
www.elsevier.com/locate/micpro

Microprocessors and Microsystems 30 (2006) 469–479
A Java processor with hardware-support object-oriented instructions

Tan Yiyu, Lo Wan Yiu, Yau Chi Hang, Richard Li, Anthony S. Fong *

Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong

Available online 19 January 2006
Abstract

Java is widely applied from the small embedded devices to enterprise systems nowadays due to its object-oriented features and cor-
responding advantages of security, robustness, and platform independence. Java programs are compiled into Java Bytecodes, which are
executed in the Java virtual machine. Among the current hardware or software solutions to the Java virtual machine, the object-oriented
related Bytecodes are implemented by software traps or microcode, and their performance does not match well with the essential require-
ments of memory-constraint embedded devices, such as real-time operations and low power consumptions. In this paper, a novel Java
processor named jHISC is proposed, which mainly targets Java applications in the small embedded devices. In jHISC, 94% of Bytecodes
and 83% of the object-oriented related Bytecodes are implemented by hardware directly. Compared with PicoJava II and JOP, jHISC
speeds up the overall performance about 30% and 183%, respectively.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Java processor; Bytecode; Object-oriented programming; Operand descriptor
1. Introduction

Java was introduced in the mid-1990s to overcome the
major weakness of C and C++ [1]. Due to its robustness,
security, and portability, it is now widely applied in network
applications and small embedded devices, such as PDAs,
Pocket PCs, and mobile phones. A study of the ARC Group
estimated that the number of J2ME (Java 2 Platform Micro
Edition) compatible handsets was 421 millions in 2003 and
would be increased to 442 millions in 2004 and 1 billion
in 2006 [2]. Today J2ME has become the de facto environ-
ment for downloadable services and mobile entertainments
running on mobile phones and PDAs.

Java applications are compiled to an intermediate repre-
sentation called Bytecodes instead of particular processor
machine codes to ensure their portability. Java Bytecodes
are executed in the Java virtual machine and their execu-
tion methods are evolving from the simplest interpretation,
Just-In-Time (JIT) compilation to the hardware realization
0141-9331/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2005.12.007

* Corresponding author. Tel.: +852 2788 7761; fax: +852 2788 7791.
E-mail address: Anthony.Fong@cityu.edu.hk (A.S. Fong).
[3–6]. The interpretation finds its performance to be signif-
icantly affected by the emerging time-consuming loops dur-
ing software emulation despite its relatively easy
implementation and small memory requirement. The JIT
compilation introduces additional compilation overheads
and needs much more memory in spite of its advantages
over the interpretation in eliminating redundant transla-
tions and optimizing the generated native instructions.
The hardware realization, namely Java processor, is a
hardware solution to speed up the execution of Java pro-
grams through the implementation of Java virtual machine
on silicon. It is also capable of tailoring hardware support
for some Java special features, such as security, multi-
threading, garbage collection, and so on, to deliver much
better performance than a general-purpose processor for
Java applications. All these led researchers to develop
high-performance Java processors for the memory-con-
straint embedded devices in recent years.

This paper presents a novel Java processor named
jHISC, where the object-oriented related Bytecodes are
supported in hardware directly. It mainly targets the small
embedded devices, such as smart mobile phones, PDAs,
Palm PC, etc. In Section 2, the previous work on Java

mailto:Anthony.Fong@cityu.edu.hk

470 T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479
processors is summarized. Then some design issues on
jHISC architecture, including the operand descriptor
format, object representation, instruction set, method
manipulation, and system architecture, are described in
Section 3. In Section 4, the system performance estimation
results and the corresponding analysis are presented.
Finally, conclusions are made in Section 5.

2. Related work

Some Java processors have been proposed in recent
years [7–23], which execute Java Bytecodes directly or
translate them into the native instructions before execu-
tion. Because the Java virtual machine is software-based
stack architecture, the easiest way to implement a proces-
sor which executes Java Bytecodes directly is to substitute
the Java virtual machine with a hardware-based stack
machine. Among the processors of this type, some are pure
Java processors, such as PicoJava I and II from Sun Micro-
systems, aJ-100 from aJile Systems [7–10]; the others are
Java accelerators, which are attached to a host general-pur-
pose processor to execute Java Bytecodes. Java accelera-
tors are either integrated into the core of the host
general-purpose processor, such as AU-J2000 from Aurora
VLSI [11] and ARM Jazelle [12], or function independently
outside the host, such as MOCA-JTM from NanoAmp
Solutions [13]. Several techniques based on reconfigurable
devices were applied into Java accelerators to enhance their
performance. Lattanzi et al. [14] and Yajun et al. [15] pro-
posed schemes to improve the execution of Java applica-
tions by dynamically migrating the most heavily used
methods on a reconfigurable device. Parnis and Lee [16]
built a multi-threaded Java virtual machine on FPGA
and enhanced its performance by exploiting the parallelism
of FPGA. Kent et al. investigated a software/hardware co-
design method to complement the host processor with a
FPGA-based Java coprocessor [17,24,25].

Another method to execute Java Bytecodes is to add a
hardware unit between the instruction fetch and decoding
modules of a general-purpose processor to convert most
of the simple Bytecodes into the native instructions at
run-time. JA108 is a well-known commercial solution using
this method [18], where the multiple stack-based bytecodes
can be converted into a register-based native instruction.
Radhakrishnan et al. [19] and Schoeberl [22] accelerated
the execution of Java applications by the hardware inter-
pretation; Glossner and Vassiliadis [20,21] developed the
Delft-Java by translating most of Bytecodes into the
Delft-Java instructions.

From the architecture viewpoint, all these Java proces-
sors have some limitations for the object-oriented opera-
tions, which are shown as follows.

