(5626 Data Analysis and Simulation

~ Instructor: Peter Kemper

R 104A, phone 221-3462, email:kemper@cs.wm.edu
Office hours: Monday, Wednesday 2-4 pm

Today:
Stochastic Input Modeling

Reference: Law/Kelton, Simulation Modeling and Analysis, Ch 6.

NIST/SEMATECH e-Handbook of Statistical Methods, [
http://www.itl.nist.gov/div898/handbook




What is input modeling?

N

@ Input modeling

= Deriving a representation of the uncertainty or randomness in a
stochastic simulation.

= Common representations
* Measurement data
* Distributions derived from measurement data <-- focus of “Input modeling”

= ysually requires that samples are i.i.d and corresponding random
variables in the simulation model are i.i.d

® i.i.d. = independent and identically distributed
= theoretical distributions
= empirical distribution

* Time-dependent stochastic process

* Other stochastic processes

@ Examples include
= time to failure for a machining process;
= demand per unit time for inventory of a product;
= number of defective items in a shipment of goods;
= times between arrivals of calls to a call center. 2




Representation by a single distribution

N

J@ Given:

= Set of sample data for some real world phenomenon
e.g. interarrival times of tasks for some computing node

@ Goal:

= Represent data by a single distribution which is used in a simulation

study to draw interarrival times Xi, Xz, ... between tasks
@ Implies:

= Model uses random variables X; for those times, Xi's are assumed to be

independent and identically distributed
. . Test question: Would Xi,..., X
@ Is this a reasonable assumption? tell you a different story,
@ Check with have a different meaning?

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/
in particular Chapter 1.2 EDA assumptions

http://www.itl.nist.gov/div898/handbook/eda/section2/eda2.htm
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Exploratory Data Analysis (EDA): Assumptions

N

@ Four typical assumptions for measurements processes:
data from the process at hand "behave like":
1.random drawings;
2.from a fixed distribution;
3.with the distribution having fixed location; and
4.with the distribution having fixed variation.

@ Fixed location:
= response = deterministic component + random component
= univariate case: response = constant + error
= 50 fixed location is the unknown constant
= can be extended to a function of many variables

= effect: residuals (error) between measurement and response should behave like
a univariate process with same assumed properties above

= such that testing of underlying assumptions becomes a tool for the validation
and quality of fit of the chosen model

@ 4 assumptions hold => probabilistic predictability,
process is “in statistical control”, can do predictions




EDA: Four techniques for testing assumptions

N

%

1. run sequence plot (Y; versus i)
2. lag plot (Y; versus Yi-1)

3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical ordered Y)

Normal Random Numbers: 4-Plot

3 , 3 . Example:
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EDA: Four techniques for testing assumptions

N

L

1. run sequence plot (Y; versus i)

2. lag plot (Y; versus Yi-1)

3. histogram (counts versus subgroups of Y)

4. normal probability plot (ordered Y versus theoretical ordered Y)
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_Run-Sequence Plot |, PLOTY
N
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@ Purpose:
= Check for Shifts in Location and Scale and Outliers
@ Definition:
= y(i) versus i
®Importance:

= Check univariate assumptions: Y = constant + error where error is
assumed to be random, from a fixed distribution with constant

location and scale

= More complex models ¥ = f(Xi, .., X&) + B; have same
assumptions for the error term .
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_ Run-Sequence Plot
T@ Scalability is an issue: 360000 interarrival times
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Run-Sequence Plot

@ Smoothing emphasizes location, trend
@ Moving averages Yi = (Xi-50 + Xi-49 + ... + Xi+50)/101
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_ Run-Sequence Plot

N

J@ Smoothing emphasizes location, trend
# Batch means: yi = (Xi + Xi+1 + ... + Xi+999)/1000
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Lag Plot
@ Purpose:

# Definition:

= Most commonly considered k=1

4 Example: Random Data
= Observations:

* random

* no autocorrelation of lag 1
* no outliers

= based on absence of structure

m check for randomness in a time series
= more precisely: correlation

= Plot of lag k is a plot of values Y; versus

Yi-k

LAG PLOT

(=} - N w
s 1 . 1 N | §

0
w

= for given Yi-.1 on cannot infer position of Y;
= such non-association is an indication of randomness

11




Lag 1 Plot Example for Moderate Autocorrelation

N

LAG PLOT

L/
@ Conclusions from plot

= Data are from an underlying -
autoregressive model with moderate
positive autocorrelation of lag 1

= Data contain no outliers oot

-0.02 v T T T T T Y
0.02 0.01 0 0.01 0.02

4 Discussion

FLICKER.DAT

= Points tend to cluster along diagonal -> positive autocorrelation
= Noise -> moderate correlation
= Range of Y; somewhat predictable if Yi.1 is known.

