
Software Architecture



Software architecture

• The design process for identifying the sub-
systems making up a system and the 
framework for sub-system control and 
communication is architectural design

• The output of this design process is a 
description of the software architecture



Architectural design

• An early stage of the system design process
• Represents the link between specification and 

design processes
• Often carried out in parallel with some 

specification activities
• It involves identifying major system 

components and their communications



Advantages

• Stakeholder communication
– Architecture may be used as a focus of discussion 

by system stakeholders

• System analysis
– Means that analysis of whether the system can 

meet its non-functional requirements is possible

• Large-scale reuse
– The architecture may be reusable across a range of 

systems



Architectural design decisions

• Is there a generic application architecture that can 
be used?

• (How) will the system be distributed?
• How will the system be decomposed into modules?
• How will the architectural design be evaluated?
• How should the architecture be documented?



Architecture reuse

• Systems in the same domain often have similar 
architectures that reflect domain concepts

• Application product lines are built around a 
core architecture with variants that satisfy 
particular customer requirements

• Examples?



Architectural styles

• In order to create more complex software it is 
necessary to compose programming patterns 

• For this purpose, it has been useful to induct a set of 
patterns known as “architectural styles” 

• Examples: 
– Pipe and filter 
– Event based/event driven 
– Layered 
– Repository 
– Object-oriented
– Model-view-controller



Software Architectural Styles

• Constituent parts: 
– Components 
– Connectors 
– Interfaces 
– Configurations



Example



What are components?

• Components are the loci of computation 
– Components “do the work” in the architecture 

• May be coarse-grained (an editor) 
• …or fine grained (a clock emitting ticks)



What are connectors?

• Connectors are the loci of communication 
– Connectors facilitate communication among 

components 
• May be fairly simple (Broadcast Bus) 
• …or complicated (Middleware-enabled) 
• May be implicit (events) 
• …or explicit (procedure calls, ORBs, explicit 

communications bus) 



What are interfaces?

• Interfaces are the connection points on 
components and connectors 
– They define where data may flow in and out of the 

components/connectors 
• May be loosely specified (events go in, events go out) 
• …or highly specified



What are configurations?

• Configurations are arrangements of 
components and connectors to form an 
architecture



Common architectural styles

• Pipe-and-filter
• Repositories
• Event based systems (implicit invocation)
• Model-View-Controller
• Layered systems
• Object-oriented architectures



Pipe-and-filter

• Data flow styles: Filters transform input into output 
– components: filters -computational i.e. retain minimal state 

– connectors: data streams 

– control: data flow between components 
– Topologies: arbitrary, acyclic, pipeline (linear) 

• A series of independent, sequential transformations on ordered data.

• A component has a set of inputs and outputs.

• A component reads a stream of data and produces a stream of data.
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Example: Traditional Compilers



Pipe-and-filter

• Examples:
– UNIX shell commands
– Compilers:

• Lexical Analysis -> parsing -> semantic analysis -> code 
generation

– Signal Processing

• Interesting properties:
– filters are independent entities
– filters don’t need to know anything about what they 

are connected to



Example: Click

• Network routers are complicated pieces of 
code

• Eddie Kohler’s idea: Write routers as modular 
components connected by pipe-and-filter



Pipe-and-filter

• Advantages
– Overall behavior can be understood as a simple 

composition of the behaviors of individual filters
– Support reuse

• Existing filters can be hooked up to form a system

– Easy maintenance and enhancement
• New filters can replace old ones

– They support parallel execution
– Support specialized analysis, such as throughput 

and deadlock analysis



Pipe-and-filter

• Disadvantages
– Not good for handling interactive applications

• Complete transformation of input data to output data

– Difficult to maintain correspondences between two 
separate but related streams

– Extra overhead to parse and unparse data
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Source: Adapted from Shaw & Garlan 1996, p26-7. 

Repositories

• Repositories: blackboard or database: Centralized data, usually structured
– components: central data store, many computational objects   

– connectors: computational objects interact with central store directly or via 
method invocation 

– control: may be external, predetermined or internal 

– topology: star

• Maintaining and managing a richly structured body of information

• Data is long-lived and its integrity is important

• Data can be manipulated in different ways



Example: Compiler Optimization



Repositories

• Examples
– databases
– modern compilers
– programming environments

• Interesting properties
– can choose where the locus of control is (agents, 

blackboard, both)
– reduce the need to duplicate complex data

• Disadvantages
– blackboard becomes a bottleneck
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Event based (implicit invocation)

• event based: implicit invocation: Independent reactive objects 
(or processes) 
– components: objects that register interest in “events” and objects 

that “signal events” 

– connectors: automatic method invocation 

– control: decentralized, de-coupling of sender and receiver 
– topologies: arbitrary



Event based (implicit invocation)

• Examples
– debugging systems (listen for particular breakpoints)
– database management systems (for data integrity checking)
– graphical user interfaces

• Interesting properties
– announcers of events don’t need to know who will handle the 

event
– Supports re-use
– Supports evolution of systems (add new agents easily)

• Disadvantages
– Components have no control over ordering of computations
– Nor do they know when they are finished
– Correctness reasoning is difficult



More Examples

• Web servers, file servers

• Embedded Systems
– Sensor networks

• Business processes (Long running transactions)



Model-View-Controller



Example of Model-View-Controller
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Layered Systems

• Layered system: Independent processes
– Components: processes 
– Connectors: protocols that determine how layers 

interact 
– Topologies: layered



Example: ISO Network Protocol



Layered Systems

• Examples
– Operating Systems
– Communication protocols

• Interesting properties
– Support increasing levels of abstraction during 

design
– Support enhancement (add functionality)

• Change in one layer affects at most two layers
– Reuse

• can define standard layer interfaces
• interchange implementations of same interface