(1) In the Java processors with stack architecture, most
of the simple Bytecodes are implemented by hard-
ware directly. However, all operands, such as tempo-
rary data, intermediate parameters, and method
arguments, are pushed onto or popped frequently
from the stack during execution, which makes it dif-
ficult to implement the object-oriented instructions by
hardware directly due to their complexity and large
amounts of data needed to be accessed during execu-
tion. Moreover, the data dependency between the
successive instructions forbids any techniques of
instruction level parallelism.

(2) In the Java processors which execute Java Bytecodes
by hardware translation, because the general-purpose
processor is not object-oriented architecture, no spe-
cial hardware resources are provided to handle the
object-oriented operations, such as switch of method
context, management of local variable frame, and so
on. Furthermore, an object-oriented operation is a
complicated procedure, for example, an operation
to get the value of an instance field needs to obtain
the field information, retrieve the object reference,
verify the access permission and data type, and fetch
the field from the object pointed by the object refer-
ence. If there are no special hardware resources to
handle these operations, it is complex and difficult
to implement the object-oriented instructions by
hardware directly.

Because of the above limitations, the current existing
Java processors perform the object-oriented operations by
software traps or microcode instead. Generally, simple
load/store type operations constitute about 50% of all oper-
ations and complex object-oriented operations are about
15% of all operations in the Java benchmarks [26,28,29].
Executing a load/store type instruction by hardware takes
one to three clock cycles, but executing an object-oriented
instruction by software trap may consume more than 100
clock cycles. Hence, the processing of object-oriented oper-
ations becomes the performance bottleneck of Java pro-
grams [9,27]. In some solutions, the quick variations of
some object-oriented related Bytecodes are provided to
speed up execution after the related objects are resolved.
However, this approach also increases the chip area and
power consumption significantly because the quick varia-
tions are implemented by microcode, which needed many
ROMs or other memory. Moreover, many application pro-
grams written by other programming languages are now
available, which makes it desirable to have a general-pur-
pose processor with some architecture extensions to support
object-oriented programming in hardware directly. To
address these problems, we develop jHISC, a Java proces-
sor with hardware-support object-oriented instructions.

3. jHISC architecture

jHISC is a 32-bit object-oriented processor based on the
High Level Instruction Set Computer (HISC) architecture,
which provides a hardware-readable data type called oper-
and descriptor to describe objects [30–32] and supports
object-oriented programming in hardware. By letting

T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479 471
hardware know what an object is, the processor also pro-
vides various supports to manage system, such as object
manipulation, memory management, and so on. Compared
with the HISC, the major architectural differences are
shown as follows.

1. According to the Java virtual machine specification [33],
the operand descriptor is simplified from 128-bit to 32-
bit in order to reduce the system complexity.

2. The two operand descriptor tables in the HISC are
incorporated into one.

Floating-point operations are not supported in the cur-
rent version of jHISC.

3.1. Operand descriptor format

Operand descriptors, residing in the operand descriptor
table, are used to describe object fields and references.
According to the Java virtual machine specification [33],
the information about object fields and objects has attri-
bute, access flag, field type, and so on, which are stored
in the constant pool. Based on this, we designed the struc-
ture of operand descriptor and its uniform format, which
includes Attribute, Type Field, Static Flag, Access Modifier,
Read-only Flag, and Resolved Flag, is shown in Fig. 1. The
details of each item are explained as follows.

• Address is a byte offset, which is used to locate the data
in the related data spaces.

• Attribute defines the attribute of a field or an object.
• Access Modifier specifies the access permission. Four

access modifiers: public, private, protect, and package,
are defined in the current system.

• Type Field declares the primitive data types and refer-
ence defined in the Java virtual machine, such as byte,
int, word, char, reference, and so on. The field values
are stored in the data space directly while an address
pointer is stored to locate the described object for an
object reference.

• Static Flag indicates the described object field is a static
variable or an instance variable. If the field is an instance
variable, its value will be stored in the Instance Data
Space (IDS). If it is a static variable, its value will be
stored in the Class Data Space (CDS). But when a static
field is inherited from a superclass, a direct address
pointing to it, not its value, will be stored in the CDS.
Type
Field

[27:24]

Static Flag
[29:28]

Resolved Flag [31]

Read-only Flag [30]

Access M
odifier

[23:22]

Fig. 1. Operand des
• Read-only Flag denotes whether the described field can
be written or not. When it equals ‘‘1’’, the field can only
be read, otherwise, it can be written.

• Resolved Flag indicates whether the object reference is
resolved or not. If not, the operating system routines
will be trapped for the dynamic reference resolution.

There are two kinds of operand descriptors: class oper-
and descriptor and class property descriptor. The class
operand descriptor, which consists of Address, Attribute,

Type Field, and Resolved Flag, asserts the resources
accessed by a class. The class property descriptor claims
the properties owned by a class, and it contains all the
items in the uniform format except Resolved Flag.

3.2. Object representation model

Object representation is critical in the object-oriented
programming system due to its significant impact on the
speed of accessing object. A good representation can max-
imize the efficiency of object operations and minimize the
storage overhead, which makes the object model meet the
following rules when it is adopted.

(1) The object header is as small as possible and contains
sufficient information about the object to reduce the
memory accessing overhead.

(2) Given an object reference, system is able to locate the
object data quickly.

Based on these rules and the Java virtual machine spec-
ification, we defined the object header, which is three-word
long and contains seven fields: ObjectType, ArrayType,
Lock, GC Info, DSSize, Class, and ArraySize. The object
header format is shown in Fig. 2 and each field is described
as follows.

• ObjType defines the object type and is used to distin-
guish different objects, such as instance, class, method,
and array.

• DSSize specifies the size of data space, such as CDS,
IDS, and Method Code Space (MCS).

• GCInfo is used for the garbage collection, which is car-
ried out by the operating system in the current version.

• Class links an instance with its affiliated class through a
reference pointer. Hence, the affiliated class can be locat-
ed easily through Class.
Attribute
[21:19]

Address
[18:0]

criptor format.

ObjType
[31:28]

ArrayType
[27:25]

GC Info
[23:20]

DSSize
[19:0]

Class
[31:0]

ArraySize
[31:0]

Lo
ck

 [2
4]

Fig. 2. Object header format.

