
1

Design Patterns

2

What are Design Patterns?

Design patterns describe common (and
successful) ways of building software.

3

What are Design Patterns?

“A pattern describes a problem that occurs often,
along with a tried solution to the problem”

 - Christopher Alexander, 1977

• Idea: Problems can be similar, therefore,
solutions can also be similar.
– Not individual classes or libraries

• Such as lists, hash tables

– Not full designs
– Often rely on Object-Oriented languages

4

Real-World Example: the “door” pattern

• System Requirements:
– Portal between rooms
– Must be able to open and close

• Solution:
– Build a door

5

Real-World Example: the “door” pattern

• Doors have multiple components
– “main” part
– “hinge” part
– “rail” part
– “handle” part

 The design pattern specifies
how these components interact
 to solve a problem

6

Real-World Example: the “door” pattern

• The “door” design pattern is easy to reuse

• The implementation is different every time, the
design is reusable.

7

Advantages

• Teaching and learning
– It is much easier to learn the code architecture

from descriptions of design patterns than from
reading code

• Teamwork
– Members of a team have a way to name and discuss

the elements of their design

What design patterns are not

• Not an architecture style:
– Does not tell you how to structure the entire

application

• Not a data structure
– e.g. a hash table

• Not an algorithm
– e.g. quicksort

8

References and resources

• GoF Design Patterns book:
– http://c2.com/cgi/wiki?DesignPatternsBook
– https://catalog.swem.wm.edu/Record/3301458

• Head First Design Patterns:
– http://shop.oreilly.com/product/9780596007126.do

– https://catalog.swem.wm.edu/Record/3302095

• Design Patterns Quick Reference Cards:
– http://www.mcdonaldland.info/files/

designpatterns/designpatternscard.pdf

• Check SWEM: “Software design patterns”
9

Software Design Patterns from CS 301

1. Iterator
2.Observer
3.Strategy
4.Composite
5.Decorator
6.Template
7.Singleton

10

also in Horstmann’s book
• Adapter
• Command
• Factory
• Proxy
• Visitor

9

Software Example: A Text Editor

• Describe a text editor using patterns
– A running example

• Introduces several important patterns

Note: This example is from the book “Design
Patterns: Elements of Reusable Object-
Oriented Software”, Gamma, et al. : GoF book

10

Text Editor Requirements

• A WYSIWYG editor
• Text and graphics can be freely mixed
• Graphical user interface

• Toolbars, scrollbars, etc.

• Traversal operations: spell-checking

• Simple enough for one lecture!

11

The Game

• I describe a design problem for the editor

• I ask “What is your design?”
– This is audience participation time

• I give you the wise and insightful pattern

12

Problem: Document Structure

A document is represented by its physical structure:
– Primitive glyphs: characters, rectangles, circles, pictures, . . .
– Lines: sequence of glyphs
– Columns: A sequence of lines
– Pages: A sequence of columns
– Documents: A sequence of pages

• Treat text and graphics uniformly
– Embed text within graphics and vice versa

• No distinction between a single element or a group of
elements
– Arbitrarily complex documents

What is your design?

13

A Design

• Classes for Character, Circle, Line, Column, Page, …
– Not so good
– A lot of code duplication

• One (abstract) class of Glyph
– Each element realized by a subclass of Glyph
– All elements present the same interface

• How to draw
• Mouse hit detection
• …

– Makes extending the class easy
– Treats all elements uniformly

14

Example of Hierarchical Composition

G g

column glyph
(composite)

line glyph
(composite)

character
glyph

picture
glyph

15

Logical Object Structure

16

Diagram

Glyph

draw()

intersects(int x,int y)

…

Character
draw()

intersects(int x,int y)

…

Picture
draw()

intersects(int x,int y)

…

Line
draw()

intersects(int x,int y)

…

…

children

n

19

Composite Pattern

The Composite pattern teaches
how to combine several objects into an object

that has the same behavior as its parts.

17

Composites

• This is the composite pattern
– Composes objects into tree structure
– Lets clients treat individual objects and

composition of objects uniformly
– Easier to add new kinds of components

18

Problem: Supporting Look-and-Feel Standards

• Different look-and-feel standards
– Appearance of rectangles, characters, etc.

• We want the editor to support them all
– What do we write in code like

Character ltr = new ?

What is your design?

19

Possible Designs

• Terrible
Character ltr = new MacChar();

• Little better
Character ltr;
if (style == MAC)
 scr = new MacChar();
else if (style == WINDOWS)
 scr = new WinChar();
else if (style == …)
 ….

20

Abstract Object Creation

• Encapsulate what varies in a class
• Here object creation varies

– Want to create different character, rectangle, etc
– Depending on current look-and-feel

• Define a GUIFactory class
– One method to create each look-and-feel

dependent object
– One GUIFactory object for each look-and-feel
– Created itself using conditionals

21

Diagram

GuiFactory
CreateCharacter()

CreateRectangle()

MacFactory
CreateCharacter() {

 return new MacChar();}

CreateRectangle() {

 return new MacRect();}

…WindowsFactory
CreateCharacter() {

 return new WinChar();}

CreateRectangle() {

 return new WinRect();}

22

Diagram 2: Abstract Products

Character

MacChar …WinChar

Glyph

23

Factory Pattern

• A class which
– Abstracts the

creation of a
family of objects

– Different
instances provide
alternative
implementations
of that family

• Note
– The “current” factory is still a global variable
– The factory can be changed even at runtime

24

Problem: Spell Checking

• Considerations
– Spell-checking requires traversing the document

• Need to see every glyph, in order
• Information we need is scattered all over the document

– There may be other analyses we want to perform
• E.g., grammar analysis

What is your design?