Layered Systems

• Disadvantages
– May not be able to identify (clean) layers
– For performance reasons one layer may want to 

communicate with a non-adjacent layer
• Especially true in real-time performance critical systems 

(cross layer design may be more efficient)
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Object Oriented Architectures

• Objected-oriented styles: data abstraction: Localized state 
maintenance (encapsulation)
– components: managers 

– connectors: method invocation 

– control: decentralized
– topologies: arbitrary



• Examples:
– abstract data types
– object broker systems (e.g. CORBA)

• Interesting properties
– data hiding (internal data representations are not 

visible to clients)
• Can change implementation without affecting clients

– can decompose problems into sets of interacting agents

• Disadvantage
– objects must know the identity of objects they wish to 

interact with

Object Oriented Architectures



Summary

• Architecture is what enables us to “scale up” 
our software to handle larger applications 

• You must gain the ability  to match the right 
architecture to the right application 



Think About…

• How can architectures help reason about non-
functional requirements?
– Safety?
– Security?
– Dependability?
– Performance?
– Availability?
– Maintainability?
– …



Examples

• Performance
– Localize critical operations and minimize communications. Use 

large rather than fine-grain components.

• Security
– Use a layered architecture with critical assets in the inner layers

• Safety
– Localise safety-critical features in a small number of sub-

systems

• Availability
– Include redundant components and mechanisms for fault 

tolerance

• Maintainability
– Use fine-grain, replaceable components.



Conflicts

• Using large-grain components improves 
performance but reduces maintainability

• Introducing redundant data improves availability 
but makes security/consistency more difficult

• Localizing safety-related features usually means 
more communication so degraded performance



Distributed Architectures



Distributed systems architectures

• Client-server architectures
– Distributed services which are called on by clients. 

Servers that provide services are treated 
differently from clients that use services.

• Distributed object architectures
– No distinction between clients and servers. Any 

object on the system may provide and use services 
from other objects.



Middleware

• Software that manages and supports the different 
components of a distributed system. In essence, it 
sits in the middle of the system.

• Middleware is usually off-the-shelf rather than 
specially written software.

• Examples
– Transaction processing monitors;
– Data converters;
– Communication controllers.



Multiprocessor architectures

• Simplest distributed system model.
• System composed of multiple processes which 

may (but need not) execute on different 
processors.

• Architectural model of many large real-time 
systems.

• Distribution of process to processor may be 
pre-ordered or may be under the control of a 
dispatcher.



Client-server architectures

• Application modeled as a set of 
– services provided by servers and 
– set of clients that use these services
– Network for communication

• Clients know of servers but servers need not 
know of clients

• Clients and servers are logical processes 



Client-server characteristics

• Advantages
– Distribution of data is straightforward
– Makes effective use of networked systems
– Easy to add new servers or upgrade existing servers

• Disadvantages
– No shared data model so sub-systems use different data 

organisation. Data interchange may be inefficient
– Redundant management in each server;
– No central register of names and services - it may be hard to 

find out what servers and services are available



Thin and fat clients

• Thin-client model 
– All of the application processing and data 

management is carried out on the server
– Client is responsible for running the presentation 

software

• Fat-client model 
– Server is only responsible for data management
– Software on the client implements the application 

logic and the interactions with the system user



Thin client model

• Used when legacy systems are migrated to 
client server architectures. 
– Legacy system acts as a server in its own right with 

a graphical interface implemented on a client.

• Disadvantage: 
– places a heavy processing load on both the server 

and the network
– latency



Fat client model

• More processing is delegated to the client as 
the application processing is locally executed

• Most suitable for new systems where the 
capabilities of the client system are known in 
advance

• More complex than a thin client model 
especially for management. New versions of the 
application have to be installed on all clients.



Layered application architecture

• Presentation layer
– Concerned with presenting the results of a computation to 

system users and with collecting user inputs

• Application processing layer
– Concerned with providing application specific functionality 

e.g., in a banking system, banking functions such as open 
account, close account, etc.

• Data management layer
– Concerned with managing the system databases



Three-tier architectures

• Allows for better performance than a thin-
client approach 

• Simpler to manage than a fat-client approach

• Recall: MVC

• A more scalable architecture - as demands 
increase, extra servers can be added.



Distributed object architectures

• There is no distinction in a distributed object 
architectures between clients and servers.

• Each distributable entity is an object that provides 
services to other objects and receives services from 
other objects.

• Object communication is through a middleware system 
called an object request broker. 

• However, distributed object architectures are more 
complex to design than C/S systems.



Advantages

• Can delay decisions on where and how services should 
be provided

• New resources to be added to it as required
• Scaleable
• Possible to reconfigure the system dynamically with 

objects migrating across the network as required



CORBA

• CORBA is an international standard for an Object 
Request Broker - middleware to manage 
communications between distributed objects

• Middleware for distributed computing is required at 2 
levels:
– At the logical communication level, the middleware allows 

objects on different computers to exchange data and control 
information;

– At the component level, the middleware provides a basis for 
developing compatible components. CORBA component 
standards have been defined.



Service-oriented architectures

• Based around the notion of externally 
provided services (web services)

• A web service is a standard approach to 
making a reusable component available and 
accessible across the web
– A tax filing service could provide support for users 

to fill in their tax forms and submit these to the 
tax authorities



Services and distributed objects

• Provider independence
• Public advertising of service availability

• Opportunistic construction of new services through 
composition (e.g., mashups)

• Smaller, more compact, loosely coupled applications



Services standards

• Services are based on agreed, XML-based 
standards so can be provided on any platform 
and written in any programming language.

• Key standards
– SOAP - Simple Object Access Protocol;
– WSDL - Web Services Description Language;
– UDDI - Universal Description, Discovery and 

Integration.
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