
CS654 Advanced Computer
Architecture

 Lec 8 – Instruction Level Parallelism
 Peter Kemper

Adapted from the slides of EECS 252 by Prof. David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

2/25/09 W&M CS654 2

Review from Last Time #1
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic Scheduling exploiting ILP

– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

2/25/09 W&M CS654 3

Review from Last Time #2
• Reservations stations: renaming to larger set of registers +

buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks
(low latency instructions can go ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, …

2/25/09 W&M CS654 4

Outline
• ILP
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction

2/25/09 W&M CS654 5

Speculation to obtain greater ILP
• Greater ILP: Overcome control dependence by

hardware speculating on outcome of branches
and executing program as if guesses were correct
– Speculation

⇒ fetch, issue, and execute instructions
as if branch predictions were always correct

– Dynamic scheduling
⇒ only fetches and issues instructions

• Essentially a data flow execution model:
Operations execute as soon as their operands are
available

• What issues must be resolved for speculation to
apply ?

2/25/09 W&M CS654 6

Speculation to greater ILP
3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2/25/09 W&M CS654 7

Adding Speculation to Tomasulo
• Must separate execution from allowing instruction to

finish or “commit”
• This additional step called instruction commit
• When an instruction is no longer speculative, allow it to

update the register file or memory
• Allows us to

– Execute out-of-order
– Commit in-order

• Reorder buffer (ROB)
– additional set of buffers to hold results of instructions that have

finished execution but have not committed
– also used to pass results among instructions that may be

speculated

2/25/09 W&M CS654 8

Reorder Buffer (ROB)
• In Tomasulo’s algorithm, once an instruction

writes its result, any subsequently issued
instructions will find result in the register file

• With speculation, the register file is not updated
until the instruction commits

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

– ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

2/25/09 W&M CS654 9

Reorder Buffer Entry
Each entry in the ROB contains four fields:
1. Instruction type

• a branch (has no destination result),
• a store (has a memory address destination),
• a register operation (ALU operation or load, which has

register destinations)
2. Destination

• Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

2/25/09 W&M CS654 10

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution
complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit ⇒values at head of ROB placed in
registers

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

2/25/09 W&M CS654 11

4 Steps of Speculative Tomasulo Algorithm
1.Issue—get instruction from FP Op Queue

 If reservation station and reorder buffer slot free,
issue instr & send operands & reorder buffer no. for destination
(this stage sometimes called “dispatch”)

2.Execution—operate on operands (EX)
 When both operands ready then execute;

if not ready, watch CDB for result;
when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs & reorder buffer;

mark reservation station available.
4.Commit—update register with reorder result

 When instr. at head of reorder buffer & result present,
update register with result (or store to memory) and
remove instr from reorder buffer.
Mispredicted branch flushes reorder buffer.
(Commit sometimes called “graduation”)

2/25/09 W&M CS654 12

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2/25/09 W&M CS654 13

2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10
F0

ADDD F10,F4,F0
LD F0,10(R2)

N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2/25/09 W&M CS654 14

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2/25/09 W&M CS654 15

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N
F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

5 0+R3

2/25/09 W&M CS654 16

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

ROB5

ST 0(R3),F4
ADDD F0,F4,F6

N
N

F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

1 10+R2
5 0+R3

2/25/09 W&M CS654 17

3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10]

ST 0(R3),F4
ADDD F0,F4,F6

Y
N

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)

2/25/09 W&M CS654 18

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2/25/09 W&M CS654 19

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

2/25/09 W&M CS654 20

Avoiding Memory Hazards
• WAW and WAR hazards through memory are

eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

• RAW hazards through memory are maintained
by two restrictions:
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

2/25/09 W&M CS654 21

Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– If computer stopped at this PC; its likely close to this address
– Not so popular with programmers
– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both
precise interrupts/exceptions and speculation:
out-of-order execution & completion and in-order
commit

– If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

– This is exactly same as need to do with precise exceptions
• Exceptions are handled by not recognizing the

exception until instruction that caused it is ready
to commit in ROB

– If a speculated instruction raises an exception, the exception
is recorded in the ROB

2/25/09 W&M CS654 22

How far can we get this way?
• CPU time = IC * CPI * CT
• Pipelining

– Control hazards:
branch prediction, speculation, out-of-order execution

– Data hazards:
register renaming, out-of-order execution, ROB or RS tags

– Structural hazards:
more slots in ROB & RS than registers of ISA

• Influence:
– IC: if compiler does loop unrolling, other issues ?
– CPI:

» Try to get CPI as close to 1 as possible
» Can we get CPI below 1 ???

Must issue > 1 inst per cycle, must commit > 1 inst per cycle
– CT: hardware complexity of operations and control logic

2/25/09 W&M CS654 23

Getting CPI below 1
• CPI ≥ 1 if issue only 1 instruction every clock cycle
• Multiple-issue processors come in 3 flavors:

1. Superscalar processors
1. Issue: variable number of instructions per clock cycle
2. Schedule:

1. Statically-scheduled => Execution: in-order
2. Dynamically-scheduled => Execution: out-of-order

2. VLIW (very long instruction word) processors
1. Issue: fixed number of instructions per clock cycle

formatted either as one large instruction or as a fixed instruction
packet with the parallelism among instructions explicitly
indicated by the instruction (Intel/HP Itanium)

2/25/09 W&M CS654 24

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches

2/25/09 W&M CS654 25

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

2/25/09 W&M CS654 26

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

 Unrolled 7 times to avoid delays
 7 results in 9 clocks, or 1.3 clocks per iteration
 Average: 2.5 ops per clock, 50% efficiency
 Note: Need more registers in VLIW (15 vs. 6 in SS)

