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The Four Steps of Modeling

Select the model class

General structure of the analysis result

”Architecture” or ”model class”

Example: Linear or quadratic functions for regression problem

Select the score function

Evaluate possible ”models” using a score function

Apply the algorithm

Compare models through the score function

But: How do we find the models?

Validate the results

We know: Best model among the chose ones

But: Is this the best among very good or very bad choices?
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Model class?

Model = The form or structure of the analysis result

Here the parameters are not defined only the type is selected

Examples:

Linear models (y = ax+ b)
Constant values (e.g. mean)
Rule based models (if A buys product one, then weather is sunny)
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Model class - Requirements

Simplicity

Occam’s razor:

Choose the simplest model that still ”explains” the data.
Or : Numquam ponenda est pluralitas sine necessitate

= [Plurality must never be posited without necessity]

easier to understand

lower complexity

avoid overfitting(see Slide 21 ff.)

Interpretability

Black-Boxes are mostly not a proper choice

But: They can result in a very good accuracy(e.g. neural networks)
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Model class - Requirements

Simplicity

Occam’s razor:

Choose the simplest model that still ”explains” the data.
Or : Numquam ponenda est pluralitas sine necessitate

= [Plurality must never be posited without necessity]

easier to understand

lower complexity

avoid overfitting(see Slide 21 ff.)

Interpretability

Black-Boxes are mostly not a proper choice

But: They can result in a very good accuracy(e.g. neural networks)

Compendium slides for “Guide to Intelligent Data Analysis”, Springer 2011.
c©Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn and Iris Adä 4 / 50



Global vs. local models

Global models provide a (not necessarily good) description for the
whole data set.
Example: Regression line

Local models or patterns provide a description for only a part or
subset of the data set.
Example: Association rules
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Fitting Criteria and Score Function

find an objective function f :M→ IR

Which, evaluates the quality of your model

In order to detect the ”best” model

Example

Given: Dataset D = {d1, d2, ...dn} ∈ IRm and ”model” M : IRm → IRm

(M predicts a value for a given data point).

Mean squared error : f(x) = 1
n

∑n
i=1 (x−M(x))2

Mean absolute error : f(x) = 1
n

∑n
i=1 |x−M(x)|
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Short comment : What is classification?

Example

Imagine a cup factory,
which wants to classify their cups as good or broken.
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Error functions for classification problems

How to set up an error function for those classification problems?

Very common misclassification rate = # wrong classified
# total classified

A low misclassification rate does not necessarily tell anything about
the quality of a classifier.

when classes are unbalanced (e.g. When 99% of the production are
ok, a classifier always predicting ok will have a misclassification rate
of 1%.)
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Cost matrix

More general approach than the misclassification rate: cost function
or cost matrix.

The consequences (costs) for misclassification for one class might be
different than for another class.

Example

Tea cup production.

Cost matrix

predicted class
true class OK broken

OK 0 c1
broken c2 0
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Cost matrix

General form of a cost matrix for a multi-class classification problem:

predicted class
true class c1 c2 . . . cm

c1 0 c1,2 . . . c1,m
c1 c2,1 0 . . . c2,m
...

...
...

. . .
...

cm cm,1 cm,2 . . . 0
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Cost matrix

When such a cost matrix is provided, the expected loss given by

loss(ci|E) =

m∑
j=1

P (cj |E)cji

should be minimized.

E is the evidence, i.e. the observed values of the predictor attributes
used for the classification.

P (cj |E) is the predicted probability that the true class is cj given
observation E.
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Cost matrix

Example

(Hypothetical) cost matrix for the tea cup production problem
true class OK broken

OK 0 1
broken 10 0

A classifier might classify a specific cup with 80% to the class ok and with
20% to the class broken.

Expected loss for choosing ok: 0.8 · 0 + 0.2 · 10 = 2.

Expected loss for choosing broken: 0.8 · 1 + 0.2 · 0 = 0.8.

Choose broken in this case to minimize the expected loss!
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Cost matrix

Using the cost matrix

predicted class
true class c1 c2 . . . cm

c1 0 1 . . . 1
c1 1 0 . . . 1
...

...
...

. . .
...

cm 1 1 . . . 0

corresponds to minimising the misclassification rate.
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Algorithms for model fitting

The objective function (scoring function) for models

does not tell us how to find the best or a good model,

it only provides a means for comparing models.

