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Abstract. Exploration of the reachability set (RS) is one of the crucial
building blocks for various analysis methods ranging from model check-
ing to Markov chain (MC) based performance analysis. In the context of
MCs, structured representations of state transition matrices using ten-
sor (Kronecker) algebra have been successfully employed to handle the
impact of the state space explosion problem. In this paper such struc-
tured representations give rise to a new RS exploration algorithm for
superposed generalized stochastic Petri nets and stochastic automata
networks. The algorithm employs bitstate hashing with a perfect hash
function, i.e. no collisions can occur. Two variations of this algorithm
are discussed. Two examples are exercised to demonstrate the benefits
of the new algorithm.

1 Introduction

Reachability analysis is one of the analysis methods applicable to Petri nets
of various kinds: ordinary and colored, timed and untimed, hierarchical and
non-hierarchical, etc. Furthermore it serves as an underlying method for several
analysis techniques, e.g. model checking and Markov chain based analysis of
stochastic Petri nets. Besides its usefulness the state space explosion problem
has been recognized as its main drawback for long. Many approaches exist to
handle the impact of large state spaces, among others there are:

Conventional reachability set (RS) exploration is based on a straightforward
search algorithm; G. Chiola [8] describes a sophisticated coding of markings and
enabling tests exploiting causal dependencies to optimize this approach. The
parallelization of conventional RS exploration for massively parallel machines by
considering parallel transition firings and parallel member and insert operations
for RS is discussed in [6, 7].

Reducing RS by avoiding unnecessary interleaving is the key idea for Val-
mari’s stubborn set method [23, 24], Godefroid’s sleep set method [14, 15], and
combinations of these [15, 25], where many interesting qualitative properties can
be analyzed from the reduced RS.

Approximate methods, where certain parts of RS possibly remain unconsid-
ered, have been developed. Among others, one very successful approach is the
bitstate method by Holzmann of which different variations exist [16, 26, 17] and



which allows to analyze extremely large state spaces for the price of complete-
ness.

A modular approach is given by Christensen et al.[9] who consider a de-
composition of a (colored) net into a set of components which interact via syn-
chronized transitions (transition fusion). The main idea there is to compute
reachability graphs for each component in parallel as far as independent, com-
ponent specific transitions allow and then to check the enabling of synchronized
transitions within all components. This yields one reachability graph per com-
ponent plus an additional synchronization graph. The underlying assumption is
that for a single component with an enabled synchronized transition its envi-
ronment, given by the rest of components, is likely to disable this transition;
hence the generation of the component reachability graphs is tightly coupled for
synchronized transitions. The resulting modular representation of RS is shown
to be useful for proving qualitative properties.

Structured representations of the generator matrix Q have been successfully
developed in the context of MC based performance analysis. They are employed
for the analysis of various hierarchical net formalisms with asynchronous com-
munication by P. Buchholz [3]. For modeling formalism with synchronous in-
teraction fundamental work refers to B. Plateau and coworkers for stochastic
automata networks (SANs) [20, 21]. Her results where transferred to the Petri
net world by S. Donatelli, who considers superposed stochastic automata in [12]
and superposed generalized stochastic Petri nets (SGSPNs) in [13]. Structured
representations are also known for stochastic process algebras [4, 5]. Within
these structured representations often not all states are in fact reachable as
stated in [10, 13, 18] such that the reachability problem arises again. The prob-
lem has been addressed in [19], where a solution for the numerical analysis of
SGSPNs 1s demonstrated but the employed RS exploration algorithm is only
briefly sketched. There the focus point is in the performance analysis based on
the associated MC and computation of RS is used as a prerequisite.

