be changed even at runtime -

Problem: Spell Checking

- Considerations

- Spell-checking requires traversing the document
* Need to see every glyph, in order
- Information we need is scattered all over the document

- There may be other analyses we want to perform
- E.g., grammar analysis

What is your design?

24

One Possibility

- Iterators
- Hide the structure of a container from clients

- A method for
- pointing to the first element

- advancing to the next element and getting the current

element
- testing for termination

Iterator i = composition.getIterator();
while (i.hasNext()) {

Glyph g = i.next();

do something with Glyph g;

25

Diagram

Iterator

hasNext()

next()
PreorderIterator ListIterator
hasNext() hasNext()
next() next()

26

Notes

+ TIterators work well if we
don't need to know the
type of the elements
being iterated over

- E.g., send kill message to
all processes in a queue
* Not a good fit for spell-
checking
- Ugly
- Change body whenever the

class hierarchy of Glyph
changes

Iterator i = composition.getIterator();
while (i.hasNext()) {
Glyph g = i.next();
if (g instanceof Character) {
// analyze the character
} else if (g instanceof Line) {

// prepare to analyze children
of

// row

} else if (g instanceof Picture) {
// do nothing

}elseif (...) ..

27

Visitors

+ The visitor pattern is more general

- Iterators provide traversal of containers
- Visitors allow

- Traversal

- And type-specific actions

» The idea

- Separate traversal from the action
- Have a "do it" method for each element type

» Can be overridden in a particular traversal 28

Diagram

Glyph

accept(Visitor)

Visitor

visitChar(Character)
visitPicture(Picture)

visitLine(Line)

Line

Character Picture
accept(Visitor v) { accept(Visitor v) {
v.visitChar(this); } v.visitPicture(this); }

accept(Visitor v) {
v.visitLine(this);
for each c in children

c.accept(v) }

. «interface»
«interface» Visitor
Element e s
visitConcreteElement1()
accept() visitConcreteElement2()
A visitConcreteElement3()
; o
Concrete Concrete Concrete .
Element1 Element2 Element3 Concrete
Visitor
accept() accept() accept()
Calls '," ‘,"
visitConcreteElementl()| / J
Visitor Pattern

!
'
' /
L

Calls
visitConcreteElement2()| /

Calls
visitConcreteElement3()

33

Logical Object Structure

composite

composite
(column)

composite ®
(row)

30

Java Code

abstract class Glyph { abstract class Visitor {

abstract void accept(Visitor vis); abstract void visitChar (Character c);
abstract void visitLine(Line |);
abstract void visitPicture(Picture p);

}
class Character extends Glyph { }
class SpellChecker extends Visitor {
void accept(Visitor vis) { void visitChar (Character ¢) {
vis.visitChar(this); // analyze character}
} void visitLine(Line I) {
} // process children }
class Line extends Glyph { void visitPicture(Picture p) {

// do nothing }

31

void accept(Visitor vis
P () { } Prof. Majumdar CS 130 Lecture 6

Java Code

SpellChecker checker = new
SpellChecker();

Iterator i = composition.getIterator();

while (i.hasNext()) {
Glyph g = i.next();
g.accept(checker):

Prof. Majumdar CS 130 Lecture 6

abstract class Visitor {
abstract void visitChar (Character c);
abstract void visitLine(Line |);

abstract void visitPicture(Picture p);

}

class SpellChecker extends Visitor {
void visitChar (Character c¢) {
// analyze character}
void visitLine(Line |) {
// process children }
void visitPicture(Picture p) {
// do nothing }

32

Problem: Formatting

* A particular physical structure for a document
- Decisions about layout
- Must deal with e.g., line breaking

» Design issues
- Layout is complicated

- No best algorithm
* Many alternatives, simple to complex

What is your design?

33

A First Shot:

+ Add a format method to each Glyph class
» Not so good
* Problems

- Can't modify the algorithm without modifying Glyph

- Can't easily add new formatting algorithms

34

The Core Issue

+ Formatting is complex
- We don't want that complexity to pollute Glyph
- We may want to change the formatting method

» Encapsulate formatting behind an interface
- Each formatting algorithm an instance
- Glyph only deals with the interface

35

Formatting Examples

We've settled on a way
to represent the
document's physical
structure. Next, we
need to figure out how
to construct a particular
physical structure, one
that corresponds to a
properly formatted
document.

We've settled on a way
to represent the
document’'s physical
structure. Next, we
need to figure out how
to construct a particular
physical structure, one
that corresponds to a
properly formatted
document.

36

Diagram

Glyph FormatSimple
draw() Glyph::insert(g) Compose()
intersects(int x,int y) formatter.Compose()

insert(Glyph)

/\

1 | Formatter

Compose()
L FormatJustified
Composition formatter
draw() / Compose()
intersects(int x, inty composition

insert(Glyph g) |‘ -

Not clear?

+ This is were the pattern idea helps
communication!

+ Let's understand the pattern first:

42

Strategy Pattern

Context

e

«interface»
Strategy

doWork()

2

Concrete
Strategy

43

Strategies

This is the strategy pattern
- Isolates variations in algorithms we might use
- Formatter is the strategy, Composition is context

* The GoF book says the Strategy design pattern should: “Define
a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently
from clients that use 1t.”

General principle
encapsulate variation

In OO languages, this means defining abstract classes
for things that are likely to change "

Diagram: Strategy = Formatter

Glyph FormatSimple
draw() Glyph::insert(g) Compose()
intersects(int x,int y) formatter.Compose()

insert(Glyph)

/\

1 | Formatter

Compose()
L FormatJustified
Composition formatter
draw() / Compose()
intersects(int x, int y composition

insert(Glyph g) r 17

Formatter

Formatter-
generated
Glyphs
v

@

38

Design Patterns Philosophy

* Program to an interface and not to an
implementation

» Encapsulate variation

» Favor object composition over inheritance

40

Acknowledgements

* Many slides courtesy of Rupak Majumdar
+ Some from Cay Horstmann

41