472 T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479
• ArraySize and ArrayType exist only when the object is
an array. As ArraySize denotes the number of elements
in an array, ArrayType specifies the type of element.

• Lock is used to coordinate multi-threaded access to an
object. Only one thread at a time can own an object.

In jHISC, three kinds of object contexts, namely
instance context, class context, and method context, are
mapped to the hardware architecture. Except the object
header, an instance context contains Instance Header
(IH) and Instance Data Space; a class context also consists
of Class Header (CH), Operand Descriptor Table (ODT),
and Class Data Space; and a method context includes
Method Header (MH), Method Code Space, and Local
Variable Frame (LVF). In addition, when applied to repre-
sent an array, the instance context also contains array data
area, which locates under the instance header. The different
object context structures and their relations are shown in
Fig. 3.

Each object has a unique object context and a reference
always points to the base address of object header after the
object is resolved. In an object context, all components are
stored continuously and each has a constant address offset
to the object header, thus allowing the access of some com-
ponents in parallel to reduce the access overhead. When an
object is accessed, the related operand descriptor is read
from the operand descriptor table to verify whether the
IH

Array data

OH

IH

OH

Instance Context

CH

OH

CDS

CPDT

MCS

MH

OH

MCS

MH

OH

IDS

IDS

Class Context Method Context

IH

Array
data

OH

IH

Array
data

OH

CH

OH

CDS

ODT

MCS

MH

OH

MCS

MH

OH

IDS

IDS

Fig. 3. Different object structures and their relations.
object is resolved or not, then the specific object header is
accessed through the direct address pointer stored in the
CDS of current class. Along with the object accessing,
the bound control checks, such as access permission,
boundary, and data type, are also carried out by hardware.
Moreover, both class variables and instance variables are
stored in the related data spaces, therefore they are
accessed by their references directly and not accessed
through an intermediate object handle as Sun’s JDK 1.0
and 1.1 [28].

However, in the stack-based Java processors, such as
PicoJava II, the information about object and its fields is
dispersed and loaded into the system stack serially. Due
to their stack architecture, retrieving and verifying these
information is a time-consuming procedure. For example,
when the Bytecode putfield is executed by software trap
in PicoJava II, it takes about 113 clock cycles to prepare
stack and verify the related information, such as whether
the object is resolved or not, access right, type, and so on
[9]. But in jHISC, the corresponding verifications are per-
formed by hardware along with the object accessing. The
details are shown in Table 1, where the clock cycles are
obtained by assuming all data are hit in the data cache dur-
ing execution.

3.3. Method manipulation

Method invocation/revocation affects the system perfor-
mance in the object-oriented system because objects com-
municate each other through methods and each method
invocation may consume several tens of clock cycles by
software trap. Thus, an object-oriented processor should
provide a fast and secure method manipulation in hard-
ware directly. In the Java virtual machine, two basic kinds
of methods, i.e., instance method and static method, are
provided and invoked by two different Bytecodes. The
Bytecode invokevirtual is used to invoke an instance
method and the Bytecode invokestatic invokes a static
method. By contrast, in jHISC, the instruction ivkclass is
provided to invoke a static method. For an instance
method, if it is within the same class context as the invoker,
the internal method invocation instruction ivkinternal is
used to invoke it; otherwise, the instance method invoca-
tion instruction ivkinstance is used instead.

During each invocation, the processor requires locating
the method code, checking access control, pushing the cur-
rent object context data into the system stack, and passing

Table 1
Executing the Bytecode putfield in PicoJava II and jHISC

Step PicoJava II jHISC

Operations Clock cycles Operations Clock cycles

1 Initialize stack to prepare for the operation and
read the reference

19 Read the operand descriptor to
obtain the field’s reference

1

2 Verify whether the field is resolved or not 8 Get the address of the class which owns the field 1
3 Extract the pointer to the field_info_table entry

and go to the access verification
11 Access the object and class headers 1

4 Verify access permission, check the field’s size, type,
and determine the quick instruction type

75 Read data and the class property descriptor about
the instance field

1

5 Rebuild the trap frame and restore the stack frame 13 Determine the field’s address 1
6 Executing the related quick format instruction 4 Write data into the destination address 1

T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479 473
control to the invoked method. The more object contexts
are switched, the more data are needed to push into the sys-
tem stack. Generally, an internal method invocation only
requires switching of the involved method contexts. A class
method invocation requires one more, i.e., involved class
context. And an instance method invocation requires
switching of all the three kinds of contexts, namely
involved method context, class context, and instance con-
text. These are the reasons why we divide the Bytecode
invokevirtual into the instructions ivkinternal and ivkin-

stance to speed up its execution.
For example, as illustrated in Fig. 4(a), class Inter-

nal_Method_Example includes two methods, Caller() and
DoSomething(). Inside the method Caller(), an internal
Class Internal_Method_Example
{

public void Caller() {
 DoSomething(); // invoking an internal method

 }

public void DoSomething() {
 .
 .

 }
}

(

(

Clas

#0: Meth
 publi

#1: Meth
 publi

OH

ODT

IH

OH

Current Instance

CDS

Fig. 4. An internal method invocation (a) Ja
method invocation occurs by asserting DoSometing().
The corresponding object context switches and the object
structures are given in Fig. 4(b).

In the current method space, instruction ivkinternal

ODT #1 triggers an internal method invocation and then
directly accesses the #1 operand descriptor inside the
ODT of current class to retrieve the invoked method’s ref-
erence, which provides a direct address in the current CDS
to locate the OH of method DoSomething(). With the
information inside the OH and MH of method DoSome-

thing(), the processor saves and updates the current
method context, then accesses the MCS of method
DoSomething() to fetch instructions to execute until meet-
ing a method revocation instruction if no exception occurs.
DoSomething()

a)

b)

Current Class
s Internal_Method_Example

Current Method
public void Caller()

ODT

od_Ref
c void Caller()

od_Ref
c void DoSomething()

OH

MCS

ivk.internal ODT#1

...

