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CS626 Data Analysis and Simulation 

Today:
Stochastic Input Modeling

Reference: Law/Kelton, Simulation Modeling and Analysis, Ch 6.
NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

Instructor: Peter Kemper 
R 104A, phone 221-3462, email:kemper@cs.wm.edu
Office hours: Monday, Wednesday 2-4 pm



What is input modeling?

 Input modeling 
 Deriving a representation of the uncertainty or randomness in a 

stochastic simulation.
 Common representations

 Measurement data
 Distributions derived from measurement data <-- focus of “Input modeling”

 usually requires that samples are i.i.d and corresponding random 
variables in the simulation model are i.i.d

 i.i.d. = independent and identically distributed
 theoretical distributions
 empirical distribution

 Time-dependent stochastic process
 Other stochastic processes

 Examples include 
 time to failure for a machining process; 
 demand per unit time for inventory of a product; 
 number of defective items in a shipment of goods; 
 times between arrivals of calls to a call center. 2



Representation by a single distribution

 Given:
 Set of sample data for some real world phenomenon                       

e.g. interarrival times of tasks for some computing node

 Goal: 
 Represent data by a single distribution which is used in a simulation 

study to draw interarrival times X1, X2, ... between tasks 

 Implies: 
 Model uses random variables Xi for those times, Xi’s are assumed to be 

independent and identically distributed

 Is this a reasonable assumption? 
 Check with 

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/
in particular Chapter 1.2 EDA assumptions
http://www.itl.nist.gov/div898/handbook/eda/section2/eda2.htm
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Test question: Would Xn,...,X1 
tell you a different story, 
have a different meaning?



Exploratory Data Analysis (EDA): Assumptions

 Four typical assumptions for measurements processes:   
data from the process at hand "behave like":
1.random drawings;
2.from a fixed distribution;
3.with the distribution having fixed location; and
4.with the distribution having fixed variation.

 Fixed location:
 response = deterministic component + random component
 univariate case: response = constant + error
 so fixed location is the unknown constant
 can be extended to a function of many variables
 effect: residuals (error) between measurement and response should behave like 

a univariate process with same assumed properties above
 such that testing of underlying assumptions becomes a tool for the validation 

and quality of fit of the chosen model

 4 assumptions hold => probabilistic predictability,  
process is “in statistical control”, can do predictions 4



EDA: Four techniques for testing assumptions

1. run sequence plot (Yi versus i)

2. lag plot (Yi versus Yi-1)

3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical ordered Y)

5

Example:
Process with
- fixed location
- fixed variation
- random
distribution        
- approx. normal
- no outliers



EDA: Four techniques for testing assumptions
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Example:
Process with
- fixed location
- fixed variation
- non-random
(oscillatory) 
- non-normal U-
shaped 
distribution           
- several outliers

1. run sequence plot (Yi versus i)

2. lag plot (Yi versus Yi-1)

3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical ordered Y)



Run-Sequence Plot

 Purpose: 
 Check for Shifts in Location and Scale and Outliers

Definition:
 y(i) versus i

Importance: 
 Check univariate assumptions: Y = constant + error where error is 

assumed to be random, from a fixed distribution with constant 
location and scale

 More complex models                                            have same 
assumptions for the error term 7



Run-Sequence Plot

 Scalability is an issue: 360000 interarrival times
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Run-Sequence Plot

 Smoothing emphasizes location, trend
 Moving averages yi = (xi-50 + xi-49 + ... + xi+50)/101
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Run-Sequence Plot

 Smoothing emphasizes location, trend
 Batch means: yi = (xi + xi+1 + ... + xi+999)/1000
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Lag Plot

 Purpose: 
 check for randomness in a time series
 more precisely: correlation

 Definition: 
 Plot of lag k is a plot of values Yi versus Yi-k

 Most commonly considered k=1

 Example: Random Data
 Observations: 

 random
 no autocorrelation of lag 1
 no outliers

 based on absence of structure
 for given Yi-1 on cannot infer position of Yi

 such non-association is an indication of randomness
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Lag 1 Plot Example for Moderate Autocorrelation 

 Conclusions from plot
 Data are from an underlying 

autoregressive model with moderate 
positive autocorrelation of lag 1

 Data contain no outliers 
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 Discussion
 Points tend to cluster along diagonal -> positive autocorrelation
 Noise -> moderate correlation
 Range of Yi somewhat predictable if Yi-1 is known.