In the following we describe the underlying algorithm of [19] for RS ex-
ploration in detail and for the extended context of SGSPNs and SANs. The
algorithm follows a modular approach and exploits that (by definition) these
modeling formalisms support a decomposition into components which interact
via synchronized transitions. From this point of view the new algorithm is related
to the modular approach of Christensen et al. [9]. The main difference is that
reachability sets of components are explored in complete isolation assuming that
synchronized transitions are not disabled by other components. This 1s advan-
tageous because these state spaces can be explored in parallel and subsequent
exploration of the overall RS can use bitstate hashing. Compared to the work
of Holzmann [16, 26, 17] we also use a bit vector as a hash table but with a per-
fect(!) hash function instead, such that the resulting RS is exact. A by-product
of this hash function is that a marking/state can be uniquely encoded into a
single integer value, which reduces the memory requirements of other involved
data structures dramatically. An additional improvement of the new algorithm is
suggested, which reduces the impact of interleaving. The key idea 1s to consider



the firing of transitions in certain orders without changing reachability. Similar
ideas are discussed in [1] for the efficient elimination of vanishing markings and
in [23] to reduce RS. The main difference is that RS is not(!) reduced here and
that sets of states are considered instead of single states. Note that for subse-
quent MC based performance analysis the complete RS is required; a reduced
RS as produced by stubborn or sleep set methods is not sufficient for MC based
performance analysis.

The paper is organized as follows: Sec. 2 gives the notational background for
structured representations of SGSPNs and SANs; in Sec. 3 the new algorithm is
described as a variation of the conventional search method, where data structures
profit from a given structured representation. Improvements of this algorithm
are presented in Sec. 4. Two examples for SGSPNs are taken from literature
[7, 10] and exercised in Sec. b to demonstrate applicability and efficiency of the
new algorithms. Conclusions and prospects to future work finish the paper.

2 Definitions

In this section we will briefly recall definitions and results for tensor algebra,
SANs and SGSPNs,; in order to fix the notation for subsequent sections and to
clarify the similarities between these modeling formalisms at the level of state
transition matrices. The notation for SGSPNs follows mainly [13], we assume
that the reader is familiar with GSPNs and their dynamic behavior.

Definition1. A GSPN is an eight-tuple (P, T, x, 1,0, H, W, My) where P is the
set of places, T is the set of transitions such that TNP =@, = : T — {0, 1} is the
priority function, 1,0, H : T — Bag(P), are the input, output, and inhibition
functions, respectively, where Bag(P) is the multiset on P, W : T — R% is a
function that assigns a weight to each transition, My : P — Ny is the initial
marking: a function that assigns a nonnegative integer value to each place.

Let T; := {t € T|=x(t) = 1} (T, := T\T;) denote the set of immediate (timed)
transitions. Immediate transitions fire with priority over timed transitions. It is
possible to define different levels of priorities for 7; but for simplicity we consider
just # : T — {0,1}. M[t> M’ indicates that the system state/marking changes
from M to M’ due to firing of ¢t € T', M[t> denotes that ¢ € T is enabled in
M and M[> gives the set of enabled transitions. If marking dependent weights
shall be considered W modifies to W : M x 1" — R7T. Based on Def. 1 and the
firing rule the reachability set (RS), the reachability graph (RG), the tangible
reachability set (TRS) and the tangible reachability graph (TRG) can be defined
in the usual manner.

For GSPNs well-known techniques apply to derive a state transition matrix
@ from the TRG, such that the generator matrix @ of the associated continuous
time Markov chain (CTMC) is given by Q = @Q — D with a diagonal matrix
D, D(i,j) := Y., Q(i,k) if i = j and 0 otherwise. Matrix ) represents the
reachability relation and additional timing information. Since in this context we
are only interested to compute RS, resp. 7RS, we can exploit

QM M')Y#0 < FteT.,oceT;: Mtec>M,



where ¢ 1s a maximal firing sequence of immediate transitions, and do not further
distinguish between numerical values of nonzero entries in Q.

Superposed GSPNs are GSPNs, where additionally a partition of the set of
places 1s defined, such that SGSPNs can be seen as a set of GSPNs which are
synchronized by certain transitions.

