
Use Cases

Reference: Craig Larman, Applying UML and Patterns, Ch. 6

Use Case
What it is:
 Text story
 Widely used to discover and record (mostly functional)

requirements
 What is it about:

 Some actor(s) using a system to meet specific goals
 Answering questions:

 Who is using the system, what are their typical
scenarios of use, and what are their goals?

What it is NOT:
Not object-oriented

 Not a diagram
 UML use cases diagrams are “secondary-value”

artifacts
Focus: use cases, not use case diagrams

Example: Point of Sale

1.Customer arrives at a checkout (+goods).
2.Cashier uses POS system to record items.
3.System presents a running total and line-

item details.
4.Customer enters payment information,

which the system validates and records.
5.System updates inventory.
6.Customer receives receipt from the system

and leaves.

Actors, Scenarios, and Use Cases

Actor: entity that shows a behavior,
 e.g.: a person (role), computer system, or organization
Scenario: specific sequence of actions and interactions
between actors and a system

use case instance
singe path of using the system
e.g., purchasing 10 items with cash (or even more detailed)

Use case: collection of related success & failure
scenarios that describe an actor using a system to
support a goal

Use Case Example with Scenarios
(casual format)
 UC Handle Returns
 Main success Scenario: A customer arrives at a

checkout with items to return. The cashier uses
the POS system to record each returned item …

 Alternate Scenarios:
 if the customer paid by credit ...
 If the item identifier is not found in the system …
 If the system detects failure to communicate with the

external accounting system …

Use-Case Model

Set of all written use cases
Model of the system’s functionality and
environment
Unified Process (UP) defined artifact within the
requirements discipline

UP also requires glossary.
May optionally include a UML use case diagram

use cases, actors, and their relationships
context diagram

Three Kinds of Actors

Primary actor
has user goals fulfilled through using services of the system under
discussion
drives the use cases

Supporting actor
provides a service to the system under discussion
e.g., payment authorization service

implies: clarification of external interfaces and protocols needed

Offstage actor
has an interest in the behavior of the use case, but is not primary or
supporting
e.g., a government tax agency

Use Case Format
Brief

Succinct one-paragraph summary
usually the main success scenario
done during early requirements analysis
should take only a couple of minutes

Casual
informal paragraph format
multiple paragraphs covering various scenarios

Fully dressed
details all steps and variations
includes supporting sections such as preconditions and success
guarantees
mainly done after many use cases are identified and during early
requirements workshop for high-value and high-risk requirements
(e.g., core architectural)

A Template for Fully Dressed Style
• Use case name

• start with a verb
• Scope

• the system under design
• Level

• user goal or subfunction level
• Primary actor

• calls on the system to deliver a
service

• Stakeholders and interests
• who cares about this use case, and

what do they want?
• Preconditions

• what must be true on start, and
worth telling the reader

• Success guarantee (postcondition)
• what must be true on successful

completion, and worth telling the reader

• Main success scenario
• a typical, unconditional happy
path scenario of success

• Extensions
• alternate scenarios of success
and failure

• Special requirements
• related non-functional
requirements

• Technology and data
variations list
•varying I/O methods and date
formats

• Frequency of occurrence
• Miscellaneous

Coffee Maker Example

Example of a “semi” fully dressed use case
CoffeeMaker

http://agile.csc.ncsu.edu/SEMaterials/tutorials/coffee_maker/

Template for a fully dressed use case

Write in an Essential Style
(early phase)

Keep the user interface out
Focus on actor intent
User’s intentions and system’s responsibilities rather
than their concrete actions
Example
 Manage Users:
 1. Administrator identifies self.
 2. System authenticates identity.

Another is concrete style that embeds user interface decisions
- avoid during early analysis
Example

 1. Administrator enters ID and Password in a dialog box

Write Black-Box Use Cases

Focus on what the system must do,
 i.e., the behavior or functional requirements
 Not on how it will do (the design)
Examples:

Good: The system records the sale
Bad: The system writes the sale to the database.
Worse: System generates SQL INSERT statement for the sale

Take an Actor and Actor-Goal Perspective

Use case definition by Jacobson
A set of use-case instances, where each instance is
a sequence of actions a system performs that
yields an observable result of value to a particular
actor [Jacobson]

Write requirements focusing
 on the users/actors of a system,
 asking about their goals and typical situations
 and what they consider a valuable result

Actor-Goal List

One Column vs Two Column Format
Two column emphasizes interaction

How to Find Use Cases?

Choose the system boundary
what you are building?
who will be using the system?
what else will be used that you are not building?

Find primary actors and their goals
brainstorm the primary actors first
who starts and stops the system?
who gets notified when there are errors or failures?

Define use cases that satisfy user goals
prepare an actor-goal list (and not actor-task list)
in general, one use case for each user goal
name the use case similar to the user goal

What Tests Can Help Find Useful Use
Cases?

Which of these are valid use cases?
 Negotiate a Supplier Contract
 Handle Returns
 Log in
 Move Piece on the Game Board

What Tests Can Help Find Useful Use
Cases?

Which of these are valid use cases?
 Negotiate a Supplier Contract
 Handle Returns
 Log in
 Move Piece on the Game Board

All of these can be use cases
at different levels,
depending on the system, boundary, actors, and
goals

What Tests Can Help Find Useful Use
Cases?

Rather than asking
 ”What is a valid use case?”
More practical question:
 “What is a useful level of focus to express use

cases for application requirements analysis?”
Rules of thumb
 The Boss Test
 The EBP Test
 The size test

What Tests Can Help Find Useful Use
Cases?

The boss test
“What have you been doing all day?”
 Your reply “logging in!”

 Is your boss happy? No value? No good use case!

The Elementary Business Process (EBP) test
a task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves data in a consistent state
Good Examples: Approve Credit or Price Order
Bad Examples: delete a line item or print the document

The size test
 Just a single step in a sequence of others -> not good!

Applying Tests

Negotiate a supplier contract
Much broader than EBP, rather a business use case

Handle returns
OK with the Boss. EBP. Size is good.

Log in
Boss is not happy is this is all you do all day!

Move piece on game board
 Single step – fails the size test.

Use Case (Context) Diagrams:
Suggested Notation

Use Case Diagrams

Downplay diagramming, Keep it short and simple
Focus on text
Do not focus on use case relationships

Context diagram of the system
Shows boundary
What lies outside of it
How it gets used
Should be done in conjunction

with an actor-goal list

Alternative Actor Notation

Use Cases form Basis for Others

Use Cases in Iterative Development

Functional requirements are primarily captured
in use cases
Use cases drive the iteration planning and work
Easy for users to understand
Influence user manual/documentation
Functional or system testing corresponds to the
scenarios of use cases
Independent of implementing technology
UI shortcuts for most common scenarios

More examples?
iTrust

http://agile.csc.ncsu.edu/iTrust/wiki/
doku.php

 Questions/Comments/Thoughts?

Credits

 Contents adopted from Applying UML
and Patterns - Larman and
www.craiglarman.com