Invoked Method
public void DoSomething()

OH

MCS.

...

CDS

direct address

direct address

va program (b) Object context switching.

Table 2
Bytecodes supported in jHISC

Number of Bytecode 226
Number of Bytecodes after the instructions for

floating-point operations are excluded
167

Number of Bytecodes supported in hardware 157
Number of Bytecodes implemented by software traps 10
Number of object-oriented related Bytecodes 41
Number of object-oriented related Bytecodes supported

in hardware
34

Percentage of Bytecodes supported in hardware 94
Percentage of object-oriented related Bytecodes

supported in hardware
83

Table 3
Bytecodes implemented through software traps in jHISC

new newarray anewarray multianewarray

new_quick athrow anewarray_quick multianewarray_quick

monitorenter monitorexit

474 T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479
Once meeting a method revocation instruction, the proces-
sor will restore the object contexts by popping the previ-
ously stored context contents according to the stage
register. If we assume that all data are hit in the data cache
and the object is resolved, this internal method invocation
will consume five clock cycles. Among them, reading the
operand descriptor from the operand descriptor table,
obtaining the direct address from the CDS of current class,
accessing the object header of the invoked method, storing
the current method context, and allocating the new object
frame for the invoked method take one clock cycle,
respectively.

However, in PicoJava II, the method invocation in
Fig. 4(a) is performed by the Bytecode invokevirtual
through software trap first. It will consume 195 clock cycles
in the case of the same assumption. Among them, 31 clock
cycles are taken by reading the object reference and verify-
ing whether the object is resolved; 29 clock cycles are con-
sumed by extracting the pointer to the field_info_table
entry and checking the access flag; 107 clock cycles are
spent in accessing the invoked method and checking the
method index to determine the quick instruction type; 13
clock cycles are used to rebuild the trap frame and return;
15 clock cycles are taken by the quick instruction.

3.4. Instruction set

In jHISC, the instruction set is compatible with the
MIPS32 except for the object-oriented related instructions
and data transfer instructions between memory and regis-
ters. In traditional computers, data transfer operations
between memory and registers allow application programs
to access memory directly through the load/store instruc-
tions, which may result in the illegal data accessing and
cause a security problem. For example, some viruses may
cast an integer as a memory address where the system data
are stored and then crash the host system by operating the
data. In jHISC, the instructions load and store are replaced
by the instructions array.load and array.store, which are
executed with tough checks, such as boundary, data type,
access permission, and so on, to prevent the malicious
accesses. However, these checks increase some overhead,
for example, the instruction array.load takes three clock
cycles while the instruction load consumes only one clock
cycle. Due to the limitation to access memory directly,
the instructions oo_set_header, oo_cod_setreference, and
oo_cod_setresolved are added to access memory for the
object creation and reference resolution.

In jHISC, all data are encapsulated into objects and
described by the operand descriptors. Each object associ-
ates with a pair of memory boundaries (upper and lower
boundary), which can be calculated through the base
address of object header and the field DsSize or arraySize.
When a program accesses data, it needs to read the related
operand descriptors and pass the access control checks.
Generally, the instructions gifld, gfld, pifld, and pfld are
provided to operate on the instance fields. The instructions
gsfld and psfld are added to access the static fields. The
instructions array.store and array.load are used to access
the elements of an array. To speed up execution as the
Bytecode invokevirtual, the Bytecode getfield is divided into
two instructions, i.e., gifld and gfld, which are used to get
the value of an instance field within and outside the current
class context, respectively. The conversions are carried out
at run-time. If the Bytecode aload_0 immediately precedes
the Bytecode getfield, the Bytecodes aload_0 and getfield

will be folded into the instruction gifld, otherwise the Byte-
code getfield will be converted into the instruction gfld.
Similar way is also applied to the Bytecode putfield,which
is divided into the instructions pifld and pfld. If the Byte-
code aload_0 immediately precedes the Bytecode that is
directly followed by the Bytecode putfield, these three con-
secutive Bytecodes will be folded into the instruction pifld.
Otherwise, they are folded into the instruction pfld.

Six groups of instructions are defined in jHISC. They
are logical instructions, arithmetic instructions, branching
instructions, array manipulation instructions, object-ori-
ented instructions, and data manipulation instructions.
After the instructions for floating-point operations are
excluded, 94% of all Bytecodes and 83% of the object-ori-
ented related Bytecodes are implemented in hardware
directly. The other complex Bytecodes, such as new, newar-

ray, and so on, are implemented by software traps due to
their assistance requirements of the operating system. The
corresponding details are shown in Tables 2 and 3.

3.5. System architecture

The architectural block diagram of jHISC is shown in
Fig. 5. The whole system, which contains 4 kbyte instruc-
tion cache and 8 kbyte data cache, is implemented by six

Instruction
Fetch Unit

Instruction
Decoder

Data Fetch
Unit

Register
File

Data
Cache

Arithmetic
and Logic

Unit

Branch
Unit

Instruction
Cache

E
xt

er
na

l
B

us

Branch
Prediction

Unit

Data
Buffer

Instruction
Queue &

Translation Unit

Fig. 5. Block diagram of system architecture.

T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479 475
pipeline stages: instruction fetch (IFETCH), instruction
folding and translation (ITRANSLATION), instruction
decoding (IDECODE), data fetch (DFETCH), execution
(EXEC), and write-back (WBACK). The pipeline control
flow is shown in Fig. 6.

