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 What Computer Architecture brings to table
 Technology Trends

1/23/09 CS654 W&M 2



What Computer Architecture brings to Table

« Other fields often borrow ideas from architecture
* Quantitative Principles of Design

1.
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Take Advantage of Parallelism
Principle of Locality

Focus on the Common Case
Amdahl’s Law

The Processor Performance Equation

. Careful quantitative comparisons

Define, quantify, and summarize relative performance
Define and quantify relative cost

Define and quantify dependability

Define and quantify power

« Culture of anticipating and exploiting advances in
technology

« Culture of well-defined interfaces that are carefully
implemented and thoroughly checked
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1) Taking Advantage of Parallelism

 Increasing throughput of server computer via
multiple processors or multiple disks

* Detailed HW design

— Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

— Multiple memory banks searched in parallel in set-associative
caches

* Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

— Not every instruction depends on immediate predecessor =
executing instructions completely/partially in parallel possible

— Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)
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Pipelined Instruction Execution
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Limits to pipelining

- Hazards prevent next instruction from executing
during its designated clock cycle

— Structural hazards: attempt to use the same hardware to do
two different things at once

— Data hazards: Instruction depends on result of prior
instruction still in the pipeline

— Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow

(branches and jumps). Time (clock cycles)
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2) The Principle of Locality

* The Principle of Locality:
— Program access a relatively small portion of the address space at
any instant of time.
 Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

« Last 30 years, HW relied on locality for memory perf.
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Levels of the Memory Hierarchy

Capacity
Access Time Staging
Cost Xfer Unit
CPU Registers : Upper Level
100s Byfes Registers o PP
- - rog./compiler
300 - 500 ps (0.3-0.5 ns) t Instr. Operands Fl)-89 bytesp Afas’rer
L1 and L2 Cache L1 Cache
10s-100s K Bytes cache cntl
~1 ns - ~10 ns i Blocks 32-64 bytes
1000s/ GByte
* Y L2 Cache
cache cntl
Main Memory t Blocks 64-128 bytes
G Bytes
80ns- 200ns Memory
~ $100/ GByte 0s
I Pages 4K-8K bytes
Disk
10s T Bytes, 10 ms :
(1%000,000 ns) Disk
~ $1 / GByte user/o
) perator
I Files Mbytes Y
Larger
Tape
infinite Tape Lower Level
sec-min
~$1 / GByte
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3) Focus on the Common Case

Common sense guides computer design
— Since it's engineering, common sense is valuable

In making a design trade-off, favor the frequent
case over the infrequent case

— E.g., Instruction fetch and decode unit used more frequently
than multiplier, so optimize it 1st

— E.g., If database server has 50 disks / processor, storage
dependability dominates system dependability, so optimize it 1st
Frequent case is often simpler and can be done
faster than the infrequent case

— E.g., overflow is rare when adding 2 numbers, so improve
performance by optimizing more common case of no overflow

— May slow down overflow, but overall performance improved by
optimizing for the normal case

What is frequent case and how much performance

improved by making case faster => Amdahl’s Law
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4) Amdahl’s Law

Fraction, hanced
speedupenhanced

ExTime,,, = ExTime 4 x|(1- Fraction,  nonced )+

ExTime, 1
speedul:’over'all = d -

ExTimenew Fra‘:ﬁonenhanced

(1- Fraction, panced ) +
Speedupenhanced

Best you could ever hope to do:

1
B (1 - Frac.rionenhanced)
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Amdahl’s Law example

* New CPU 10X faster
* /0 bound server, so 60% time waiting for I/O

1
Speedupoverau = . Fraction hanced
(1 — Fracuonenhanced )+ —
Sp eedup enhanced
1 - -1 156
(1 0. 4)+ 0.64

« Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster
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CPI

5) Processor performance equation/\

inst count Cycle time
CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle
Inst Count| CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Organization X X
Technology X
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At this point ...

 Computer Architecture >> instruction sets

« Computer Architecture skill sets are different
— 5 Quantitative principles of design
— Quantitative approach to design
— Solid interfaces that really work
— Technology tracking and anticipation

« Computer Science at the crossroads from
sequential to parallel computing

— Salvation requires innovation in many fields, including
computer architecture

 However for CS654, we have to go through

the state of the art first:

— Material:
read Chapter 1, then Appendix A in Hennessy/Patterson
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