2/25/09 W&M CS654 27

Problems with 1st Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code fragment

requires ambitiously unrolling loops
– whenever VLIW instructions are not full, unused functional units

translate to wasted bits in instruction encoding
• Operated in lock-step; no hazard detection HW

– a stall in any functional unit pipeline caused entire processor to stall,
since all functional units must be kept synchronized

– Compiler might predict latencies of function units,
but caches hard to predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit latencies

require different versions of the code

2/25/09 W&M CS654 28

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies
(interlocks => binary compatibility over time)

• Predicted execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

2/25/09 W&M CS654 29

Multiple-issue processors
Multiple-issue processors come in 3 flavors:
1.Superscalar processors

1. Issue: variable number of instructions per clock cycle
2. Schedule:

1. Statically-scheduled => Execution: in-order
2. Dynamically-scheduled => Execution: out-of-order

2.VLIW (very long instruction word) processors
1. Issue: fixed number of instructions per clock cycle

formatted either as one large instruction or as a fixed
instruction packet with the parallelism among instructions
explicitly indicated by the instruction (Intel/HP Itanium)

• VLIW and statically-scheduled superscalar related.
• Let’s consider dynamically scheduled superscalar processors.

2/25/09 W&M CS654 30

Dynamic superscalar processors
• Issues:

Frontend
– More bandwidth for instruction supply / instruction fetch
– Speed up issue stage:

» Keep instructions in order at reservation stations
» Pipeline: Perform issue of n instructions in 1 cycle by fast

assignment of RS and update to pipeline control table in
1/n th of cycle

and/or
» Widen issue logic: add logic do handle n instructions at

once (Beware of cumbersome combinations)

Backend
– More bandwidth for instruction completion and commit

2/25/09 W&M CS654 31

Increasing Instruction Fetch Bandwidth

• Predicts next
instruct address,
sends it out
before decoding
instruction

• PC sent to BTB
• When match is

found, Predicted
PC is returned

• If branch
predicted taken,
instruction fetch
continues at
Predicted PC

Branch Target Buffer (BTB)

2/25/09 W&M CS654 32

Variation on BTB
• So far:

– BTB provides new value for PC if instruction is a branch
instruction, if it is in the cache and predicted to be taken.

• Variation: Branch folding
– Make BTB store next instruction instead of target

» Gives BTB access more time to come up with result
(slower buffers, larger buffers)

» Buffer can even hold several instructions (sequence),
not just one for multiple issue processors

– In case of unconditional branch: 0-cycle branch possible
» Branch instruction only updates PC
» However done with BTB anyhow
» So pipeline can substitute BTB instruction for branch

instruction -> 0-cycle unconditional branch

2/25/09 W&M CS654 33

IF BW: Return Address Predictor

• Small buffer of
return addresses
acts as a stack

• Caches most
recent return
addresses

• Call ⇒ Push a
return address
on stack

• Return ⇒ Pop an
address off stack &
predict as new PC

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16

Return address buffer entries

M
is

p
r
e
d

ic
ti

o
n

 f
r
e
q

u
e
n

c
y

go

m88ksim

cc1

compress

xlisp

ijpeg

perl

vortex

0: standard branch prediction

Returns cause “indirect jumps”:

Destination address varies at runtime

2/25/09 W&M CS654 34

Separate Instruction Fetch Unit

Integrates:
• Integrated branch prediction

– branch predictor is part of instruction fetch unit and is constantly
predicting branches

• Instruction prefetch
– Instruction fetch unit prefetches to deliver multiple instructions

per clock, integrating it with branch prediction

• Instruction memory access and buffering
Fetching multiple instructions per cycle:

– May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

– Provides buffering, acting as on-demand unit to provide
instructions to issue stage as needed and in quantity
needed

2/25/09 W&M CS654 35

Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of
registers combined with register renaming

– Extended registers replace function of both ROB and
reservation stations

• Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

– On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

• Most Out-of-Order processors today use
extended registers with renaming

2/25/09 W&M CS654 36

Value Prediction
• Attempts to predict value produced by instruction

– E.g., Loads a value that changes infrequently
• Value prediction is useful only if it significantly

increases ILP
– Focus of research has been on loads; so-so

results, no processor uses value prediction
• Related topic is address aliasing prediction

– RAW for load and store or WAW for 2 stores
• Address alias prediction is both more stable and

simpler since need not actually predict the address
values, only whether such values conflict

– Has been used by a few processors

2/25/09 W&M CS654 37

Putting it all together: Intel Pentium 4
• Aggressive out-of-order speculative architecture
• Goal: multiple-issue + high clock rate for high thruput
• Front end decoder translates IA-32 instruction stream into

sequence of µops
• Novelty: execution trace cache (of µops)

– Tries to exploit temporal locality, even across branches
– Avoids need to redecode IA-32 stream
– Has BTB of its own

• L2 holds IA-32 instructions
• Pipeline:

– Dynamically scheduled: instructions vary in #clock cycles
– Register renaming
– 2004 version: 3.2 Ghz clock rate,

a simple instruction uses 31 cycles from fetch to retire

2/25/09 W&M CS654 38

(Mis) Speculation on Pentium 4

Integer Floating Point

• % of micro-ops not used

2/25/09 W&M CS654 39

Perspective
• Interest in multiple-issue because wanted to

improve performance without affecting uniprocessor
programming model

• Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5,

AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak v. delivered performance gap increasing

2/25/09 W&M CS654 40

In Conclusion …

• Interrupts and Exceptions either interrupt the current
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single
point in the program to restart execution

– All instructions before that point have completed
– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

