
CS654 Advanced Computer
Architecture

 Lec 2 - Introduction

Peter Kemper

Adapted from the slides of EECS 252 by Prof. David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

1/23/09 CS654 W&M 2

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• What Computer Architecture brings to table
• Technology Trends

1/23/09 CS654 W&M 3

What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantify, and summarize relative performance
– Define and quantify relative cost
– Define and quantify dependability
– Define and quantify power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

1/23/09 CS654 W&M 4

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative
caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.
– Not every instruction depends on immediate predecessor ⇒

executing instructions completely/partially in parallel possible
– Classic 5-stage pipeline:

1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

1/23/09 CS654 W&M 5

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

1/23/09 CS654 W&M 6

Limits to pipelining

• Hazards prevent next instruction from executing
during its designated clock cycle
– Structural hazards: attempt to use the same hardware to do

two different things at once
– Data hazards: Instruction depends on result of prior

instruction still in the pipeline
– Control hazards: Caused by delay between the fetching of

instructions and decisions about changes in control flow
(branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

1/23/09 CS654 W&M 7

2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

1/23/09 CS654 W&M 8

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

1/23/09 CS654 W&M 9

3) Focus on the Common Case
• Common sense guides computer design

– Since it's engineering, common sense is valuable
• In making a design trade-off, favor the frequent

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

1/23/09 CS654 W&M 10

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup

+!

==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1
 Speedup =

() !
"

#
$
%

&
+'(=

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

1/23/09 CS654 W&M 11

Amdahl’s Law example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

==

+!

=

+!

=

• Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

1/23/09 CS654 W&M 12

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

1/23/09 CS654 W&M 13

At this point …
• Computer Architecture >> instruction sets
• Computer Architecture skill sets are different

– 5 Quantitative principles of design
– Quantitative approach to design
– Solid interfaces that really work
– Technology tracking and anticipation

• Computer Science at the crossroads from
sequential to parallel computing
– Salvation requires innovation in many fields, including

computer architecture

• However for CS654, we have to go through
the state of the art first:
– Material:

read Chapter 1, then Appendix A in Hennessy/Patterson