25

One Possibility

• Iterators
– Hide the structure of a container from clients
– A method for

• pointing to the first element
• advancing to the next element and getting the current

element
• testing for termination

Iterator i = composition.getIterator();

while (i.hasNext()) {

 Glyph g = i.next();
 do something with Glyph g;

26

Diagram

Iterator
hasNext()

next()

PreorderIterator
hasNext()

next()

ListIterator
hasNext()

next()

Notes

• Iterators work well if we
don’t need to know the
type of the elements
being iterated over
– E.g., send kill message to

all processes in a queue

• Not a good fit for spell-
checking
– Ugly

– Change body whenever the
class hierarchy of Glyph
changes

Iterator i = composition.getIterator();
while (i.hasNext()) {
 Glyph g = i.next();
 if (g instanceof Character) {
 // analyze the character
 } else if (g instanceof Line) {
 // prepare to analyze children

of
 // row
 } else if (g instanceof Picture) {
 // do nothing
 } else if (…) …
}

27

28

Visitors

• The visitor pattern is more general
– Iterators provide traversal of containers
– Visitors allow

• Traversal
• And type-specific actions

• The idea
– Separate traversal from the action
– Have a “do it” method for each element type

• Can be overridden in a particular traversal

29

Diagram

Glyph
accept(Visitor)

…

Character
accept(Visitor v) {

 v.visitChar(this); }

Picture
accept(Visitor v) {

 v.visitPicture(this); }

Line
accept(Visitor v) {

 v.visitLine(this);

 for each c in children

 c.accept(v) }

…

Visitor
visitChar(Character)

visitPicture(Picture)

visitLine(Line)

…

Visitor Pattern

33

Visitor Pattern

30

Logical Object Structure

Java Code

abstract class Glyph {

 abstract void accept(Visitor vis);

 …

}

class Character extends Glyph {

 …

 void accept(Visitor vis) {

 vis.visitChar(this);

 }

}

class Line extends Glyph {

 …

 void accept(Visitor vis) {

abstract class Visitor {
 abstract void visitChar (Character c);
 abstract void visitLine(Line l);
 abstract void visitPicture(Picture p);
 …
}
class SpellChecker extends Visitor {
 void visitChar (Character c) {
 // analyze character}
 void visitLine(Line l) {
 // process children }
 void visitPicture(Picture p) {
 // do nothing }
 …
} Prof. Majumdar CS 130 Lecture 6

31

Java Code

abstract class Visitor {

 abstract void visitChar (Character c);

 abstract void visitLine(Line l);

 abstract void visitPicture(Picture p);

 …

}

class SpellChecker extends Visitor {

 void visitChar (Character c) {

 // analyze character}

 void visitLine(Line l) {

 // process children }

 void visitPicture(Picture p) {

 // do nothing }
Prof. Majumdar CS 130 Lecture 6

32

SpellChecker checker = new
SpellChecker();

Iterator i = composition.getIterator();
while (i.hasNext()) {
 Glyph g = i.next();
 g.accept(checker);
}

33

Problem: Formatting

• A particular physical structure for a document
– Decisions about layout
– Must deal with e.g., line breaking

• Design issues
– Layout is complicated
– No best algorithm

• Many alternatives, simple to complex

What is your design?

34

A First Shot:

• Add a format method to each Glyph class
• Not so good
• Problems

– Can’t modify the algorithm without modifying Glyph
– Can’t easily add new formatting algorithms

35

The Core Issue

• Formatting is complex
– We don’t want that complexity to pollute Glyph
– We may want to change the formatting method

• Encapsulate formatting behind an interface
– Each formatting algorithm an instance
– Glyph only deals with the interface

36

Formatting Examples

We've settled on a way
to represent the
document's physical
structure. Next, we
need to figure out how
to construct a particular
physical structure, one
that corresponds to a
properly formatted
document.

We've settled on a way
t o r e p r e s e n t t h e
document's physical
structure. Next, we
need to figure out how
to construct a particular
physical structure, one
that corresponds to a
proper ly formatted
document.

37

Diagram

Glyph
draw()

intersects(int x,int y)

insert(Glyph)

 Composition
draw()

intersects(int x, int y)

insert(Glyph g)

Formatter
Compose()

…

FormatSimple
Compose()

…

FormatJustified

Compose()

…

1

 formatter

composition

Glyph::insert(g)
 formatter.Compose()

Not clear?

• This is were the pattern idea helps
communication!

• Let’s understand the pattern first:

42

Strategy Pattern

43

39

Strategies

• This is the strategy pattern
– Isolates variations in algorithms we might use
– Formatter is the strategy, Composition is context

• The GoF book says the Strategy design pattern should: “Define
a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently
from clients that use it.”

• General principle
encapsulate variation

• In OO languages, this means defining abstract classes
for things that are likely to change

37

Diagram: Strategy = Formatter

Glyph
draw()

intersects(int x,int y)

insert(Glyph)

 Composition
draw()

intersects(int x, int y)

insert(Glyph g)

Formatter
Compose()

…

FormatSimple
Compose()

…

FormatJustified

Compose()

…

1

 formatter

composition

Glyph::insert(g)
 formatter.Compose()

38

Formatter

Formatter-
generated
Glyphs

Formatter

Design Patterns Philosophy

• Program to an interface and not to an
implementation

• Encapsulate variation

• Favor object composition over inheritance

40

Acknowledgements

• Many slides courtesy of Rupak Majumdar
• Some from Cay Horstmann

41