In Fig. 5, the Instruction Queue & Translation unit con-
sists of an instruction buffer, an instruction folding manag-
er, and a stage controller. The instruction buffer is used to
store the Bytecodes fetched from the instruction cache or
external memory. The instruction folding manager classi-
fies the Bytecodes in the instruction buffer according to
their opcodes and the type definitions, then checks their
foldability, and converts the Bytecodes to the jHISC
instructions by one to one or N to one. The folding model
and algorithm are based on the EPOC model, which was
proposed by Ton et al. [35,36]. For example, the Bytecode
stream aload_4, getfield #5, istore_3 can be translated into
the jHISC instruction gfld #5, R4, R3. Stage controller is
used to control the whole stage of instruction pushing, pop-
Instruction
Cache

I

ITRANSLATION Stage

Data Cache

Arithmetic and Log
Unit

IFETCH Stage
Controller

DFETCH Stage
Controller

EXEC Stage
Controller

WBACK Stage Co

Instruction F
low

Stage Controllers Cache &

D

IDECODE Stage Co

Fig. 6. Pipeline c
ping, and folding. Data buffer unit consists of 16 multi-port
registers so that data can be read or written synchronously
to reduce the accessing time.

4. System performance and analysis

The system with 4 kbyte instruction cache and 8 kbyte
data cache was designed with VHDL and implemented
through a Xilinx Virtex FPGA XCV800. We analyzed
the Bytecode distribution in the CaffeinMark [34] and clock
cycles taken by each Bytecode, then normalized them to
obtain the weighted average number of clock cycles per
Bytecode to estimate the system performance. During esti-
mation, we compared jHISC with PicoJava II and JOP in
the occupied hardware resources and execution perfor-
mance. PicoJava II and JOP are two open sources. PicoJ-
ava II is a full functional Java processor and faster than
the JIT compiler and interpreter [7]. Some subsequent Java
processors are based on it. JOP, which executes Bytecodes
through microcode translation, is a compact Java proces-
sor and designed for the embedded real-time systems
[22,37]. Just like most of the other existing Java processors,
PicoJava II and JOP are stack architecture. The object-ori-
ented related instructions are implemented by software
traps in PicoJava II while they are realized through micro-
code in JOP.

4.1. Hardware resource needed

We synthesized the three systems with the same func-
tional components under the consistent optimization con-
ditions. Hence, we needed to delete the redundant logic
in PicoJava II, such as Powerdown, Clock and Scan unit,
and Floating-Point unit. The caches were generated by
Xilinx CORE Generator and implemented by the internal
block RAMs of FPGA in jHISC. As a result, the synthe-
sized JOP core occupied 2271 LUTs (Look-Up Table), 13
block RAMs, and 21 32 · 1 ROMs in FPGA
nstruction
Queue

Branch
Prediction

Unit

 Controller

Register
Stack Engine

ic
Floating Point Unit

S
tate R

egister

Interrupt C
ontroller

ntroller

 Registers Execution Units

ata Buffer

ntroller

ontrol flow.

476 T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479
(xcv800bg432-6); the PicoJava core needed 43,053 LUTs,
42 single-port RAMs (RAM128X1S), 6 128 · 1 ROMs,
and 122 256 · 1 ROMs whereas jHISC consumed 15,803
LUTs and 28 block RAMs. If we deleted the microcode
unit in PicoJava II, which is mainly used to realize the
quick variations of object and array manipulation instruc-
tions, the synthesized core occupied 41,207 LUTs and 42
single-port RAMs. The details are shown in Tables 4 and 5.

We can find that the total LUTs, which are used to
implement the logic circuits in FPGA, occupied by jHISC
are about 37% of those needed by PicoJava II. As men-
tioned before, the quick variants of object-oriented related
bytecodes are realized by microcode, which needs many
ROMs (6 128 · 1 ROMs and 122 256 · 1 ROMs) so that
the chip area and complexity increase. In JOP, the caches
are implemented by the internal block RAMs of FPGA,
and the logic circuits (total LUTs) are much smaller than
those needed by jHISC and PicoJava II because (1) the
data cache (substituted by the stack cache) size is only
1 kbyte in JOP while it is 8 kbyte in jHISC and PicoJava
II; (2) there are no security and exception checks in JOP,
which are critical features of Java virtual machine and will
increase the system complexity; (3) the simple instructions
are implemented by hardware directly in JOP, and the
complex Bytecods are translated into sequences of these
simple instructions through microcode. Thus, the logic cir-
cuits are less required, but more ROMs (21 32 · 1 ROMs)
are needed; (4) there are no register files in JOP.

4.2. Execution performance

Tables 6 and 7 show the distribution of operations in the
CaffeinMark executed in the K Virtual Machine (KVM)
[5], which is a highly portable Java virtual machine
designed for the memory-constraint small embedded devic-
es. The tables show that the load/store operations, which
can be executed in one or two cycles, account for about
52% of all operations, and the object and array manipula-
tion operations are about 18% of all operations. Moreover,
in order to speed up execution, the object-oriented related
Bytecodes are mostly executed by their quick variants
because the quick variants are about 9.05% of all opera-
Table 4
Functional components and optimization situations

jHISC PicoJava II

• Instruction Cache (4 kbyte) • Instruction C
• Instruction Fetch Unit • Integer Unit
• Instruction Queue Unit • Data Cache
• Instruction Decoder • Stack Manag
• Data Fetch Unit
• Data Buffer
• Register File (32 general-purpose registers)
• Data Cache (8 kbyte)
• Arithmetic and Logic Unit

Optimization conditions during synthesis: (1) FSM compiler (2) resource shar
tions whereas the original formats are about 0.91% of all
operations. In addition, the Bytecode aload_0 pushes the
‘‘this’’ reference onto the operand stack for constructors
and instance methods in the Java virtual machine. It indi-
cates whether the object operation is within the current
class context or not. For example, if a Bytecode aload_0
is previously adjacent to the Bytecode invokevirtual, it
means that the system will invoke an internal method of
the current class. From Table 7, the operation aload_0 is
8.43% of all operations, and the operations for construc-
tors and instance methods (getfield, putfield, invokevirtual,
and invokespecial) are about 9% of all operations, thus
most of the instance operations occur within the same class
context.

