CS654 Advanced Computer
Architecture

Lec 2 - Introduction

Peter Kemper

Adapted from the slides of EECS 252 by Prof. David Patterson
Electrical Engineering and Computer Sciences
University of California, Berkeley

Outline

 What Computer Architecture brings to table
 Technology Trends

1/23/09 CS654 W&M 2

What Computer Architecture brings to Table

« Other fields often borrow ideas from architecture
* Quantitative Principles of Design

1.

O A wN

Take Advantage of Parallelism
Principle of Locality

Focus on the Common Case
Amdahl’s Law

The Processor Performance Equation

. Careful quantitative comparisons

Define, quantify, and summarize relative performance
Define and quantify relative cost

Define and quantify dependability

Define and quantify power

« Culture of anticipating and exploiting advances in
technology

« Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

1/23/09

CS654 W&M 3

1) Taking Advantage of Parallelism

 Increasing throughput of server computer via
multiple processors or multiple disks

* Detailed HW design

— Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

— Multiple memory banks searched in parallel in set-associative
caches

* Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

— Not every instruction depends on immediate predecessor =
executing instructions completely/partially in parallel possible

— Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)
1/23/09 CS654 W&M 4

Pipelined Instruction Execution

I 4ud N

S0aQ3Q

1/23/09

Time (clock cyc/es)

Reg

Ifetch I Reg :H_IM

Reg

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5 Cycle 6: Cycle 7

Reg

Reg

Ifetch I

CS654 W&M

Reg

Limits to pipelining

- Hazards prevent next instruction from executing
during its designated clock cycle

— Structural hazards: attempt to use the same hardware to do
two different things at once

— Data hazards: Instruction depends on result of prior
instruction still in the pipeline

— Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow

(branches and jumps). Time (clock cycles)

il m =X -»}—1 fren lm
. : :
: : Ferc{Rat -»}—J phen- lm
o s : :
P Yo Fetclf{REgT -»}—1 m | e
d : : : : ;
e : : : 5 : : : :
r

1/23/09 CS654 W&M 6

2) The Principle of Locality

* The Principle of Locality:
— Program access a relatively small portion of the address space at
any instant of time.
 Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

« Last 30 years, HW relied on locality for memory perf.

Pl > VEV

1/23/09 CS654 W&M 7

Levels of the Memory Hierarchy

Capacity
Access Time Staging
Cost Xfer Unit
CPU Registers : Upper Level
100s Byfes Registers o PP
- - rog./compiler
300 - 500 ps (0.3-0.5 ns) t Instr. Operands Fl)-89 bytesp Afas’rer
L1 and L2 Cache L1 Cache
10s-100s K Bytes cache cntl
~1 ns - ~10 ns i Blocks 32-64 bytes
1000s/ GByte
* Y L2 Cache
cache cntl
Main Memory t Blocks 64-128 bytes
G Bytes
80ns- 200ns Memory
~ $100/ GByte 0s
I Pages 4K-8K bytes
Disk
10s T Bytes, 10 ms :
(1%000,000 ns) Disk
~ $1 / GByte user/o
) perator
I Files Mbytes Y
Larger
Tape
infinite Tape Lower Level
sec-min
~$1 / GByte

1/23/09

CS654 W&M

3) Focus on the Common Case

Common sense guides computer design
— Since it's engineering, common sense is valuable

In making a design trade-off, favor the frequent
case over the infrequent case

— E.g., Instruction fetch and decode unit used more frequently
than multiplier, so optimize it 1st

— E.g., If database server has 50 disks / processor, storage
dependability dominates system dependability, so optimize it 1st
Frequent case is often simpler and can be done
faster than the infrequent case

— E.g., overflow is rare when adding 2 numbers, so improve
performance by optimizing more common case of no overflow

— May slow down overflow, but overall performance improved by
optimizing for the normal case

What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

1/23/09 CS654 W&M 9

4) Amdahl’s Law

Fraction, hanced
speedupenhanced

ExTime,,, = ExTime 4 x|(1- Fraction, nonced)+

ExTime, 1
speedul:’over'all = d -

ExTimenew Fra‘:ﬁonenhanced

(1- Fraction, panced) +
Speedupenhanced

Best you could ever hope to do:

1
B (1 - Frac.rionenhanced)

- r 0>t 1 [|

1/23/09 CS654 W&M 10

speed""pmaximurr\

Amdahl’s Law example

* New CPU 10X faster
* /0 bound server, so 60% time waiting for I/O

1
Speedupoverau = . Fraction hanced
(1 — Fracuonenhanced)+ —
Sp eedup enhanced
1 - -1 156
(1 0. 4)+ 0.64

« Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

1/23/09 CS654 W&M 11

CPI

5) Processor performance equation/\

inst count Cycle time
CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle
Inst Count| CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Organization X X
Technology X

1/23/09 CS654 W&M 12

At this point ...

 Computer Architecture >> instruction sets

« Computer Architecture skill sets are different
— 5 Quantitative principles of design
— Quantitative approach to design
— Solid interfaces that really work
— Technology tracking and anticipation

« Computer Science at the crossroads from
sequential to parallel computing

— Salvation requires innovation in many fields, including
computer architecture

 However for CS654, we have to go through

the state of the art first:

— Material:
read Chapter 1, then Appendix A in Hennessy/Patterson

1/23/09 CS654 W&M 13