Definition2. A SGSPN is a ten-tuple (P, 7,7, 1,0, H,W, My, II, TS) where
(P, T,x,1,0,H,W, M) is a GSPN,II = {P° ... PN~1} is a partition of P,
TS C {t € T|x(t) = 0} is the set of synchronized transitions, that are timed
by definition. Moreover IT induces on T\T'S a partition of transitions. Such a
SGSPN contains N components (P*, 7% #' I', O, H', W* M}) for i € IS =
{0,1,..., N — 1}, where T% := ¢ P* U P%e and 7', I', 0%, H', W'  M{ are the func-
tions 7, 1,0, H, W, Mg restricted to P’ resp. 1°.

SGSPNs are naturally amenable for a modular RS analysis, since partition I7
induces components, which are GSPNs themselves. In consequence state spaces
of components can be explored independently and in parallel by a conventional
RS exploration. The underlying assumption is that enabling of a synchronized
transition depends only on the state of component 1 during generation of RS,
resp. TRS . In [9] Christensen et al. argue that component state spaces RS’ can
be infinite, while the RS of the complete model is finite. In general we cannot
cure this problem; nevertheless if such a critical component 7 is not covered by
P-invariants in isolation but covered by P-invariants within the SGSPN, these
global P-invariants are suitable to achieve finiteness of RS’ by providing place
capacities. P-invariants are similarly exploited in [19] to improve efficiency of
a numerical method for SGSPNs by enforcing state spaces of components to
obey place capacities deduced from global P-invariants. So in the following we
assume that a SGSPN is given for which finite component state spaces RS’ are
calculated via conventional RS exploration.

For GSPNs typically only so called tangible states are relevant and it is
common and efficient practice to eliminate vanishing states during generation
of TRG. In case of SGSPNs observe that synchronized transitions are timed by
definition, which facilitates to obtain the TRG of a SGSPN from component
state spaces TRG! by eliminating vanishing states locally during generation of
TRG® [19]. Generation of TRG! for an isolated component 7 yields a state tran-
sition matrix @', which can be transformed into a term Q' = @’ +> iers w(t)Q!
where )} contains all entries due to the firing of (timed) local transitions (possi-
bly multiplied by the probability of subsequently firing a sequence of immediate
transitions). In matrices Q! for a synchronized transition ¢ € 7'S the row sum of
any row j is either 1 if ¢ is enabled in M?! or 0 otherwise. Q¢ contains the condi-
tional probabilities of firing a (possibly empty) sequence of immediate transitions
in component i under the condition that t is enabled and fires, i.e. Qi(j, k) gives
the probability to reach M,é from M; [t > via a firing sequence of immediate
transitions in component i.

These component matrices are used in a so-called structured representation
to describe Q for the overall SGSPN by the help of tensor algebra [11], which
itself is based on a mapping function using mixed radix number representation.



Definition 3. Mapping function mix

Let RS := {0,1,...,k*~1} be some finite sets with arbitrary but fixed constants
k' for all i € {0,1,...,N — 1} and k = HN "ki. Let 7?8 = Xj\iolRSl denote
the product space. A mapping miz : PS — {0, 1, . — 1} is defined by

N-1
o N—1 1.0y . i
mix(x e LX) = E x'g;
i=0

with weights go == 1,¢9; == k"1 % g;_1.

A vector (zN71 ... 2%) € PS is the mixed radix number representation of
r = miz(zN71 ... 2%) with respect to basis (k=1 ... kY). Like any number
representation miz is bijective and its inverse miz~! can be calculated from
' = (miz(z™V =1 .. 2t 20)/g;)mod k' for each i. In the following, set RS of
Def. 3 coincides with the set of reachable states in component ¢, such that miz
induces a numbering on PS as well. Since such a numbering allows to identify
states, we will not distinguish between a state M, = (MN"1 ... M?) and its
number, resp. component numbers x = miz(2™V 1, ... 2) in order to preserve
readability.

For the definition of tensor product we follow the notation in [11] but regard
only the restricted case of square matrices to keep a concise notation, because
only square matrices occur in the context of our modeling formalism.