As in the KVM, the object-oriented related Bytecodes
are executed originally by software traps in PicoJava II.
Once the specific entries in the constant pool are resolved,
the object-oriented related Bytecodes are replaced by their
corresponding quick variants, which are executed via
microcode. In JOP, there are no quick variants, and the
object and array manipulation instructions are translated
into a series of native instructions through microcode.
Table 8 shows the execution time in clock cycles of some
main object and array manipulation instructions. In Table
8, the cycle counts for jHISC are based on its RTL model.
The cycle data for JOP are obtained from [37] by assuming
the number of clock cycles to access memory is one. In
PicoJava II, the cycles consumed by the original formats
of object-oriented related Bytecodes are estimated by total-
ing all the clock cycles taken by the relevant Bytecodes in
the software traps, and the cycles needed by the quick vari-
ants are quoted from the data sheet [9]. During estimation,
the time consumed by the object-oriented related instruc-
tions handler, such as exception handling, is ignored in
PicoJava II.

Similar to PicoJava II and JOP, jHISC executes the sim-
ple instructions in one or two cycles, but for the object and
array manipulation instructions, their original formats are
executed much faster and quick variants are also per-
formed a bit faster in jHISC. The main reason has been
analyzed in Section 3.2. In addition, the branch operations
are also executed much faster in jHISC than in PicoJava II
JOP

ache Unit (4 kbyte) • Instruction Cache Unit (4 kbyte)
(IU) • Bytecode Fetch unit
Unit (8 kbyte) • Native Instruction Fetch Unit
er Unit (SMU) • Stack

• Stack Cache (1 kbyte)
• Instruction Decoder

ing.

Table 5
Synthesized results

jHISC (xcv800bg432-6) PicoJava II (microcode unit)
(xc2v4000bf957-6)

PicoJava II (no microcode unit)
(xc2v4000bf957-6)

JOP (xcv800bg432-6)

Cell usage Cell usage Cell usage Cell usage

FDC 139 uses BUF 4 uses BUF 2 uses FDC 244 uses
FDCE 3301 uses FD 578 uses FD 584 uses FD 90 uses
FDP 3 uses FDE 34563 uses FDE 34561 uses FDCE 653 uses
FDPE 2 uses FDR 475 uses FDR 472 uses FDE 228 uses
FDR 45 uses FDRE 934 uses FDRE 921 uses FDP 54 uses
FDRE 465 uses FDRS 2 uses FDRS 2 uses FDPE 14 uses
GND 26 uses FDS 146 uses FDS 143 uses FDP_l 1 use
MULT_AND 161 uses FDSE 25 uses FDSE 30 uses FDR 33 uses
MUXCY 213 uses GND 11 uses GND 11 uses FDRE 9 uses
MUXCY_L 3798 uses LD 85 uses LD 85 uses FDS 19 uses
MUXF5 1052 uses MULT_AND 1 use MULT_AND 1 use FDSE 1 use
MUXF6 82 uses MUXCY 5 uses MUXCY 5 uses GND 13 uses
RAMB4_S16 2 uses MUXCY_L 205 uses MUXCY_L 205 uses MULT_AND 43 uses
RAMB4_S2 16 uses MUXF5 9412 uses MUXF5 9162 uses MUXCY 19 uses
RAMB4_S4 8 uses MUXF6 2386 uses MUXF6 2394 uses MUXCY_L 417 uses
RAMB4_S8 2 uses MUXF7 175 uses MUXF7 187 uses MUXF5 188 uses
VCC 23 uses MUXF8 64 uses MUXF8 64 uses MUXF6 53 uses
XORCY 612 uses RAM128X1S 42 uses RAM128X1S 42 uses RAMB4_S4_S4 8 use
XORCY_L 16 uses VCC 4 uses VCC 4 uses RAMB4_S16_S16 2 uses

XORCY 113 uses XORCY 113 uses RAMB4_S4 3 uses
I/O primitives 174 I/O primitives 162 I/O primitives 162 VCC 8 uses
IBUF 75 uses IBUF 42 uses IBUF 42 uses XORCY 266 uses
OBUF 99 uses IBUFG 1 use IBUFG 1 use I/O primitives 61
BUFGP 1 use OBUF 118 uses OBUF 118 uses IBUF 1 use

OBUFT 1 use OBUFT 1 use IOBUF 32 uses
BUFG 5 uses BUFG 5 uses BUFGP 1 use

RAM/ROM usage summary RAM/ROM usage summary RAM/ROM usage summary RAM/ROM usage summary

Block RAMs: 28 of 28 (100%) RAM128X1S: 42 RAM128X1S: 42 ROM32X1: 21
128 · 1 ROMs (ROM128X1): 6 Block RAMs : 13 of 28
256 · 1 ROMs (ROM256X1):
122

Mapping summary Mapping summary Mapping summary Mapping summary

Total LUTs: 15803 (83%) Total LUTs: 43053 (93%) Total LUTs: 41207 (89%) Total LUTs: 2271 (12%)

Table 6
Distribution of all operations

Total tested Bytecode instructions: 836,202,789
Operation type Percentage

Instructions that push a constant onto the stack 8.25
Instructions that load a local variable onto the stack 38.36
Instructions that store a value from the stack into

local variable
5.90

Stack operations 0.46
Integer, floating-point and logic operation 10.86
Type conversion 0.01
Control flow 17.37
Array operations 8.83
Object access, method invocation and revocation 0.91
Quick object-oriented related operations 9.05

T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479 477
and JOP. In PicoJava II, to execute a branch instruction,
the system pops data off the operand stack and compares
them. If the branch condition is met, the virtual machine
forms a signed 16-bit offset, calculates a target address,
and then jumps to the target address. In JOP, the execution
of a branch instruction is similar to that in PicoJava II,
apart from that the branch offset is obtained from the
branch table, not operands. In jHISC, the compared data
are stored in registers. The 24-bit branch offset is deter-
mined in advance and as an immediate operand of the
branch instruction. If the branch condition is met, a branch
instruction takes four cycles in PicoJava II and JOP while it
takes two cycles in jHISC. This also contributes to the per-
formance improvement in jHISC because the branch oper-
ations are about 14% of all operations.

