
Requirements and Specification

Requirements Engineering

• The process of establishing the services that
the customer requires from a system and the
constraints under which it operates and is
developed

• The requirements themselves are the
descriptions of the system services and
constraints that are generated during the
requirements engineering process

Requirements Engineering

• The hardest single part of building a software
system is deciding what to build
– Cripples the process if done wrong
– Costly to rectify later

???

• The goal of requirement engineering is to
determine (pick one):
– What software client wants?
– What software client needs?

Chapter 2 Software Processes

Software specification (or requirements engineering)

 The process of establishing what services are required and
the constraints on the system’s operation and
development.

 Requirements engineering process
 Feasibility study

• Is it technically and financially feasible to build the system?
 Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?
 Requirements specification

• Defining the requirements in detail
 Requirements validation

• Checking the validity of the requirements

5
Sommerville: Ch 2.2.1, p36ff

Chapter 2 Software Processes

The requirements engineering process

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

6

Chapter 2 Software Processes

Outcome

• An agreed requirements document that
specifies a system satisfying
stakeholder requirements.

• Two level of details
End-users and customers need a high-level

statement of the requirements.
System developers need a more detailed

system specification.

7

User requirements

• Should describe requirements in such a way
that they are understandable by system users
who don’t have detailed technical knowledge.

• User requirements are defined using natural
language, tables and diagrams as these can be
understood by all users.

The LIBSYS system

• A library system that provides a single
interface to a number of databases of articles
in different libraries.

• Users can search for, download and print
these articles for personal study.

Determining Stakeholders and Needs

• Must determine stakeholders
– Anyone who benefits from the system developed
– E.g., who’s client and who’s user ?

• Try to understand what their needs are

• Reconcile different needs/points of view

Techniques for Requirement Gathering

• Interviewing

• User stories

• Straw man documents

• Prototypes

Interviewing

• One path is obvious
– Sit down with client/user and ask questions
– Listen to what they say, and what they don’t say

• A less obvious path
– Master-apprentice relationship
– Have them teach you what they do
– Go to workplace and watch them do the task

• In all types of interviews, get details
– Ask for copies of reports, logs, emails on process
– These may support, fill in, or contradict what the user said

Extreme Programming – User Stories

• Recall: client writes user stories
– Using client vocabulary

• Describe usage scenarios of software
– Title, short description

• Each user story has acceptance tests
– Clarify the story
– Will tell you when the customer thinks story is done

Disadvantages of Talking

• Interviews are useful, but
 “I know you believe you understood what you think I said, but I am

not sure you realize that what you heard is not what I meant!”

• Users/clients may
– Not have the vocabulary to tell you what they need
– Not know enough about computer science to

understand what is possible
• Or impossible

– Sometimes may lead to restricted functionality

• Good idea to gather requirements in other
ways, too

Strawman

• Sketch the product for the user/client
– Storyboards
– Flowcharts
– HTML mock-ups
– Illustrate major events/interfaces/actions

• Anything to convey ideas without writing code!

Rapid Prototyping

• Write a prototype
– Major functionality, superficially implemented
– Falls down on moderate-to-extreme examples

• No investment in scaling, error handling, etc.

• Show prototype to users/clients
– Users have a real system – more reliable feedback
– Refine requirements
– But, significant investment

Pitfalls of Rapid Prototyping

• Needs to be done quickly
– Remember, this is just the requirements phase!
– Danger of spending too long refining prototype

• The prototype becomes the product
– Prototype deliberately not thoroughly thought-out
– Product will inherit the sub-optimal architecture

• Prototype serves as the spec
– Prototype is incomplete, maybe even contradictory

• When done well, extremely useful

Summary of Requirements Gathering

• Find out what users/clients need
– Not necessarily what they say they want

• Use
– Interviews
– User stories
– Straw man documents
– Rapid prototyping

– As appropriate . . .