Definition4. Tensor product and sum for square matrices

Let A% ..., AN=! be square matrices of dimension (k® x k%) then their tensor
product A = ®N L A" is defined by a(z,y) = H?;Bl al(z',y") where r =
miz(zV 71 2% and y = miz(y™V L, L y0).

The tensor sum B = @N ! A% s then given by @N ! AZ = Z?;Bl Li QAR I

. _
where Ij:, IN are matrices of dimension I! x I resp. ' x v where 1 = H}:o k7,

IP = H] it k) and I(a,b) = 1 iff a = b and 0 otherwise.

As shown in [13, 19] the generator matrix of SGSPNs is given by:

Dai+ Y w)®ai-p )

0 teTsS

2

@

i

where D is a diagonal matrix providing row sums of @ Qt—i—zteTS w(t) R QL.
For RS exploration the structured representation of Q gives a valid state tran-
sition matrix for all states reachable from M. For other application areas addi-
tional restrictions might apply, e.g. for performance analysis 7RG’ need to be
strongly connected for ergodicity of the associated CTMC [13]. Based on Q we
can reformulate the task of RS exploration: calculate the minimal, reflexive, and
transitive closure of relation reach(My, My) where reach(My, My) and

reach(My, M,) <= Q(x,y) # 0.



Note that due to the elimination of vanishing states during generation of ma-
trices ), reach(M,, My) gives TRS. Obviously TRS = RS if T} = 0, hence
computation of RS for untimed Place/Transition nets is simply possible by in-
terpreting such nets as GSPNs where all transitions are timed. In this sense a
strictly speaking 7RS exploration algorithm serves also as a RS algorithm, such
that we subsume such algorithms by “RS exploration algorithms” in the follow-
ing. Before we describe such an algorithm, we clarify similarities to stochastic
automata networks (SANs) [20].

A Side-glance on SANs On the level of component state spaces, a matrix Q° can
be seen as a matrix representation of a finite automaton ¢ with additional edge
labels specifying a Markovian timing. The set of component matrices can also be
interpreted as a set of automata with synchronous communication. SANs follow
this point of view and their structured representation coincides with Eq. 1, such
that we can conclude that the RS algorithm given in Sec. 3 also applies to SANs.
For more information on SANs the interested reader is referred to [20, 21, 22].
SANs have been analyzed in continuous and discrete time, here we consider
continuous time.

Definition5. A SAN consists of N stochastic automata (SAs) with index set
1S ={0,..., N — 1} such that SAs are numbered consecutively from 0 to N — 1.
Every automaton 7 is characterized by its finite state space RS’ containing k’
states and its transition function. States in RS’ are numbered consecutively form
0 to k' — 1 starting from the initial state. All timing is Markovian. The following
types of transitions are possible: local transitions which occur locally in RS’
without affecting other automata, synchronized transitions which have to occur
synchronously in a set of automata, and functional transitions, where the tran-
sition rate is a nonnegative, real-valued function of the state of other automata.
Local and synchronized transitions can be functional. Transitions which have a
fixed rate are denoted as constant. A SAN includes TS different synchronized
transitions (events); a subset of at least two automata in IS participates on a
synchronization event ¢t € T'S.

It is straightforward to show that the complete SAN specifies a CTMC, if the
single automata observe Markovian timing. The complete CTMC can be de-
scribed as a N-dimensional CTMC with state space RS C PS := RSV~ x
. X RS x RS®. A single SA of a SAN is also referred to as a component. We
assume for functional transitions, that their functions do not interfere with the
logical behavior, i.e. the function does not evaluate to zero if the transition can
occur. This means that the function determines the delay, but not the fact that
the transition can occur. Hence the set of reachable states for a given SAN is
independent of the selection of functions, such that we can safely replace any
functional transition by a constant transition during state space exploration.
Hence for RS analysis tensor operations of Def. 4 are sufficient and it is not
necessary to use generalized tensor operations [22].