Using Ni,Wi to represent the clock cycles consumed by a
Bytecode and its distribution weighting, respectively, and N

to denote the average clock cycles for each Bytecode execu-
tion, we have

N ¼
XM

i¼1

ðNi � W iÞ ðM is the number of BytecodesÞ. ð1Þ

Thus, we can estimate the overall performance of PicoJava
II, JOP, and jHISC, which are presented in Table 9. During
estimation, in jHISC, the cycles taken by the Bytecode get-

field are the average of those taken by the instructions gfld

Table 7
Distribution of some object and array manipulation Bytecodes in the
CaffeinMark

Bytecodes Percentage

ireturn 0.9012
lreturn 0.0016
areturn 0.0014
return 0.0041
getfield_quick 2.2526
agetfield_quick 5.3544
getfield2_quick 0.0020
putfield_quick 0.4408
putfield2_quick 0.0009
getstatic_quick 0.0003
agetstatic_quick 0.0014
putstatic_quick 0.0
invokevirtual_quick 0.8784
invokespecial_quick 0.1135
invokestatic_quick 0.0083
invokeinterface_quick 0.0009
new_fast 0.0007
iaload 3.0366
aaload 1.7316
caload 1.8490
iastore 0.4792
new 0.0
newarray 0.0013
anewarray 0.0
multianewarray 0.0
monitorenter 0.0
monitorexit 0.0
aload_0 8.4352

Table 8
Cycles needed by some main object and array manipulation Bytecodes

Bytecodes in
PicoJava II

Cycles JOP Instruction
in jHISC

Cycles

Original
format

Quick
variant

getfield 114 4 gfld 6
12 gifld 2

agetfield_quick 4
putfield 130 4 15 pfld 6

pifld 2
getstatic 103 3 6 gsfld 6
agetstatic_quick 3
putstatic 103 3 7 psfld 6
invokestatic 86 11 67 ivkclass 9
invokevirtual 195 15 88 ivkintance 9

ivkinternal 5
invokespecial 208 17 67 ivkintance 9
invokeinterface 203 184 96
checkcast 97 6 checkcast 3
instanceof 100 7 instanceof 4
ireturn 19
return 8 17 oo_rvk 5
areturn 19
return 19
iaload
aaload 5 24 arrayload 3
caload
iastore 7 26 arraystore 3

Table 9
Overall performance

Cycles

The average clock cycles for each
Bytecode execution in PicoJava II

2.59

The average clock cycles for each
Bytecode execution in JOP

5.58

The average clock cycles for each
Bytecode execution in jHISC

1.97

478 T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479
and gifld. The same way is also applied for the Bytecodes
putfield and invokevirtual.

As indicated in Table 9, when the three systems have the
same clock frequency, jHISC improves the overall perfor-
mance about 30% (2.59/1.97 � 1) against PicoJava II and
183% (5.58/1.97-1) against JOP. If we assume all the
object-oriented related Bytecodes are executed by software
traps, the average clock cycles for each Bytecode execution
in PicoJava II will be increased to 13.25, and the overall
performance will be speeded up about 570% (13.25/1.97-
1) by jHISC. Compared with the quick variants replace-
ment scheme in PicoJava II, although the overall perfor-
mance is only speeded up 30%, the hardware resource
needed is reduced significantly in jHISC. More important,
we can apply some techniques of instruction level parallel-
ism to further improve the performance. And if we adopt a
cache to store the direct references of objects after they are
resolved, the execution time consumed by the object-orient-
ed related Bytecodes will be further cut down by half in
jHISC. In addition, Tables 6 and 7 show that jHISC is very
effective for the object-intensive computing. The speed-up
gains 30% and 183% are much smaller in our estimation
because: (1) most of the instance operations are actually
within the same class context, thus the cycles taken by
the Bytecodes invokeinstance, getfield, and putfield in jHISC
are smaller than those in our estimation; (2) the object-ori-
ented operations are relatively few and infrequent in the
CaffeinMark (about 10% of all operations).

5. Conclusion

Small embedded devices with Java applications, such as
mobile phones, Pocket PCs, PDAs, and so on, are becom-
ing more and more popular. It is necessary for their proces-
sors to have small chip area and good performance for
execution of Java applications. In view of these, jHISC
offers an attractive solution for these upcoming devices.
First, it uses operand descriptors to describe object and
each field of an object context is stored with a constant
address offset, which make the complex object-oriented
related Bytecodes be implemented by hardware directly
and object information be accessed parallel to improve
the system performance. Second, because most of the
instructions are implemented by hardware directly and no
ROMs are required for microcode, the chip area is reduced,
which results in the decrease of power consumption.

T. Yiyu et al. / Microprocessors and Microsystems 30 (2006) 469–479 479
Acknowledgements

This work has been supported by the Strategic Research
Grant 7001847 of the City University of Hong Kong. The
authors thank Mok Pak Lun, Lo Kai Man, and Yu Wing
Shing for their invaluable consultation.
References

[1] J. Gosling, B. Joy, G. Steele, The JavaTM Language Specification,
Addison Wesley, Reading, MA, 1996.

[2] http://au.sun.com/news/localpress/2004/06/11_print.html.
[3] M. Grand, Java Language Reference, O’Reilly, 1997.
[4] M.W. El-Kharashi, F. Elguibaly, Java Microprocessors: Computer

Architecture Implications, in: 1997 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, August 1997,
pp. 277–280.

[5] Sun Microsystems: White Paper on KVM and the Connected,
Limited Device Configuration, Sun Microsystems White Paper,
May, 2000.

[6] N. Vijaykrishnan, N. Ranganathan, R. Gadekarla, Object oriented
architectural support for a Java processor, in: ECOOP’98, 1998, pp.
330–355.