Requirement vs. Specification

• User Requirements
– Statements in natural language plus diagrams of the

services the system provides and its operational
constraints. Written for customers.

• System Specifications
– A structured document setting out detailed descriptions of

the system’s functions, services and operational
constraints. Defines what should be implemented so may be
part of a contract between client and contractor.

• The distinction is often glossed over
– Sommerville sees this as two levels of detail in the

requirements document, the system requirements are a
“functional specification” Ch 4, p83.

Specifications

• Describe the functionality of the product
– Precisely
– Covering all the circumstances

• Move from the finite to the infinite
– Finite examples (requirements) to infinite set of

possible computations
– This is not easy

Specifications: theory & practice

• In principle, specifications should be:
– Unambiguous:

• Only one way to interpret the spec

– Complete
• Include descriptions of all facilities required.

– Consistent
• There should be no conflicts or contradictions in the

descriptions of the system facilities.

• In practice, it is almost impossible to produce a
complete and consistent requirements document.

LIBSYS requirement

4..5 LIBSYS shall provide a financial accounting
system that maintains records of all payments made
by users of the system. System managers may
configure this system so that regular users may
receive discounted rates.

Requirement problems

• Database requirements include both conceptual and
detailed information

– Describes the concept of a financial accounting system that is
to be included in LIBSYS;

– However, it also includes the detail that managers can
configure this system - this is unnecessary at this level.

Different Views of Specifications

• Developer’s
– Specification must be detailed enough to be implementable
– Unambiguous
– Self-consistent

• Client’s/user’s
– Specifications must be comprehensible
– Usually means: not too technical

• Legal
– Specification can be a contract
– Should include acceptance criteria

• If the software passes tests X, Y, and Z, it will be accepted

Requirements readers

Informal Specifications

• Written in natural language
– E.g., English

• Example
“If sales for current month are below target sales, then

report is to be printed, unless difference between
target sales and actual sales is less than half of
difference between target sales and actual sales in
previous month, or if difference between target sales
and actual sales for the current month is under 5%”

Problems with Informal Specs

• Informal specs of any size inevitably suffer from
serious problems
– Omissions

• Something missing

– Ambiguities
• Something open to multiple interpretations

– Contradictions
• Spec says “do A” and “do not do A”

– Amalgamation
• Different requirements mixed together

These problems will be faithfully implemented in
the software unless found in the spec

Informal Specifications Revisited

“If sales for current month are below target sales, then
report is to be printed, unless difference between
target sales and actual sales is less than half of
difference between target sales and actual sales in
previous month, or if difference between target sales
and actual sales for the current month is under 5%”

Informal Specifications Revisited

“If sales for current month are below target sales, then
report is to be printed, unless difference between
target sales and actual sales is less than half of
difference between target sales and actual sales in
previous month, or if difference between target sales
and actual sales for the current month is under 5%”

January: target $100K, actual $64K
February: target $120K, actual $100K
March: target $100K, actual $95,100

Comments on Informal Specification

• Informal specification is universally reviled
– By academics
– By “how to” authors

• Informal specification is also widely practiced
– Why?

Why Do People Use Informal Specs?

• The common language is natural language
– Customers can’t read formal specs
– Neither can most programmers
– Or most managers / lawyers
– A least-common denominator effect takes hold

• Truly formal specs are very time-consuming
– And hard to understand
– And overkill for most projects

Semi-Formal Specs

• Best current practice is “semi-formal” specs
– Allows more precision than natural language where

desired

• Usually a boxes-and-arrows notation
– Must pay attention to:
– What boxes mean
– What arrows mean
– Different in different systems!

• We’ll see one example (UML) next time

Functional and non-functional
• Functional requirements

– Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

• Non-functional requirements
– constraints on the services or functions offered by the

system such as timing constraints, constraints on the
development process, standards, etc.

• Domain requirements
– Requirements that come from the application domain of the

system and that reflect characteristics of that domain.