Optimisation algorithms to find the best or at least a good model are
needed.
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Closed form solutions

In the best case, an explicit solution can be provided.

Example

Find a regression line y = ax+ b that minimizes the mean square error for
the data set (x1, y1), . . . , (xn, yn). Computing partial derivatives of the
objective (error) function

E(a, b) =
1

n

n∑
i=1

(axi + b− yi)2

w.r.t. the paramaters a and b yields

∂E
∂a = 2

n

∑n
i=1(axi + b− yi)xi = 0,

∂E
∂b = 2

n

∑n
i=1(axi + b− yi) = 0.
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Closed form solutions

Example

The solution of this system of equations is

a =
n
∑n

i=1 xiyi − (
∑n

i=1 xi) (
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 ,

b = ȳ − ax̄

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.
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Algorithms for model fitting

For differentiable score functions, a gradient methods can be applied.
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Algorithms for model fitting

For discrete problems with a finite search space (like finding
association rules), combinatorial optimization strategies are needed.

In principle, an exhaustive search of the finite domain M is possible,
however, in most cases it is not feasible, since M is much too large.

Example

Finding the best possible association rules with an underlying set of
1000 items (products).

Every combination of items, i.e. every nonempty subset is a possible
candidate set from which several rules may be constructed.

The number of nonempty subsets alone contains 21000 − 1 > 10300

elements.

Heuristic strategies are therefore needed.
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Algorithms for model fitting: Heuristic strategies

Random search. Create random solutions and choose the best one
among them.

Very inefficient

Greedy strategies. Formulate an algorithm that tries to improve the
solution in each step.

Example. Gradient method.
Example. Hillclimbing.
Start with a random solution,
generate new solutions in the “neighbourhood” of the solution.
If a new solution is better than the old one, generate new solutions in
its “neighbourhood”.

Can find a solution quickly, but get stuck in local optima.
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Algorithms for model fitting: Heuristic strategies

Simulated annealing is a mixture between random search and a
greedy strategy. Simulated annealing is a modified version of
hillclimbing, sometimes replacing better solutions by worse ones
with a (low) probability.
This probability is decreased in each iteration step.

Evolutionary algorithms like evolution strategies or genetic
algorithms combine random with greedy components, using a
population of solutions in order to explore the search space in parallel
and efficiently.

Alternating optimisation can be applied when the set of parameters
can be split into disjoint subsets in such a way that for each subset an
analytical solution for the optimum can be provided, given the
parameters in the other subsets are fixed. Alternating optimization
computes the analytical solution for the parameter subsets
alternatingly and iterates this scheme until convergence.
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Overfitting

Good fit to data is not necessarily the same as a good fit to concept!

fC(x)
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Overfitting

Good fit to data is not necessarily the same as a good fit to concept!

example data fC(x)
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Overfitting

Good fit to data is not necessarily the same as a good fit to concept!

fC(x)

fH(x)
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Overfitting

Overfitting

Fitting the noise rather than fitting the underlying relationship.

Typical indicator for overfitting: ”Perfect fit” e.g. the error gets near to
zero.
ONE solution: Choose a less flexible model.
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Model error

There are 4 parts of potential error origins, which sum up to the
overall error meassure

Error = Experimental error
+ Sample error
+ Model error
+ Algorithmic error
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Experimental Error

The pure error or experimental error is inherent in the data and
due to noise, random variations, imprecise measurements or the
influence of hidden variables that cannot be observed.

It is impossible to overcome this error by the choice of a suitable
model.

Also called intrinsic error.

In the context of classification problems it is also called Bayes error.
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ROC curves

How can a classifier be judged when no explicit cost matrix is known and
the misclassification rate might not be a good choice?

Consider a two class problem. (positive and negative)

Very often, classifiers provide a score for each class.
e.g. a likelihood
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ROC curves

Example

Assume, only the attribute Sepal Length should be used to distinguish Iris
versicolor from Iris virginica by a simple rule of the form

If Sepal Length < c, then versicolor, otherwise virginica

where c can be chosen in the range of the values of the attribute Sepal
Length.

