Computer Science 616 - Stochastic Models in Computer Science Fall 2007, Homework 2, due Sept 17 at noon

- 1. (Section 2, Exercise 12) On an exam with five multiple-choice questions, each with three possible answers, what is the probability of getting four or more correct answers by guessing? 10
- 2. (Section 2, Exercise 30) Assume that $X \sim Poisson(\lambda)$. Show that, for $i \ge 0$, $p_X(i)$ grows monotonically as a function of *i* until *i* reaches $|\lambda|$, then it decreases monotonically after that. 20
- 3. What is the distribution (pmf) and the expectation of the random variable X representing the *algebraic difference* (i.e., the value of X value can be negative) between the number of heads and tails obtained in n tosses, if p is the probability of the coin coming up heads? 20
- 4. Assume that n independent experiments are performed, and that, for each of them, the outcome is i = 1, 2, ..., r with probability $p_1, p_2, ..., p_r$, respectively (thus, $\sum_{i=1}^r p_i = 1$). What is the probability that exactly $x_1, x_2, ..., x_r$ outcomes occur of each type (with $x_1+x_2+\cdots x_r = n$)? Provide a function for the pmf, argue why the function need to be as you define it, and finally provide a formal proof that the function is indeed a probability distribution. Hint: high dimensional problems have small dimensional special cases that may be helpful for a better understanding and to recognize how one may reach the general case.

50