Functional requirements

• Describe functionality or system services

• Functional user requirements may be high-
level statements of what the system should do
but functional system specifications should
describe the system services in detail.

The LIBSYS system

• A library system that provides a single
interface to a number of databases of articles
in different libraries.

• Users can search for, download and print
these articles for personal study.

Examples: functional requirements
• The user shall be able to search either all of the

initial set of databases or select a subset from it.
• The system shall provide appropriate viewers for

the user to read documents in the document
store.

• Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy
to the account’s permanent storage area.

Example of Requirements imprecision

• Ambiguous requirements may be interpreted in
different ways by developers and users.

• Consider the term ‘appropriate viewers’
– User intention - special purpose viewer for each

different document type;
– Developer interpretation - Provide a text viewer

that shows the contents of the document.

Non-functional requirements

• These define system properties and
constraints e.g. reliability, response time and
storage requirements. Constraints are I/O
device capability, system representations, etc.

• Process requirements may also be specified
mandating a particular process, programming
language, or development method.

• Non-functional requirements may be more
critical than functional requirements. If these
are not met, the system is useless.

Non-functional classifications

• Product requirements
– Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability,
etc.

• Organizational requirements
– Requirements which are a consequence of organizational

policies and procedures e.g. process standards used,
implementation requirements, etc.

• External requirements
– Requirements which arise from factors which are external to

the system and its development process e.g. interoperability
requirements, legislative requirements, etc.

Non-functional requirement types

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

 Non-functional requirements examples

• Product requirement
8.1 The user interface for LIBSYS shall be implemented

as simple HTML without frames or Java applets.

• Organizational requirement
9.3.2 The system development process and deliverable

documents shall conform to the process and deliverables
defined in XYZCo-SP-STAN-95.

• External requirement
7.6.5 The system shall not disclose any personal information

about customers apart from their name and reference number
to the operators of the system.

Goals and requirements

• Non-functional requirements/specifications may be
very difficult to state precisely and imprecise
requirements may be difficult to verify.

• Goal
– A general intention of the user such as “ease of use”.

• Verifiable non-functional requirement
– A statement using some measure that can be objectively

tested.

• Goals are helpful to developers as they convey the
intentions of the system users.

Examples

• A system goal
– The system should be easy to use by experienced controllers

and should be organized in such a way that user errors are
minimized

• A verifiable non-functional requirement
– Experienced controllers shall be able to use all the system

functions after a total of two hours training. After this
training, the average number of errors made by experienced
users shall not exceed two per day.

Requirements measures

Requirements interaction

• Conflicts between different non-functional
requirements are common in complex systems

• Spacecraft system
– To minimize weight, the number of separate chips

in the system should be minimized.
– To minimize power consumption, lower power chips

should be used.
– However, using low power chips may mean that

more chips have to be used. Which is the most
critical requirement?

(Application) Domain requirements

• Derived from the application domain
• Describe system characteristics and features

that reflect the domain.
• Domain requirements

– new functional requirements,
– constraints on existing requirements,
– define specific computations.

• If domain requirements are not satisfied, the
system may be unworkable.

Library system domain requirements

• There shall be a standard user interface to all
databases which shall be based on the Z39.50
standard.

• Because of copyright restrictions, some
documents must be deleted immediately on
arrival. Depending on the user’s requirements,
these documents will either be printed locally
on the system server for manually forwarding
to the user or routed to a network printer.

Train protection system

• The deceleration of the train shall be
computed as:
– Dtrain = Dcontrol + Dgradient

 where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of
9.81ms2 /alpha are known for different
types of train.

Domain requirements problems

• Understandability
– Requirements are expressed in the language of the

application domain;
– This is often not understood by software engineers

developing the system.

• Implicitness
– Domain specialists understand the area so well that

they do not think of making the domain
requirements explicit.

Guidelines for writing requirements

• Invent a “standard” format and use it for all
requirements.