# Suggestion in NIST (since it is for time series analysis)
= Go for an autoregressive model with v, = A, + A, % Y,_, + E;
= which is a linear regression from the lag plot since Y, Yi-1 are the axes
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@ Conclusions from plot

= Data are from an underlying
autoregressive model with strong >

0

-2

Lag 1 Plot Example for Strong Autocorrelation

LAG PLOT

N W e 00N
PR P P S B |

positive autocorrelation of lag 1 1
= Data contain no outliers ahi
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4 Discussion

= Points tightly clustered along diagonal -> positive autocorrelation

= |ittle noise -> strong correlation
= Range of Yi well predictable if Yi.1 is known.

@ Suggestion in NIST (since it is for time series analysis)
" Go for an autoregressive model with y- — 4.+ 4 «v, | + E,
= which is a linear regression from the lag plot since Y;, Yi-1 are the axes

= Reexamine system for an explanation, due to phenomenon under study,
drifting in environment, contamination from data acquisition

system ... ??77?
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Lag 1 Plot Example for Sinusoidal Model and Outliers

B
IV
. LAG PLOT
@ Conclusions from plot wol
= Data come from an underlying single- e ‘a,.y;nmm LT
cycle sinusoidal model ool } Ry
. . > 2004 . %
= Data contain three outliers oot 3
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= Tight elliptical clustering of points, matches with- whatis known from
sinusoidal models

= Aside: shows several outliers that need consideration

@ Suggestion in NIST (since it is for time series analysis)
= Go for a model with  ¥; = €' + a sin (27wt + @) + B
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Covariance and Correlation

X stochastic variable

fy (x) density function

E(X) = nyx(y)dy expected value

independent : P(X =x,Y =y)=P(X =

oy = var(X) = E(X - E(X))*)

F,(x)=P(X=x) = j fy (y)dy distribution function

E(cX) = cE(X)
E(X +Y) = E(X) + E(Y)
x) P(Y =y), E(XY) = E(X)E(Y)

var(aX + b) = a* var(X)
var(X + Y) = var(X) + var(Y) + 2cov(X,Y)

covariance: cov(X,Y)=E(X -E(X)(Y -E(Y)))

cov(X,Y)

2 2
v OxOvy

correlation :

independent : cov(X,Y) =0

Autocovariance and Autocorrelation:
for series Xi,...,Xn, consider covariance cov(X,Y) with X=Xj, Y=Xj+x

k: lag k

15




Autocorrelation Plot Autocorelation Plot

N

—

L/
@ Purpose: check randomness
® if random autocorrelations should

=]
)

~—

be near zero for any and all time-
lag separations.
= If non-random, then one or more

of the autocorrelations will be e e e
significantly non-zero.
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FLICKER.DAT

@ Observation
= rather high degree of correlations, hence not random
= horizontal lines around zero indicate thresholds for noise

@ Definition: r(h) vs h

= vertical axis: autocorrelation coefficient s = C.h,/ *Ce

= horizontal axis: time lag h (h = 1,2,3, ...) P

= Note: range [-1,+1]
O = (Vi —Y)?

y N 6

Ch =5 X 06 = ¥)Ws = 7)
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Autocorrelation plots

%

Random data
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Recall: Four techniques for testing assumptions

N

%

1. run sequence plot (Y; versus i)
2. lag plot (Y; versus Yi-1)

3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical ordered Y)

Normal Random Numbers: 4-Plot

3 , 3 . Example:
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Histogram

N

@ Definition:

* Vertical axis: frequency
* Horizontal axis: response variable
= also:
* cumulative histograms,
* relative histograms
= normalized by nhumber of points
® normalized s.th. total area is 1
m yseful if plotted with cont distribution

:

o 12

L/
@ Purpose: summarize univariate data set

= Shows center (location), spread (scale), skewness, presence of
outliers, presence of multiple modes in data

= Most common form: split range of data into equal-sized bins
(classes), count number of points in each bin.

HISTOGRAM
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Histogram examples Symmetric, Non-Normal

N

’ Normal Short-tailed ~ vs Long-tailed
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Histogram: Sensitive to selection of Bins

N

= The number of observations
= The dispersion of the data

@ If few data points are available:
= combine adjacent cells to eliminate the
ragged appearance of the histogram
#®Note: Visual impression varies a lot
with the number of bins selected.

@ Recommendation:
= Square root of the sample size
= Try a range of values

= (Law/Kelton) Pick value such that
* irregularities are smoothed out,
* curve characteristics are pronounced

@ Number of class intervals depends on:

Same data
with different
interval sizes

“ |
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Normal Probability Plot

@ Purpose: check if data is
approximately Normally
distributed

@ Special case of Probability Plot

= needs Percent Point Function of
particular distribution (here: normal)

= needs uniform order statistics
medians (known)

@ Definition

= Ordered Response values vs normal
order statistic medians N(i)=G(U(i))
where U(i) are uniform order
statistic medians, G is percent point
function of the normal distribution.

@ Observation:
= |inear relationship -> match!