 Suggestion in NIST (since it is for time series analysis)
 Go for an autoregressive model with
 which is a linear regression from the lag plot since Yi, Yi-1 are the axes 



Lag 1 Plot Example for Strong Autocorrelation 

 Conclusions from plot
 Data are from an underlying 

autoregressive model with strong 
positive autocorrelation of lag 1

 Data contain no outliers 
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 Discussion
 Points tightly clustered along diagonal -> positive autocorrelation
 Little noise -> strong correlation
 Range of Yi well predictable if Yi-1 is known.

 Suggestion in NIST (since it is for time series analysis)
 Go for an autoregressive model with
 which is a linear regression from the lag plot since Yi, Yi-1 are the axes
 Reexamine system for an explanation, due to phenomenon under study, 

drifting in environment, contamination from data acquisition 
system ... ???? 



 Suggestion in NIST (since it is for time series analysis)
 Go for a model with
 with amplitude α, frequency ω, phase ϕ
 can be fitted with standard non-linear least squares to estimate 

coefficients

Lag 1 Plot Example for Sinusoidal Model and Outliers

 Conclusions from plot
 Data come from an underlying single-

cycle sinusoidal model
 Data contain three outliers 
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 Discussion
 Tight elliptical clustering of points, matches with what is known from 

sinusoidal models
 Aside: shows several outliers that need consideration



Covariance and Correlation
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Autocovariance and Autocorrelation:
for series X1,...,Xn, consider covariance cov(X,Y) with X=Xi, Y=Xi+k 
k: lag k



Autocorrelation Plot

 Purpose: check randomness
 if random autocorrelations should 

be near zero for any and all time-
lag separations. 

 If non-random, then one or more 
of the autocorrelations will be 
significantly non-zero.
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 Observation
 rather high degree of correlations, hence not random
 horizontal lines around zero indicate thresholds for noise

 Definition: r(h) vs h
 vertical axis: autocorrelation coefficient
 horizontal axis: time lag h (h = 1,2,3, ...)
 Note: range [-1,+1]



Autocorrelation plots
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Random data Moderate positive autocorrelation

Strong autocorrelation
and autoregressive model Sinusoidal model



Recall: Four techniques for testing assumptions

1. run sequence plot (Yi versus i)

2. lag plot (Yi versus Yi-1)

3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical ordered Y)
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Example:
Process with
fixed location
fixed variation
random
distribution 
approx. normal
no outliers



Histogram

 Purpose: summarize univariate data set
  Shows center (location), spread (scale), skewness, presence of 

outliers, presence of multiple modes in data

 Definition:
 Most common form: split range of data into equal-sized bins 

(classes), count number of points in each bin.
 Vertical axis: frequency
 Horizontal axis: response variable

 also: 
 cumulative histograms, 
 relative histograms

 normalized by number of points
 normalized s.th. total area is 1
 useful if plotted with cont distribution

19
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Histogram examples
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Normal
Symmetric, Non-Normal
Short-tailed       vs    Long-tailed 

Symmetric, bimodal Skewed Right Symmetric with 
outlier



Histogram: Sensitive to selection of Bins

 Number of class intervals depends on: 
 The number of observations 
 The dispersion of the data 

 If few data points are available: 
 combine adjacent cells to eliminate the 

ragged appearance of the histogram

Note: Visual impression varies a lot 
with the number of bins selected.
 Recommendation: 
 Square root of the sample size 
 Try a range of values
 (Law/Kelton) Pick value such that 

 irregularities are smoothed out, 
 curve characteristics are pronounced

21
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Normal Probability Plot

 Purpose: check if data is 
approximately Normally 
distributed
 Special case of Probability Plot
 needs Percent Point Function of 

particular distribution (here: normal)
 needs uniform order statistics 

medians (known) 

 Definition
 Ordered Response values vs normal 

order statistic medians N(i)=G(U(i)) 
where U(i) are uniform order 
statistic medians, G is percent point 
function of the normal distribution.