[7] J. M. O’Connor, M. Tremblay, PicoJava-I: The Java virtual machine
in hardware, IEEE MICRO, March 1997, pp. 45–53.

[8] H. McGhan, J.M. O’Connor, PicoJava: A direct execution engine for
Java Bytecode, Computer (1998) 22–30.

[9] Sun Microsystems: PicoJava-II: Java Processor Core, Sun Microsys-
tems Data Sheet, April 1998.

[10] aJile Systems Inc.: aJ-100 Real-Time Low Power JavaTM Processor,
aJ-100TM Reference Manual, Version 2.1, December 2001.

[11] Aurora VLSI Inc.: AU-J2000: Super High Performance Java Proces-
sor Core (Data Sheet), Aurora VLSI Inc., 2000.

[12] ARM: Jazelle Technology for Java Application, ARM Data Sheet,
May 2001.

[13] NanoAmp, Solutions, Inc.: The MOCA-JTM Accelerator: Perfor-
mance Boosting Solutions for J2ME Software, White Paper on
MOCA-JTM, 2003.

[14] E. Lattanzi, A. Gayasen, M. Kandemir, V. Narayanan, et al.,
Improving Java performance using dynamic method migration on
FPGAs, in: The 18th International Parallel and Distributed Process-
ing Symposium, April 2004, pp. 134–141.

[15] H. Yajun, R. Hipik, et al., Adding hardware support to the HotSpot
virtual machine for domain specific applications, in: Lecture Notes in
Computer Science, vol. 2438, September 2002, pp. 1135–1138.

[16] J. Parnis, G. Lee, Exploiting FPGA concurrency to enhance JVM
performance, in: Australasian Computer Science Conference, January
2004, pp. 223–232.

[17] K.B. Kent, M. Serra, Hardware/Software co-design of a Java virtual
machine, in: IEEE International Workshop on Rapid Systems
Prototyping, June 2000, pp. 66–71.
[18] NAZOMI Communications Inc.: JA108 – Multimedia Application
Processor (Product Brief), 2003.

[19] R. Radhakrishnan, R. Bhargava, L. John, Improving Java perfor-
mance using hardware translation, in: ACM International Conference
on Supercomputing, June 2001, pp. 427–439.

[20] J. Glossner, S. Vassiliadis, The Delft-Java engine: an introduction, in:
The Third International Euro-Par Conference on Parallel Processing,
August 1997, pp. 766–770.

[21] J. Glossner, S. Vassiliadis, Delft-Java link translation buffer, in: The
24th Conference on EuroMicro, August 1998, pp. 221–228.

[22] M. Schoeberl, JOP: a java optimized processor, in: Lecture Notes in
Computer Science, vol. 2889, October 2003, pp. 346–359.

[23] A. Kim, M. Chang, Designing a Java microprocessor core using
FPGA technology, Comput. Control Eng. J. 11 (3) (2000) 135–
141.

[24] K.B. Kent, M. Serra, Hardware architecture for Java in a hardware/
software co-design of the virtual machine, in: The Euromicro
Symposium on Digital System Design, September 2002, pp. 20–27.

[25] K.B. Kent, M. Hejun, M. Serra, Rapid prototyping of a co-design
Java virtual machine, in: IEEE International Workshop on Rapid
System Prototyping, June 2004, pp. 164–171.

[26] M.W. El-Kharashi, F. Elguibaly, K.F. Li, A quantitative study for
Java microprocessor architectural requirements. Part II: High-level
language support, Microprocess. Microsyst. 24 (2000) 237–250.

[27] M.W. El-Kharashi, F. Elguibaly, K.F. Li, A quantitative study for
Java microprocessor architectural requirements. Part I: Instruction
set design, Microprocess. Microsyst. 24 (2000) 225–236.

[28] N. Vijaykrishnan, N. Ranganathan, Supporting object accesses in a
Java processor, in: IEE Proceedings – Computers and Digital
Techniques, vol. 147, No. 6, November 2000, pp. 435–443.

[29] P.L. Mok, A.S. Fong, K.W. Hau, Object-oriented processor require-
ments with instruction analysis of Java programs, ACM SIGARCH
Comput. Archit. News 31 (5) (2003) 10–15.

[30] P.L. Mok, C.L. Li, A.S. Fong, Method manipulation in an object-
oriented processor, ACM SIGARCH Comput. Archit. News 31 (4)
(2003) 18–25.

[31] A.S. Fong, A computer architecture with access control and cache
option tags on individual instruction operands, ACM SIGARCH
Comput. Archit. News 31 (3) (2003) 1–5.

[32] A.S. Fong, HISC: a high-level instruction set computer, in: The
Seventh European Simulation Symposium, October 1995, pp. 406–
410.

[33] T. Lindholm, F. Yellin, The JAVA Virtual Machine Specification,
second ed., Addison Wesley, Reading, MA, 1999.

[34] http://www.benchmarkhq.ru/cm30/index.html.
[35] L.R. Ton, L.C. Chang, C.P. Chung, An analytical POC stack

operations folding for continuous and discontinuous Java Bytecodes,
J. Syst. Archit. 48 (2002) 1–16.

[36] L.R. Ton, L.C. Chang, J.J. Shann, C.P. Chung, Design of an optimal
folding mechanism for Java processors, Microprocess. Microsyst. 26
(2002) 341–352.

[37] M. Schoeberl, JOP: A Java optimized processor for embedded real-
time systems, PhD thesis, http://www.jopdesign.com.

http://au.sun.com/news/localpress/2004/06/11_print.html
http://www.benchmarkhq.ru/cm30/index.html
http://www.jopdesign.com

	A Java processor with hardware-support object-oriented instructions
	Introduction
	Related work
	jHISC architecture
	Operand descriptor format
	Object representation model
	Method manipulation
	Instruction set
	System architecture

	System performance and analysis
	Hardware resource needed
	Execution performance

	Conclusion
	Acknowledgements
	References

