Computer Science 616-Stochastic Models in Computer Science Fall 2007, Homework 2, due Sept 17 at noon

1. (Section 2, Exercise 12) On an exam with five multiple-choice questions, each with three possible answers, what is the probability of getting four or more correct answers by guessing?
2. (Section 2, Exercise 30) Assume that $X \sim \operatorname{Poisson}(\lambda)$. Show that, for $i \geq 0, p_{X}(i)$ grows monotonically as a function of i until i reaches $\lfloor\lambda\rfloor$, then it decreases monotonically after that.
3. What is the distribution (pmf) and the expectation of the random variable X representing the algebraic difference (i.e., the value of X value can be negative) between the number of heads and tails obtained in n tosses, if p is the probability of the coin coming up heads?
4. Assume that n independent experiments are performed, and that, for each of them, the outcome is $i=1,2, \ldots, r$ with probability $p_{1}, p_{2}, \ldots, p_{r}$, respectively (thus, $\sum_{i=1}^{r} p_{i}=1$). What is the probability that exactly $x_{1}, x_{2}, \ldots, x_{r}$ outcomes occur of each type (with $x_{1}+x_{2}+\cdots x_{r}=$ $n)$? Provide a function for the pmf, argue why the function need to be as you define it, and finally provide a formal proof that the function is indeed a probability distribution.
Hint: high dimensional problems have small dimensional special cases that may be helpful for a better understanding and to recognize how one may reach the general case.
