Hardware Architecture of the Cell Broadband Engine Processor

Presented by Wei Wei, 04/20/2009
The Cell Broadband Engine (Cell/B.E.) processor is the first implementation of a new multiprocessor family conforming to the Cell Broadband Engine Architecture (CBEA).

The CBEA and the Cell/B.E. processor are the result of a collaboration between Sony, Toshiba, and IBM known as STI, formally begun in early 2001.

Although the Cell/ B.E. processor is initially intended for applications in media-rich consumer-electronics devices such as game consoles and high-definition televisions, the architecture has been designed to enable fundamental advances in processor performance and supports a broad range of compute-intensive applications.
Cell/B.E. Basic Concepts

- **Compatibility with IBM 64b Power Architecture™**
 - Builds on and leverages IBM investment and community

- **Increased efficiency and performance, especially on media-rich applications**
 - Attacks on the “Power Wall”
 - Heterogeneous Multiprocessor
 - High design frequency @ a low operating voltage with advanced power management
 - Attacks on the “Memory Wall”
 - Streaming DMA architecture
 - 3-level Memory Model: System memory, Local Store, Register Files
 - Attacks on the “Frequency Wall”
 - Highly optimized implementation
 - Large shared register files and software controlled branching to allow deeper pipelines

- **Real time responsiveness to the user and the network**
 - Challenges: Real-time and security in a multiprocessor environment

- **Applicable to a wide range of platforms**
 - Multi-OS support, including RTOS / non-RTOS
Comparison with traditional processors

Cell/B.E. vs traditional approaches

Cell/B.E.
175 mm², 3.2 GHz@60-80W
9 Cores, ~230 SP GFlops

Intel Tulsa (Xeon MP 7100 series)
424 mm², 3.4 GHz@150W
2 Cores, ~54 SP GFlops

½ the space & power consumption & much higher performance

Please note, both processors use the 65nm process.
Overview of the CELL/B.E. processor

CELL/B.E. is a heterogeneous multiprocessor

- A Power Processor Element (PPE)
- 8 Synergistic Processor Elements (SPE)
- A high bandwidth Element Interconnect Bus (EIB)
- A Memory Interface Controller (MIC)
- A bus interface controller (BIC)

64-bit Power Architecture with VMX
Why heterogeneous?

- **PPE: Control Plane**
 - The PPE is responsible for overall control of the chip, e.g., running the operating system, managing system resources, and allocating tasks to the SPEs.

- **SPE: Data Plane**
 - The SPEs account for the computational power of the Cell/B.E. processor. They are designed to perform the compute-intensive, or “data plane,” processing.

- **Decoupled data processing and control functions**
 - Architectures and implementations of the PPE and SPE can be optimized for their respective workloads and enables significant improvements in performance per transistor.

- **Benefits of Specialization**
 - Cell/B.E. can include nine cores in the same area as an industry-competitive general-purpose processor.
 - Is a significant factor in the substantial performance improvement achieved by CELL/B.E..
The PowerPC Processor Element (PPE) features:

- **A general-purpose 64-bit RISC processor, conforming to the PowerPC Architecture**
 - Leverage IBM investment
- **In-order, 2-way hardware simultaneous multi-threading (SMT)**
 - Less circuitry and lower energy consumption
- **With vector/SIMD multimedia extension (VMX)**
 - Makes it easier to develop and port applications to the SPE
 - Allows applications to be parallelized across the PPE and SPEs
Each SPE:

- **Synergistic Processor Unit (SPU)**
 - A dual-issue, in-order, SIMD processor
 - Contains a 128-entry, 128-bit register file
 - 256KB of private memory (local store)
 - A channel interface to the MFC

- **Memory Flow Controller (MFC)**
 - Data movement to and from main memory, other SPEs’ local stores, or I/O devices
SIMD Architecture in Cell/B.E.

- **SIMD = “single-instruction multiple-data”**
- **SIMD exploits data-level parallelism**
 - a single instruction can apply the same operation to multiple data elements in parallel
- **SIMD units employ “vector registers”**
 - each register holds multiple data elements, e.g., SPE’s large 128*128 register file.
- **SIMD is pervasive in Cell/B.E.**
 - PPE integrates SIMD multimedia extension of PowerPC architecture
 - SPE is a native SIMD architecture
 - A SIMD instruction set, SIMD functional units, vector registers
- **SIMD in SPE**
 - All SPE instructions are inherently SIMD
 - Processing 128-bit-wide data in one of four granules:
 - sixteen 8-bit integers
 - eight 16-bit integers
 - four 32-bit integers or SP FP numbers
 - two 64-bit DP FP numbers
When instructions use or produce scalar operands or addresses, the values are in the preferred scalar slot:

The left-most word (bytes 0, 1, 2, and 3) of a register is called the *preferred slot*.
Local Store: CELL/B.E. Attacks the Memory Wall

- **Traditional processor architecture**
 - Program touches memory, processor checks the caches.
 - If necessary, data is brought in from main memory and left in the caches, hopefully to be reused.
 - Limited ability for the programmer to hint what is needed and what is not.