 Observation: 
 linear relationship -> match!
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Definition of U(i)
U(i) = 1 - U(n) for i = 1
U(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1 
U(i) = 0.5(1/n) for i = n

Note:
1) intercept and slope estimates of the 
fitted line are also estimates for the 
location and scale parameters of the 
distribution.
2) correlation coefficient can be 
computed and used to test if this is a 
match.
3) Percent point function is inverse of 
cdf.



Interpretation of 4-Plot

 Fixed Location:
If the fixed location assumption holds, then the run 
sequence plot will be flat and non-drifting. 
 Fixed Variation:
If the fixed variation assumption holds, then the vertical 
spread in the run sequence plot will be the approximately 
the same over the entire horizontal axis. 
 Randomness:
If the randomness assumption holds, then the lag plot will 
be structureless and random. 
 Fixed Distribution:
If the fixed distribution assumption holds, in particular if 
the fixed normal distribution holds, then
 the histogram will be bell-shaped, and
 the normal probability plot will be linear.
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Overview of fitting with data

 Check if key assumptions hold (i.i.d) 
 Select one or more candidate distributions
 based  on physical characteristics of the process and 
 graphical examination of the data.

 Fit the distribution to the data 
 determine values for its unknown parameters.

 Check the fit to the data 
 via statistical tests and 
 via graphical analysis.

 If the distribution does not fit, 
 select another candidate and repeat the process, or 
 use an empirical distribution.

24from WSC 2010 Tutorial by Biller and Gunes, CMU, slides used with permission



Parameter estimates 

 Common methods for parameter estimation are 
 maximum  likelihood, 
 method of moments, and 
 least squares. 

 While the method matters, the variability in the data often 
overwhelms the differences in the estimators.
 Decide what parameter estimates to use with goodness-
of-fit tests and graphical comparisons.
 Remember: 
 There is no “true distribution” just waiting to be found!

25from WSC 2010 Tutorial by Biller and Gunes, CMU, slides used with permission



Method of Moments

 The method of moments equates sample moments to 
parameter estimates. 
 When moment methods are available, they have the 
advantage of simplicity. 
 The disadvantage is that they are often not available and 
they do not have the desirable optimality properties of 
maximum likelihood and least squares estimators.
 The primary use of moment estimates is as starting 
values for the more precise maximum likelihood and least 
squares estimates.
 Example: Normal distribution N(µ,σ2)
 use mean estimate from sample data for µ
 use var estimate from sample data for σ2 
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 Idea: determine the parameters that maximize the 
probability (likelihood) of the sample data
 Consider a joint density function

 x1,...,xn are samples, θ is the parameter of f whose best fitting value 
we want to determine

 We want to optimize the likelihood function

 resp. the log-likelihood function 

 for the maximum likelihood estimator (MLE)

 where the sample values are fixed, θ can be freely chosen

Maximum Likelihood

27



Maximum Likelihood

 For many theoretical distributions, the MLE is known
 see Law/Kelton, Chapter 6, tables of distribution characteristics
 if not known in general, MLE can be determined for a given sample 

set numerically as a solution of the optimization problem

 MLE has attractive asymptotic properties
 consistency, asymptotic normality, efficiency
 asymptotic: for large sample sizes

 But also:
 Maximum likelihood estimates can be heavily biased for small 

samples. The optimality properties may not apply for small samples.

Example: Normal distribution N(µ,σ2)
 MLE estimate for µ: same as mean estimate from sample data
 MLE estimate for σ2 : S2(n)(n-1)/n for var estimate S2(n)
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Least Squares Estimate

 Idea: Minimize the sum of the squared residuals where 
residuals measure the difference between the value of a 
function and the given data.
 Does not enjoy the same favorable properties as MLE, 
thus Law/Kelton focuses on MLE only.
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Overview of fitting with data

 Check if key assumptions hold (i.i.d) 
 Select one or more candidate distributions
 based  on physical characteristics of the process and 
 graphical examination of the data.

 Fit the distribution to the data 
 determine values for its unknown parameters.

 Check the fit to the data 
 via statistical tests and 
 via graphical analysis.

 If the distribution does not fit, 
 select another candidate and repeat the process, or 
 use an empirical distribution.
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