
Software Architecture

Software architecture

• The design process for identifying the sub-
systems making up a system and the
framework for sub-system control and
communication is architectural design

• The output of this design process is a
description of the software architecture

Architectural design

• An early stage of the system design process
• Represents the link between specification and

design processes
• Often carried out in parallel with some

specification activities
• It involves identifying major system

components and their communications

Advantages

• Stakeholder communication
– Architecture may be used as a focus of discussion

by system stakeholders

• System analysis
– Means that analysis of whether the system can

meet its non-functional requirements is possible

• Large-scale reuse
– The architecture may be reusable across a range of

systems

Architectural design decisions

• Is there a generic application architecture that can
be used?

• (How) will the system be distributed?
• How will the system be decomposed into modules?
• How will the architectural design be evaluated?
• How should the architecture be documented?

Architecture reuse

• Systems in the same domain often have similar
architectures that reflect domain concepts

• Application product lines are built around a
core architecture with variants that satisfy
particular customer requirements

• Examples?

Architectural styles

• In order to create more complex software it is
necessary to compose programming patterns

• For this purpose, it has been useful to induct a set of
patterns known as “architectural styles”

• Examples:
– Pipe and filter
– Event based/event driven
– Layered
– Repository
– Object-oriented
– Model-view-controller

Software Architectural Styles

• Constituent parts:
– Components
– Connectors
– Interfaces
– Configurations

Example

What are components?

• Components are the loci of computation
– Components “do the work” in the architecture

• May be coarse-grained (an editor)
• …or fine grained (a clock emitting ticks)

What are connectors?

• Connectors are the loci of communication
– Connectors facilitate communication among

components
• May be fairly simple (Broadcast Bus)
• …or complicated (Middleware-enabled)
• May be implicit (events)
• …or explicit (procedure calls, ORBs, explicit

communications bus)

What are interfaces?

• Interfaces are the connection points on
components and connectors
– They define where data may flow in and out of the

components/connectors
• May be loosely specified (events go in, events go out)
• …or highly specified

What are configurations?

• Configurations are arrangements of
components and connectors to form an
architecture

Common architectural styles

• Pipe-and-filter
• Repositories
• Event based systems (implicit invocation)
• Model-View-Controller
• Layered systems
• Object-oriented architectures

Pipe-and-filter

• Data flow styles: Filters transform input into output
– components: filters -computational i.e. retain minimal state

– connectors: data streams

– control: data flow between components
– Topologies: arbitrary, acyclic, pipeline (linear)

• A series of independent, sequential transformations on ordered data.

• A component has a set of inputs and outputs.

• A component reads a stream of data and produces a stream of data.

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe
pipe

pipe

pipe
pipe pipe

pipe

Source: Adapted from Shaw & Garlan 1996, p21-2.

Example: Traditional Compilers

Pipe-and-filter

• Examples:
– UNIX shell commands
– Compilers:

• Lexical Analysis -> parsing -> semantic analysis -> code
generation

– Signal Processing

• Interesting properties:
– filters are independent entities
– filters don’t need to know anything about what they

are connected to

Example: Click

• Network routers are complicated pieces of
code

• Eddie Kohler’s idea: Write routers as modular
components connected by pipe-and-filter

Pipe-and-filter

• Advantages
– Overall behavior can be understood as a simple

composition of the behaviors of individual filters
– Support reuse

• Existing filters can be hooked up to form a system

– Easy maintenance and enhancement
• New filters can replace old ones

– They support parallel execution
– Support specialized analysis, such as throughput

and deadlock analysis

Pipe-and-filter

• Disadvantages
– Not good for handling interactive applications

• Complete transformation of input data to output data

– Difficult to maintain correspondences between two
separate but related streams

– Extra overhead to parse and unparse data

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

Source: Adapted from Shaw & Garlan 1996, p26-7.