- **CELL/B.E. SPE**
 - 256-KB Local Store is a private memory, not a cache.
 - SPE has load/store & instruction-fetch access only to its local store.
 - No caching, tags, backing storage, etc. – fixed access time (6 cycles).
 - Access to main memory is entirely controlled by the programmer using DMA commands.
 - DMA transfers happen asynchronously; overlap processor computation with data movement.

This 3-level organization of memory (register file, LS, main memory) is a radical break from conventional architecture and programming models.
The memory flow controller (MFC) delivers asynchronous DMA capability for data and instruction transfers between the local store and main memory.

- DMA commands

DMA transfers

- DMA commands can be issued by either SPEs or PPE
- Transfer sizes can be 1, 2, 4, 8, and n*16 bytes
- Up to 16KB/command

DMA queues

- 16-element queue for DMA commands issued by the associated SPE
- 8-element queue for DMA commands issued by external elements

DMA lists

- A single DMA list command can convey a list of DMA commands.
- A list can contain up to 2K transfer requests
- Amortize DMA latency (475 cycles for get)
- Lists implement scatter-gather functions
- PPE is designed for general-purpose tasks
- SPE is optimized for compute-intensive applications

<table>
<thead>
<tr>
<th>Feature</th>
<th>PPE</th>
<th>SPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of SIMD registers</td>
<td>32 (128-bit)</td>
<td>128 (128-bit)</td>
</tr>
<tr>
<td>Organization of register file</td>
<td>separate fixed-point, FP, and vector multimedia</td>
<td>unified</td>
</tr>
<tr>
<td></td>
<td>registers</td>
<td></td>
</tr>
<tr>
<td>Load latency</td>
<td>variable (cache)</td>
<td>fixed</td>
</tr>
<tr>
<td>Addressability</td>
<td>2^{64} bytes</td>
<td>256 KB local store</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2^{64} bytes DMA</td>
</tr>
<tr>
<td>Instruction set</td>
<td>more orthogonal</td>
<td>optimized for compute-intensive applications</td>
</tr>
<tr>
<td>Single-precision</td>
<td>IEEE 754-1985</td>
<td>extended range 1.2E-38 to 6.8E38</td>
</tr>
<tr>
<td>Double-precision</td>
<td>no doubleword SIMD</td>
<td>2-way SIMD DP FP</td>
</tr>
<tr>
<td>Main memory access</td>
<td>load and store instructions moving data</td>
<td>DMA commands moving data and instructions</td>
</tr>
<tr>
<td></td>
<td>between main memory and private register file</td>
<td>between main memory and local store</td>
</tr>
</tbody>
</table>
- Interconnects 12 elements
- Four 16-byte-wide unidirectional rings
- Each ring supports up to three simultaneous data transfers
- Transfers occur at half the frequency of the processor, i.e., 96 bytes/cycle theoretical peak bandwidth
Connected to the external Rambus DRAM through two XIO channels
- Each channel can have eight memory banks
- 32 read and 32 write queues for each channel
- 25.6 GB/s @ 3.2 GHz peak memory bandwidth

- 7 transmit and 5 receive Rambus FlexIO links configured as 2 logical interfaces
- 1-byte-wide each link @ 5GHz
- 35 GB/s outbound and 25GB/s inbound peak raw bandwidth

High bandwidth contributes to CELL/B.E.’s performance.
Cell/B.E. Performance

Theoretical Peak Performance

- FP (SP)
- FP (DP)
- Int (16 bit)
- Int (32 bit)