GOrdered Response

Normal Probability Plot

|||||||||||||
-3 2 -1 [ 1 2 3
Normal N(0,1) Order Statistic Medians

NORMAL.DAT

Definition of U(i)

UGli)=1-Um) fori=1

U()=(@1-0.3175)/(n +0.365) fori=2,3, ...,n-1
U@G)=0.50m fori=n

Note:

1) intercept and slope estimates of the
fitted line are also estimates for the
location and scale parameters of the
distribution.

2) correlation coefficient can be
computed and used to test if this is a
match.

3) Percent point function is inverse of

cdf. 22




Interpretation of 4-Plot

N

@ Fixed Location:
If the fixed location assumption holds, then the run
sequence plot will be flat and non-drifting.

@ Fixed Variation:
If the fixed variation assumption holds, then the vertical
spread in the run sequence plot will be the approximately
the same over the entire horizontal axis.

4 Randomness:
If the randomness assumption holds, then the lag plot will
be structureless and random.

@ Fixed Distribution:
If the fixed distribution assumption holds, in particular if
the fixed normal distribution holds, then
= the histogram will be bell-shaped, and
= the normal probability plot will be linear.

23




Overview of fitting with data

N

/© Check if key assumptions hold (i.i.d)

@ Select one or more candidate distributions
= based on physical characteristics of the process and
= graphical examination of the data.

@ Fit the distribution to the data

= determine values for its unknown parameters.

@ Check the fit to the data
= via statistical tests and
= via graphical analysis.
@ If the distribution does not fit,
= select another candidate and repeat the process, or
= yse an empirical distribution.

from WSC 2010 Tutorial by Biller and Gunes, CMU, slides used with permission 24
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Parameter estimates

L/

4 Common methods for parameter estimation are
= maximum likelihood,

= method of moments, and

= |east squares.

# While the method matters, the variability in the data often
overwhelms the differences in the estimators.

@ Decide what parameter estimates to use with goodness-
of-fit tests and graphical comparisons.

@ Remember:
= There is no “true distribution” just waiting to be found!

from WSC 2010 Tutorial by Biller and Gunes, CMU, slides used with permission 25
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Method of Moments

%

@ The method of moments equates sample moments to
parameter estimates.

€ When moment methods are available, they have the
advantage of simplicity.
# The disadvantage is that they are often not available and

they do not have the desirable optimality properties of
maximum likelihood and least squares estimators.

@ The primary use of moment estimates is as starting
values for the more precise maximum likelihood and least
squares estimates.

@ Example: Normal distribution N(u,02)
= yse mean estimate from sample data for p
= yse var estimate from sample data for o2

26




Maximum Likelihood

N

%

# Idea: determine the parameters that maximize the
probability (likelihood) of the sample data
&

onsider a joint density function

Nt \ ] A N I A JVII [ ™

flay,xo, ... x| 0) = fla1|0) - flao]|@)--- flxn]0).

" Xi,...,Xn @re sa|mples 0 is the parameter of f whose best fitting value
we want to determine

= We want to optimize the likelihood function

n
L(O|xy,...,2n) = flay,29,...,2,|0) = Hf(*z:l|0)
= resp. the iog-iikelihood function mi
n

mL(0|21,...,2,) =Y Inflzf), (= ~InL.

= for the maximum likelihood estimator (MLE)

Omie = argmax (60| xq, ..., x,).
ge
= where the sample values are fixed, 6 can be freely chosen
27




Maximum Likelihood

N

L/
@ For many theoretical distributions, the MLE is known
= see Law/Kelton, Chapter 6, tables of distribution characteristics

= if not known in general, MLE can be determined for a given sample
set numerically as a solution of the optimization problem

@ MLE has attractive asymptotic properties
= consistency, asymptotic normality, efficiency
= asymptotic: for large sample sizes

4 But also:

= Maximum likelihood estimates can be heavily biased for small
samples. The optimality properties may not apply for small samples.

®Example: Normal distribution N(u,0?)
= MLE estimate for py: same as mean estimate from sample data

* MLE estimate for 02 : S2(n)(n-1)/n for var estimate S2(n)

28
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Least Squares Estimate

@ Idea: Minimize the sum of the squared residuals where
residuals measure the difference between the value of a
function and the given data.

# Does not enjoy the same favorable properties as MLE,
thus Law/Kelton focuses on MLE only.

29




Overview of fitting with data

N

/© Check if key assumptions hold (i.i.d)

@ Select one or more candidate distributions
= based on physical characteristics of the process and
= graphical examination of the data.

@ Fit the distribution to the data

= determine values for its unknown parameters.

@ Check the fit to the data
= via statistical tests and
= via graphical analysis.
@ If the distribution does not fit,
= select another candidate and repeat the process, or
= yse an empirical distribution.

from WSC 2010 Tutorial by Biller and Gunes, CMU, slides used with permission 30