Repositories

• Repositories: blackboard or database: Centralized data, usually structured
– components: central data store, many computational objects

– connectors: computational objects interact with central store directly or via
method invocation

– control: may be external, predetermined or internal

– topology: star

• Maintaining and managing a richly structured body of information

• Data is long-lived and its integrity is important

• Data can be manipulated in different ways

Example: Compiler Optimization

Repositories

• Examples
– databases
– modern compilers
– programming environments

• Interesting properties
– can choose where the locus of control is (agents,

blackboard, both)
– reduce the need to duplicate complex data

• Disadvantages
– blackboard becomes a bottleneck

broadcast
medium

agent

agent

agent

agent

announce
event

announce
event

listen for event

listen for
eventbroadcast

medium

Source: Adapted from Shaw & Garlan 1996, p23-4.

Event based (implicit invocation)

• event based: implicit invocation: Independent reactive objects
(or processes)
– components: objects that register interest in “events” and objects

that “signal events”

– connectors: automatic method invocation

– control: decentralized, de-coupling of sender and receiver
– topologies: arbitrary

Event based (implicit invocation)

• Examples
– debugging systems (listen for particular breakpoints)
– database management systems (for data integrity checking)
– graphical user interfaces

• Interesting properties
– announcers of events don’t need to know who will handle the

event
– Supports re-use
– Supports evolution of systems (add new agents easily)

• Disadvantages
– Components have no control over ordering of computations
– Nor do they know when they are finished
– Correctness reasoning is difficult

More Examples

• Web servers, file servers

• Embedded Systems
– Sensor networks

• Business processes (Long running transactions)

Model-View-Controller

Example of Model-View-Controller

kernel

utilities
application layer

users

Source: Adapted from Shaw & Garlan 1996, p25.

Layered Systems

• Layered system: Independent processes
– Components: processes
– Connectors: protocols that determine how layers

interact
– Topologies: layered

Example: ISO Network Protocol

Layered Systems

• Examples
– Operating Systems
– Communication protocols

• Interesting properties
– Support increasing levels of abstraction during

design
– Support enhancement (add functionality)

• Change in one layer affects at most two layers
– Reuse

• can define standard layer interfaces
• interchange implementations of same interface

Layered Systems

• Disadvantages
– May not be able to identify (clean) layers
– For performance reasons one layer may want to

communicate with a non-adjacent layer
• Especially true in real-time performance critical systems

(cross layer design may be more efficient)

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

Source: Adapted from Shaw & Garlan 1996, p22-3.

Object Oriented Architectures

• Objected-oriented styles: data abstraction: Localized state
maintenance (encapsulation)
– components: managers

– connectors: method invocation

– control: decentralized
– topologies: arbitrary

• Examples:
– abstract data types
– object broker systems (e.g. CORBA)

• Interesting properties
– data hiding (internal data representations are not

visible to clients)
• Can change implementation without affecting clients

– can decompose problems into sets of interacting agents

• Disadvantage
– objects must know the identity of objects they wish to

interact with

Object Oriented Architectures

Summary

• Architecture is what enables us to “scale up”
our software to handle larger applications

• You must gain the ability to match the right
architecture to the right application

Think About…

• How can architectures help reason about non-
functional requirements?
– Safety?
– Security?
– Dependability?
– Performance?
– Availability?
– Maintainability?
– …

Examples

• Performance
– Localize critical operations and minimize communications. Use

large rather than fine-grain components.

• Security
– Use a layered architecture with critical assets in the inner layers

• Safety
– Localise safety-critical features in a small number of sub-

systems

• Availability
– Include redundant components and mechanisms for fault

tolerance

• Maintainability
– Use fine-grain, replaceable components.

Conflicts

• Using large-grain components improves
performance but reduces maintainability

• Introducing redundant data improves availability
but makes security/consistency more difficult

• Localizing safety-related features usually means
more communication so degraded performance

Distributed Architectures

Distributed systems architectures

• Client-server architectures
– Distributed services which are called on by clients.

Servers that provide services are treated
differently from clients that use services.

• Distributed object architectures
– No distinction between clients and servers. Any

object on the system may provide and use services
from other objects.