<table>
<thead>
<tr>
<th>Processor</th>
<th>Frequency</th>
<th>FP (SP)</th>
<th>FP (DP)</th>
<th>Int (16 bit)</th>
<th>Int (32 bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freescale MPC8641D</td>
<td>1.5 GHz</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>AMD Athlon™ 64 X2</td>
<td>2.4 GHz</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Intel Pentium D®</td>
<td>3.2 GHz</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>PowerPC® 970MP</td>
<td>2.5 GHz</td>
<td>100</td>
<td>110</td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td>Cell Broadband Engine™</td>
<td>3.2 GHz</td>
<td>200</td>
<td>220</td>
<td>240</td>
<td>260</td>
</tr>
</tbody>
</table>
Cell BE Performance Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Algorithm</th>
<th>3.2 GHz GPP</th>
<th>3.2 GHz Cell</th>
<th>Cell Perf Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC</td>
<td>Matrix Multiplication (S.P.)</td>
<td>24 GFlops (w/SIMD)</td>
<td>200 GFlops* (8SPEs)</td>
<td>8x</td>
</tr>
<tr>
<td></td>
<td>Linpack (S.P.)</td>
<td>16 GFlops (w/SIMD)</td>
<td>156 GFlops* (8SPEs)</td>
<td>9x</td>
</tr>
<tr>
<td></td>
<td>Linpack (D.P.): 1x1xk matrix</td>
<td>7.2 GFlops (IA32/SSE3)</td>
<td>9.67 GFlops* (8SPEs)</td>
<td>1.3x</td>
</tr>
<tr>
<td>graphics</td>
<td>Transform-light</td>
<td>170 MVPS (G5/VMX)</td>
<td>256 MVPS** (per SPE)</td>
<td>12x</td>
</tr>
<tr>
<td></td>
<td>TRE</td>
<td>1 fps (G5/VMX)</td>
<td>30 fps* (Cell)</td>
<td>30x</td>
</tr>
<tr>
<td>security</td>
<td>AES encrypt. 128-bit key</td>
<td>1.03 Gbps</td>
<td>2.06Gbps** (per SPE)</td>
<td>16x</td>
</tr>
<tr>
<td></td>
<td>AES decrypt. 128-bit key</td>
<td>1.04 Gbps</td>
<td>1.5Gbps** (per SPE)</td>
<td>11x</td>
</tr>
<tr>
<td></td>
<td>TDES</td>
<td>0.12 Gbps</td>
<td>0.16 Gbps** (per SPE)</td>
<td>10x</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>0.43 Gbps</td>
<td>0.49 Gbps** (per SPE)</td>
<td>9x</td>
</tr>
<tr>
<td></td>
<td>SHA-1</td>
<td>0.65 Gbps</td>
<td>1.98 Gbps** (per SPE)</td>
<td>18x</td>
</tr>
<tr>
<td>video processing</td>
<td>mpeg2 decoder (CIF)</td>
<td>----</td>
<td>1267 fps* (per SPE)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>mpeg2 decoder (SDTV)</td>
<td>354 fps (IA32)</td>
<td>365 fps** (per SPE)</td>
<td>8x</td>
</tr>
<tr>
<td></td>
<td>mpeg2 decoder (HDTV)</td>
<td>----</td>
<td>73 fps* (per SPE)</td>
<td>--</td>
</tr>
</tbody>
</table>

* Hardware measurement
** Simulation results

Why is Cell/B.E. So Fast?

- **The SPE is a fast lean core optimized for compute-intensive processing**
 - Each SPE (3.2 GHz) is up to 3 times faster than the Pentium core (3.6 GHz) when computing FFTs
 - That is 24X better performance chip to chip

- **Parallel processing inside chip**
 - 8 SPEs run concurrently

- **Specialization**
 - PPE: Control Plane
 - SPE: Data Plane

- **High bandwidth**
 - 205 GB/s sustained ring bandwidth
 - 25.6 GB/s main memory bandwidth
 - 60 GB/s I/O bandwidth

- **High performance DMA transfers**
 - DMA transfers can be fully overlapped with core computation
 - Software controlled DMA transfers can bring the right data into local store at the right time
Cell/B.E. Products

Consumer
- SCE PS3 (Cell/B.E. + GPU)
- Mercury Cell/B.E. PCI Card (Cell/B.E. + Network)

Professional
- Sony Cell/B.E. Computing Unit (Cell/B.E. + GPU + AV I/O)

Business
- IBM Cell/B.E. Blade (2 Cell/B.E.s)

High Perf Computing
- IBM Roadrunner (16,000 Cell/B.E.s + AMD)

The First Generation Cell/B.E. Blade (QS20)

1GB XDR Memory Cell Processors IO Controllers IBM Blade Center interface
IBM BladeCenter QS20 and beyond

BladeCenter QS20
- 2 Cell/B.E. processors
- 1PPE + 8SPE
- SP: 460 GFLOPS per Cell blade
- DP: 42 GFLOPS per Cell blade
- 1 GB memory
- Available July 2006

BladeCenter QS21
- 2 Cell/B.E. processors
- 1PPE + 8SPE
- SP: 460 GFLOPS per Cell blade
- DP: 42 GFLOPS per Cell blade
- Next Generation I/O chip
- 2 GB memory
- Available: March 07

BladeCenter QS22
- 2 CBEA-compliant processors
- 1PPE + 8eDP SPE
- SP: 460 GFLOPS per blade
- DP: 217 GFLOPS per blade
- Up to 32 GB memory
- PCI Express™ x16 slots
- Target release: September 07

SDK
- SDK 1.1
- Target release: March 08
- SDK 2.1
- Available: March 07
- SDK 3.0
- Target release: September 07
- SDK 4.0
- Target release: December 08
- SDK 5.0

BladeCenter QS2Z
- First CBEA teraflop processor
- 2PPE’+32 eSPE
- Power Architecture compliant
- ~2 TFLOPS SP per blade
- ~1 TFLOPS DP per blade
- Next generation memory technology
- Target availability: 1H10

Timeline
- September 2006: BladeCenter QS20 available
- August 2007: BladeCenter QS21 available
- May 2008: BladeCenter QS22 available
- Target release: December 08
- Target availability: 1H10
Thank you!