• Use language in a consistent way. Use shall or
must for mandatory requirements, should for
desirable requirements

• Use text highlighting to identify key parts of
the requirement

• Avoid the use of computer jargon

• See Reading on the Schedule

Requirements and design

• In principle, requirements should state what
the system should do and the design should
describe how it does this

• In practice, requirements and design are
inseparable
– A system architecture may be designed to

structure the requirements;
– The system may inter-operate with other systems

that generate design requirements;
– The use of a specific design may be a domain

requirement.

The requirements document

• The official statement of what is required of
the system developers.
– includes a definition of user requirements
– includes a specification of the system

requirements.

• It is NOT a design document.
– As far as possible, it should determine WHAT the

system should do rather than HOW it should do it

Users of a requirements document

Use the requirements to
develop validation tests for
the system.

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

Use the requirements to
understand what system is
to be developed.

System test
engineers

Managers

System
engineers

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

System
customers

Use the requirements to
understand the system and
the relationships between its
parts.

System
maintenance

engineers

Problems with NL specification

• Ambiguity
– The readers and writers of the requirement must

interpret the same words in the same way. NL is
naturally ambiguous so this is very difficult.

• Over-flexibility
– The same thing may be said in a number of

different ways in the specification.
• Lack of modularization

– NL structures are inadequate to structure system
requirements.

Alternatives to NL specification

Structured language specifications

• The freedom of the requirements writer is
limited by a predefined template for
requirements

• All requirements are written in a standard way
• The terminology used in the description may

be limited
• The advantage is that the most of the

expressiveness of natural language is
maintained but a degree of uniformity is
imposed on the specification

Form-based specifications

• Definition of the function or entity
• Description of inputs and where they come

from
• Description of outputs and where they go to
• Indication of other entities required
• Pre and post conditions (if appropriate)
• The side effects (if any) of the function

Form-based node specification

Tabular specification

• Used to supplement natural language

• Particularly useful when you have to define a
number of possible alternative courses of
action

Tabular specification

Graphical models

• Graphical models are most useful when you
need to show how state changes or where you
need to describe a sequence of actions

Sequence diagrams

• These show the sequence of events that take
place during some user interaction with a
system

• You read them from top to bottom to see the
order of the actions that take place

• Cash withdrawal from an ATM
– Validate card
– Handle request
– Complete transaction

Sequence Diagram of ATM withdrawal

64

Interface specification

• Most systems must operate with other
systems and the operating interfaces must be
specified as part of the requirements

• Three types of interface may have to be
defined
– Procedural interfaces (i.e., APIs)
– Data structures that are exchanged
– Data representations (e.g., the ordering of bits)

• Formal notations are an effective technique
for interface specification

Interface description

The requirements document

• The requirements document is the official
statement of what is required of the system
developers

• Should include both a definition of user
requirements and a specification of the
system requirements

• It is NOT a design document. As far as
possible, it should set of WHAT the system
should do rather than HOW it should do it

IEEE requirements standard

• Defines a generic structure for a
requirements document that must be
instantiated for each specific system.
– Introduction.
– General description.
– Specific requirements.
– Appendices.
– Index.

Requirements document structure

• Preface
• Introduction
• Glossary
• User requirements definition
• System architecture
• System requirements specification
• System models
• System evolution
• Appendices
• Index

Examples of requirements

• iTrust Medical Care Requirements
Specification:
– http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=requirements

• iTrust Medical Care Requirements
Specification:
– http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=requirements

Key points

• Requirements set out what the system should do and
define constraints on its operation and implementation
– Functional requirements set out services the system should

provide.
– Non-functional requirements constrain the system being

developed or the development process.

• User requirements are high-level statements of what
the system should do

• System specifications are intended to communicate
the functions that the system should provide

• A software requirements document is an agreed
statement of the system requirements.

Acknowledgements

• Many slides courtesy of Rupak Majumdar

69