The attribute Sepal Length provides the “score” in this case.
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ROC curves

S. Length Species S. Length Species S. Length Species

4.9 versicolor 5.6 versicolor 5.9 versicolor
4.9 virginica 5.6 versicolor 5.9 versicolor
5.0 versicolor 5.6 virginica 5.9 virginica
5.0 versicolor 5.7 versicolor 6.0 versicolor
5.1 versicolor 5.7 versicolor 6.0 versicolor
5.2 versicolor 5.7 versicolor 6.0 versicolor
5.4 versicolor 5.7 versicolor 6.0 versicolor
5.5 versicolor 5.7 versicolor 6.0 virginica
5.5 versicolor 5.7 virginica 6.0 virginica
5.5 versicolor 5.8 versicolor 6.1 versicolor
5.5 versicolor 5.8 versicolor 6.1 versicolor
5.5 versicolor 5.8 versicolor 6.1 versicolor
5.6 versicolor 5.8 virginica 6.1 versicolor
5.6 versicolor 5.8 virginica 6.1 virginica

5.6 versicolor 5.8 virginica
...

...
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ROC curves

Consider versicolor as the “positive” and virginica as the “negative”
class.

The higher the threshold c is chosen, the more instances are classified
as “positive” (versicolor).

there are four possibilities :

true positive TP classified as Pos and is Pos
false positive FP classified as Pos and is Neg
true negative TN classified as Neg and is Neg
false negative FN classified as Neg and is Pos

Increasing the threshold c, will increase the true positives as well as
the true negatives.

Ideal case: only true positives and no false negatives
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ROC curves

The ROC curve (receiver operating characteristic curve) draws the false
positive rate against the false negative rate (depending on the choice of
the threshold c).
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ROC curves
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A ROC curve of a better performing and a classifier with a performance.
The area under curve (AUC), i.e. the area under the ROC curve, is an
indicator how well the classifier solves the problem. The larger the area,
the better the solution for the classification problem.
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Confusion matrix

A confusion matrix is a table where the rows represent the true classes and
the columns the predicted classes. Each entry specifies how many objects
from a given class are classified into the class of the corresponding column.

true class predicted class

Iris setosa Iris versicolor Iris virginica

Iris setosa 50 0 0

Iris versicolor 0 47 3

Iris virginica 0 2 48

A possible confusion matrix for the Iris data set
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Sample Error

Sample Error

The data is not a perfect representation of the underlying data

The smaller the sample the smaller the probability for a perfect model

Example

Throw a dice

Sample Bias: what if the dice
was not fair?

Mean of the dice after n data points

1 2 3 4 5 6
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10
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20

number of pips
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Model Error

There are different models for the data

simpler model =⇒ bigger error

more complex model =⇒ overfitting and larger error on new data

type of model =⇒ different ”fit” to data

Compendium slides for “Guide to Intelligent Data Analysis”, Springer 2011.
c©Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn and Iris Adä 33 / 50



Algorithmic Error

Based on the selected algorithm

For example

Gradient descend =⇒ local minima
Randomized method =⇒ too much randomness

The algorithmic error can often not be measured (several runs of
similarly biased)

Normalilty: we assume that our algorithm is good enough

(otherwise : choose another)
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Machine Learning Bias and Variance

Machine Learners have a slightly different view:

Machine Learning Bias: Model and Algorithmic Error

Variance: Intrinsic and Sample Error

Alternative View: Error Decomposition:

MSE = V ar(θ∗) + (Bias (θ∗))2

(θ∗ is an estimator for unknown parameter(s) θ.
MSE: Mean Squared Error)
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Machine Learning Bias and Variance

Machine Learners have a slightly different view:

Machine Learning Bias: Model and Algorithmic Error

Variance: Intrinsic and Sample Error

Alternative View: Error Decomposition:

MSE = V ar(θ∗) + (Bias (θ∗))2

(θ∗ is an estimator for unknown parameter(s) θ.
MSE: Mean Squared Error)

Compendium slides for “Guide to Intelligent Data Analysis”, Springer 2011.
c©Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn and Iris Adä 35 / 50



Learning without Bias?

Can we find a good model without model or algorithmic bias?

Remember? Version Space Learning

We cannot learn without a bias
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Model Validation

The error for unseen data will most probably always be bigger than
for the data used for training.