For the definition of a structured representation of generator matrix Q for
SANs we start with the definition of some matrices considering a single automa-



ton. Let A’ denote that a matrix A belongs to automaton i. Any such A’ is a
k* x k' matrix. Let Q§ be a matrix containing local transition rates. For every
synchronizing event t define ¢ as the transition matrix of automaton i contain-
ing transition rates for t. Every matrix Q¢ contains only nonnegative elements.
For automata that do not participate in event t we define Q¢ = I.. Usually one
of the matrices belonging to event t contains the corresponding transition rates,
all others have row sums equal to 0 or 1, depending whether event t is possi-
ble or not in the corresponding state. We additionally define k' x k' diagonal
matrices D! = diag(QieT) and D! = diag(Qie?) containing the row sums of
the correspondmg rows of Ql and Q¢ in the main diagonal, e is a Tow vector of
appropriate size with all elements equal to 1. With these matrices the generator
matrix Q of the SAN is described as follows:

N-1 N-1
e=Pai+> Qai-D (2)
7=0 teT S 1=0
N-1 p N-1 p . .
where D = @,y D} + > 1crs Xizg Di- Eq. (2) is a slightly less elegant,

but equivalent formulatron of the structured representation given in [20, 22].
Obviously the structured representations of SGSPNs and SANs formally coincide
if w(t) is multiplied into the first term in the tensor product @ Q¢ for SGSPNs,
such that we can in the following consider the RS problem on matrix level
without distinguishing between SGSPNs and SANs.

3 RS Exploration Based on Structured Representations

Assume a structured representation is given for a certain model with initial
state Mp. In this section we describe how successor states are calculated from
the structured representation and formulate a search algorithm to compute RS
(or TRS in case of SGSPNs with 7; # 0). Since diagonal values D in @ are
irrelevant for RS exploration we focus on state transition matrix Q = Q + D
and let Q; = B, Qi

Successor states can be reached due to local or synchronized transitions.
Considering local transitions, Def. 4 ensures that Q; = Z?;Bl LiQQIR I
where [! = Hj\f:_l_ll_l k/ and 1/ = H;’:O k7. In consequence state transitions from a
state M, to a state M, due to alocal transition t € T*°\7'S in a component i are
all specified in a single term Q% := I;; @ Q¢ ® I« such that Q; = vagl Q! and
M [to> M, with a (possibly empty)ﬁrmg sequence of immediate transitions o
if and only if Ql(x y) # 0. Each term Q! specifies a set of state transitions and
the sum @Q; = >_ Q! behaves like a logical OR since all entries are nonnegative!.
According to Def. 4 nonzero entries in @ are characterized by

Qilz,y) 20 < FielIS: Qi(x',y')A0AY €IS j£i 2=y  (3)

! In fact matrices Q}, Q! can also be mapped to boolean matrices and +, * to A, V for
RS analysis.



For a synchronized transition t let IC(t) := {i|i € IS At € T%} denote
the set of involved components, then @, := ®£\;51 Q! follows with a similar
argumentation as for (3):

Qi(x,y) £0 < Vi€ IC(t): Q" y') £0AYj g IC(t) :ad =y (4)

This follows from Def. 4, plus the fact that in general [[a; # 0 <= Vi :
a; 20, and @ = I Vj ¢ IC(t). Since the tensor product is based on a mixed
radix number representation, value y of a successor state M, for a given state
M, can be obtained from x as follows: in case of local transitions the value
y for a Qi(x,y) # 0 is given by y = mix(eV=1 .. 2t yf 21 2%, In
case of a synchronized transition t, y = mix(zV~1 ... 2%) where 2¢ = y if
i € IC(t) and 2! = 2! otherwise. Since # = miz(2™V =1, ... 20) = Z?;Bl g
and y = Zig[c(t) g + ZiEIC(t) y' - ¢;, vy can be obtained from x by y =
z+ Ziejc(t)(yi —z') - g;. Note that (y' — z') - g; is a local transformation such
that in case of sparse matrix rgpresentations of Q?, resp. @, we can store Q§ with
Qi (y" —x")-gi) resp. Qi(2*, (¥ —x*)-¢i) on the same place instead, such that
calculation of a successor state requires |IC'(¢)] additions and no multiplications.
The basic algorithm follows the standard search algorithm for state space
exploration by traversing the reachability graph, e.g. [8], but the calculation of
successor markings is adapted to the context of structured representations:

