Dependability

- **Dependability** is the ability of a system to deliver a specified service.
- System service is classified as *proper* if it is delivered as specified; otherwise it is *improper*.
- System *failure* is a transition from proper to improper service.
- System *restoration* is a transition from improper to proper service.

⇒ The “properness” of service depends on the user’s viewpoint!

Examples of Specifications of Proper Service

- k out of N components are functioning.
- every working processor can communicate with every other working processor.
- every message is delivered within t milliseconds from the time it is sent.
- all messages are delivered in the same order to all working processors.
- the system does not reach an unsafe state.
- 90% of all remote procedure calls return within x seconds with a correct result.
- 99.999% of all telephone calls are correctly routed.

⇒ Notion of “proper service” provides a specification by which to evaluate a system’s dependability.
Dependability Concepts

- **Measures** - properties expected from a dependable system
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability
 - Coverage

- **Means** - methods to achieve dependability
 - Fault Avoidance
 - Fault Tolerance
 - Fault Removal
 - Dependability Assessment

- **Impairments** - causes of undependable operation
 - Faults
 - Errors
 - Failures
Faults, Errors, and Failures can Cause Improper Service

- **Failure** - transition from proper to improper service
- **Error** - that part of system state that is liable to lead to subsequent failure
- **Fault** - the hypothesized cause of error(s)
Dependability Measures: Availability

Availability - quantifies the alternation between deliveries of proper and improper service.

- $A(t)$ is 1 if service is proper at time t, 0 otherwise.
- $E[A(t)]$ (Expected value of $A(t)$) is the probability that service is proper at time t.
- $A(0,t)$ is the fraction of time the system delivers proper service during $[0,t]$.
- $E[A(0,t)]$ is the expected fraction of time service is proper during $[0,t]$.
- $P[A(0,t) > t^*]$ ($0 \leq t^* \leq 1$) is the probability that service is proper more than $100t^*\%$ of the time during $[0,t]$.
- $A(0,t)_{t\to\infty}$ is the fraction of time that service is proper in steady state.
- $E[A(0,t)_{t\to\infty}], P[A(0,t)_{t\to\infty} > t^*]$ as above.
Other Dependability Measures

- **Reliability** - a measure of the continuous delivery of service
 - $R(t)$ is the probability that a system delivers proper service throughout $[0, t]$.

- **Safety** - a measure of the time to catastrophic failure
 - $S(t)$ is the probability that no catastrophic failures occur during $[0, t]$.
 - Analogous to reliability, but concerned with catastrophic failures.

- **Time to Failure** - measure of the time to failure from last restoration. (Expected value of this measure is referred to as $MTTF$ - Mean time to failure.)

- **Maintainability** - measure of the time to restoration from last experienced failure. (Expected value of this measure is referred to as $MTTR$ - Mean time to repair.)

- **Coverage** - the probability that, given a fault, the system can tolerate the fault and continue to deliver proper service.
Illustration of the Impact of Coverage on Dependability

- Consider two well-known architectures: simplex and duplex.

Simplex System

- The Markov model for both architectures is:

Duplex System

- The analytical expression of the MTTF can be calculated for each architecture using these Markov models.
Illustration of the Impact of Coverage, cont.

- The following plot shows the ratio of MTTF (duplex)/MTTF (simplex) for different values of coverage (all other parameter values being the same).
- The ratio shows the dependability gain by the duplex architecture.

![Graph showing ratio of MTTF (duplex)/MTTF (simplex) for different values of coverage.](image)

- We observe that the coverage of the detection mechanism has a significant impact on the gain: a change of coverage of only 10^{-3} reduces the gain in dependability by the duplex system by a full order of magnitude.
Failure Sources and Frequencies

Non-Fault-Tolerant Systems
- Japan, 1383 organizations (Watanabe 1986, Siewiorek & Swartz 1992)
- USA, 450 companies (FIND/SVP 1993)

Mean time to failure: 6 to 12 weeks
Average outage duration after failure: 1 to 4 hours

Fault-Tolerant Systems
- Tandem Computers (Gray 1990)
- Bell Northern Research (Cramp et al. 1992)

Mean time to failure: 21 years (Tandem)

Failure Sources:
- Hardware: 10%
- Software: 15%
- Communications Environment: 25%
- Operations-Procedures: 50%

Hardware
Software
Communications
Environment
Operations-Procedures

65%
10%
8%
7%