How do we find out which model is actually suited best to our
problem?
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Training and Test Data

Split data into two subsets: training and test data

Train your model on the training data and measure the model quality
on the test data

Typically 2/3 training 1/3 test (usually more training)

Splitting strategies

Random (distribution in both sets should be roughly same)
Stratification (i.e. the distribution of one class should remain)

Split into training, test and validation

Choose for each model kind the best based on the test data
Test the best models on the validation data set.
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Validation of Models

Estimating the Generalization ability of a Model using a separate data set
Teval

T = Ttrain ∪ Teval
Ttrain ∩ Teval = ∅

P (E) =≈
∑

x∈Teval
g(H(x), C(x))

|Teval|
g(x, y) = 1 if x = y and g(x, y) = 0 if x 6= y
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Cross-Validation

Split the data multiple times to validate the results, to dimish
the effect of the single estimation

Use a combination of the received models, or the best.

K-fold Cross-Validation (e.g. k=10):

Divide into k subsets
Test data is always another subset, training data the rest
Average of the k model error is supposed as the model error

Leave-One-Out Method:

For very small data sets
Use everything except of one data point for training
This single data point is used for testing.
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Cross-Validation

Split the data multiple times to validate the results, to dimish the
effect of the single estimation

Use a combination of the received models, or the best.

K-fold Cross-Validation (e.g. k=10):

Divide into k subsets
Test data is always another subset, training data the rest
Average of the k model error is supposed as the model error

Leave-One-Out Method:

For very small data sets
Use everything except of one data point for training
This single data point is used for testing.

Compendium slides for “Guide to Intelligent Data Analysis”, Springer 2011.
c©Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn and Iris Adä 40 / 50
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Bootstrapping

Overall goal: Draw samples multiple times to underline your
model (e.g. with the variance of the parameters)

Pseudo algorithm:

Draw k bootstrap samples from the data
Learn the model on each sample
Calculate the mean and standard deviation
Small standard deviation supports the model.

Bagging (Use Bootstrapping to improve the results)

The final parameters can be achieved by averaging the k sets of
parameters

We will discuss bagging and more ensemble methods in a later lecture.
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Measures for Model Complexity

The goal is to fulfill Occam’s razor :
Choose the simplest model that still explains the data.

How do we measure the complexity of the model?

Two ideas:

The Minimum Description Length Principle
Akaike’s and the Bayesian Information Criterion
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The Minimum Description Length Principle

Basic Idea: Regard the routine as a way of data compression

To recreate the data, two things are needed:

The decompression rule
The compressed data

The quality is than measured by the number of bits needed to code
these two

The simplest cases

Compressed data of size 1, by adding the data to the rule (If
compressed data = 1 than data = original)
Decompression rule of size 1, by saving the real data as the compressed

Goal: find a solution inbetween

Compendium slides for “Guide to Intelligent Data Analysis”, Springer 2011.
c©Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn and Iris Adä 43 / 50
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Example for the MDL

We restrict the coding of the decimals
to two digits reversed and ignore the sign.

Example:

code 0.73 as 37
1.23 as 321
-0.06 as 6
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Example for the MDL

Coding the constant function:

3 digits for the value 1.92

And for each ”error” 2 digits resolves in:

21 = 3 + 9 ∗ 2
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Example for the MDL

Coding the linear function:

3 digits for the value 1.14 and 2 digits
for the offset 0.19

Error : 7 times 2 digits and for
1: 1 digit and for 2 : 0 digits

20 = 5 + 7 ∗ 2 + 1 + 0
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Example for the MDL

Coding the quadratic function:

3 digits for the value 1.31 and 1 digit
for the raising 0.05 and 1 for 0.02

Error : 7 times 2 digits and for ID 2
and 5 only 1 digit

21 = 5 + 7 ∗ 2 + 2 ∗ 1
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Example for the MDL

Summary:

Constant = 21

Linear = 20

Quadratic = 21

Recommendation would be to use
the model ”linear function” for this data set!
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Other Model Selection Criteria

Akaike’s Information Criterion measures

model complexity by number of parameters (k)
Fit to data by probability of data generated by model (L)
AIC = 2k − 2 ln(L)

Notes:
For error assumed to be normal distributed, MSE models the
likelihood directly.

Other Measures: Bayesian information criterion.
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