Input: Matrices of a structured representation
Program:
Init: RS = {My}, S={ My}
begin
while not empty S
take M, out of S
decode M, into (MN=1 ... M?) by miz~!
foreach component i in IS
foreach Qj(M;, M}) # 0
My:Mx—l—(ng—Mé)gi
if M, ¢ RS
then insert M, in RS and S
foreach t € T'S
ifVie IC(1) : EIQ@(M;,M;) #+0

() then foreach combination of elements Q! (M, ng) # 0 over IC(t)
My =My + ) icrc(My — M) - g;
it My ¢ RS

then insert M, in RS and S
end

In line (%) only one combination occurs if each of the corresponding rows Q¢ (M., .)
of IC(t) contains exactly one nonzero entry. Due to subsequently firing imme-
diate transitions, several nonzero entries per row are possible, such that for the



general case one has to consider all combinations of such nonzero entries to derive
all successor states.

Correctness follows from the fact, that the conventional method [8] is em-
ployed and only calculation of successor states (according to Eqs (3) and (4))and
data structures are especially adapted. Successor states are obtained from the
state transition matrix part of Q. Coding and decoding of states into vectors
of component states follows mix, resp miz~', which coincides with the tensor

products in the structured representation of Q.

It 1s well known, that the crux of the conventional method is the choice of
appropriate data structures for RS and S. Conflicting interests are that due to
the number of tests, member and insert operations for RS have to be as fast
as possible but on the other hand due to the size of RS the memory spent per
element of RS must be minimized to keep the method applicable for large state
spaces. Additionally the size of RS 1s unknown in the general case. In the context
of structured representations RS is a subset of PS = x;e1sRS’. We suggest to
use hashing and a hash table v of boolean entries with v(z) = true if My, € RS
and v(z) = false otherwise. Since miz : PS — {0,1,...,k — 1} is bijective,
it gives a perfect hash function, no collisions can occur by = miz(M;). This
results in a bit-vector of length PS with 1 bit per state for v. Member and insert
operations for RS are in O(1), since the costs for evaluating miz are already
included in the computation of successor states. Due to function miz the set S
can be represented by a stack which contains just integer values. This is memory
efficient compared to storing vectors of component states or markings. Push and
pop operations on stacks are in O(1). Decoding of a state into component states
takes N division and modulo operations. Coding of component states in the
calculation of a successor markings due to firing of a transition requires as many
additions as components are involved (at most IC(t)) as discussed above.

The length of the bitvector to represent RS can be extreme if |[PS| >> |RS]|.
Compared to other representations of RS note, that typically the memory for 1
pointer or 1 integer is about 32 bits for state representations based on marking
vectors. If coding techniques and tree-type data structures according to [8] are
used the amount of memory used for RS depends on the number of places,
the maximum number of tokens estimated for each place and the reachability
relation itself, such that a comparison is difficult to draw in general. In the
context of bitstate hashing, Holzmann [17] assumes 64 bits per state in case
of the hashcompact method [26] or allows for about 100 bits per state for an
optimal working area of the double bit hashing method; for values less than 100
bits per state double bit hashing gradually looses coverage, i.e. the quality of
results is reduced. This 1s different in our approach: miz gives a perfect hash
function, such that the new algorithm is exact. In summary we can conclude
that compared to any alternative state representation which uses at least 64 bits
per state, the bitvector representation used here requires less(!) memory for RS,
if |[RS|/|PS| > 1/64 ~ 1.5%. Surely for a large set of models holds that 1.5% of
PS is reachable. As a rule of thumb, a bitvector representation is applicable if
it fits into the available main memory of a given hardware configuration, e.g. on



a 32 MB machine PS can be up to 256 million states. For larger values of PS
it 1s model dependent, because for a lot of models mix implies a certain locality
which goes well with the locality assumption of virtual memory concepts.