Middleware

• Software that manages and supports the different
components of a distributed system. In essence, it
sits in the middle of the system.

• Middleware is usually off-the-shelf rather than
specially written software.

• Examples
– Transaction processing monitors;
– Data converters;
– Communication controllers.

Multiprocessor architectures

• Simplest distributed system model.
• System composed of multiple processes which

may (but need not) execute on different
processors.

• Architectural model of many large real-time
systems.

• Distribution of process to processor may be
pre-ordered or may be under the control of a
dispatcher.

Client-server architectures

• Application modeled as a set of
– services provided by servers and
– set of clients that use these services
– Network for communication

• Clients know of servers but servers need not
know of clients

• Clients and servers are logical processes

Client-server characteristics

• Advantages
– Distribution of data is straightforward
– Makes effective use of networked systems
– Easy to add new servers or upgrade existing servers

• Disadvantages
– No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient
– Redundant management in each server;
– No central register of names and services - it may be hard to

find out what servers and services are available

Thin and fat clients

• Thin-client model
– All of the application processing and data

management is carried out on the server
– Client is responsible for running the presentation

software

• Fat-client model
– Server is only responsible for data management
– Software on the client implements the application

logic and the interactions with the system user

Thin client model

• Used when legacy systems are migrated to
client server architectures.
– Legacy system acts as a server in its own right with

a graphical interface implemented on a client.

• Disadvantage:
– places a heavy processing load on both the server

and the network
– latency

Fat client model

• More processing is delegated to the client as
the application processing is locally executed

• Most suitable for new systems where the
capabilities of the client system are known in
advance

• More complex than a thin client model
especially for management. New versions of the
application have to be installed on all clients.

Layered application architecture

• Presentation layer
– Concerned with presenting the results of a computation to

system users and with collecting user inputs

• Application processing layer
– Concerned with providing application specific functionality

e.g., in a banking system, banking functions such as open
account, close account, etc.

• Data management layer
– Concerned with managing the system databases

Three-tier architectures

• Allows for better performance than a thin-
client approach

• Simpler to manage than a fat-client approach

• Recall: MVC

• A more scalable architecture - as demands
increase, extra servers can be added.

Distributed object architectures

• There is no distinction in a distributed object
architectures between clients and servers.

• Each distributable entity is an object that provides
services to other objects and receives services from
other objects.

• Object communication is through a middleware system
called an object request broker.

• However, distributed object architectures are more
complex to design than C/S systems.

Advantages

• Can delay decisions on where and how services should
be provided

• New resources to be added to it as required
• Scaleable
• Possible to reconfigure the system dynamically with

objects migrating across the network as required

CORBA

• CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects

• Middleware for distributed computing is required at 2
levels:
– At the logical communication level, the middleware allows

objects on different computers to exchange data and control
information;

– At the component level, the middleware provides a basis for
developing compatible components. CORBA component
standards have been defined.

Service-oriented architectures

• Based around the notion of externally
provided services (web services)

• A web service is a standard approach to
making a reusable component available and
accessible across the web
– A tax filing service could provide support for users

to fill in their tax forms and submit these to the
tax authorities

Services and distributed objects

• Provider independence
• Public advertising of service availability

• Opportunistic construction of new services through
composition (e.g., mashups)

• Smaller, more compact, loosely coupled applications

Services standards

• Services are based on agreed, XML-based
standards so can be provided on any platform
and written in any programming language.

• Key standards
– SOAP - Simple Object Access Protocol;
– WSDL - Web Services Description Language;
– UDDI - Universal Description, Discovery and

Integration.

Automotive system

User interface

Locator

Discovers car
position

Weather
info

Receives request
from user

Receiver

Receives
information stream

from services

Transmitter

Sends position and
information request

to services

Radio

Translates digital
info stream to
radio signal

In-car software system

Mobile Info Service

Facilities
info

Translator

Road
locator

Traffic
info

Collates information

Road traffic info

command
gps coord

gps
coord gps coordgps coord

Language
infoInfo

stream

Service discovery

Finds available
services