4 TImprovements for state space exploration

Interleaving of independent, concurrent transitions has been recognized as one
source of the state space explosion problem and as a source for computational
overhead during state space exploration, e.g. during elimination of vanishing
markings the exploitation of extended conflict sets (ECS) can yield significant
savings in computation time by avoiding unnecessary interleavings [1, 2]. In this
context priorities are assigned to independent sets of transitions in order to
reduce the degree of concurrency, i.e. to reduce the number of firing sequences
taken into consideration. A more general approach in state space exploration is
given by Valmari [23, 24] with the stubborn set method; the point of interest is,
whether certain states are reachable or not. From this point of view interleavings
caused by independent, concurrent transitions introduce a lot of “redundant”
states which can safely be omitted, i.e. RS is reduced.

In our context the goal is to consider all nodes of RG but not all arcs. A
spanning tree on RG would be ideal, however here we establish only a way to
omit certain arcs of RG. In SGSPNs and SANs? the partition into components
implies that transitions which are local and belong to different components are
independent of each other. Interleaving of independent, concurrent transitions
has the effect that a lot of states are reached over and over again if a straightfor-
ward search algorithm 1s employed. However it is not necessary to consider all
permutations of these independent transitions. A selection of just one ordered
sequence is sufficient if 1t 1s applied on sets of states. The example in Fig. 1
illustrates the idea by a net with components A, B, and C which have only local
transitions. Not all arcs of the RG in Fig. 1 b) have to be considered for RS
exploration. One method is to order the local transitions by components and
apply them on sets of states. We start from state abc, apply the transition of
component A and derive a’bc. As a second step the transition of component B is
applied on set { abc, a’be }, since all states in this set have the same component
state for component B. This yields the set { abe, a’be, ab’c, a’b’c}. Finally on
all of these states we apply the local transition of component C with local state
¢. This procedure considers for the reachability graph of Fig. 1 b) the graph of
Fig. 1 ¢) instead, where the number of arcs is significantly reduced. The method
gains in efficiency if not only one local transition per component is fired as in
Fig. 1 but sequences of local transitions per single component. This requires an
additional termination criterion for such a local search. A natural criterion in-
herited from the conventional search method is to stop a local search when the
global state 1s already element of RS, e.g. if a’bc is already in RS, no successors
{a’b’c,a’d’c’, a’bc’} would be considered in this search. This results in a massive
pruning of such a search. Validity of this approach is proved later in the paper.
Extending the search of local successors to sets of states allows that only some

2 In fact this is typical for all modular models which communicate via fused transitions.
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Fig.1. An example net with 3 components, its reachability graph RG and the consid-

ered subgraph of RG

states require a complete decoding with N division and modulo operations, some

states require only a partial decoding and some states require only a decoding

for one component in the following algorithm. The basic idea is to keep track of
the differences, resp. similarities between states and their successor states.

Input: Matrices of a structured representation

Program:

Init: x =0 ; RSy, = {My}; Sy = { My}

begin

while not empty S,

take M, out of S,
start = stop = last = 1
copy state M, to array(1)
decode M, into (MYN=1 ... MD)

(step x)

check TS on M, like check-TS(0,last) but without extra decoding
foreach component ¢ € IS in increasing order

foreach array element M between start and stop

start-TS = last + 1
search(i,Mi M)
check-TS(i,start-TS)
stop = last
R8x+1 = Rsx;5x+1 = Sxa$ =x+ 1,

end

11

(last element in array)



search(i,Mi M)
foreach My : Qi(M,, My) # 0

M' =M+ (M, — M) - g

it M' ¢ RS,

then last = last 4+ 1
array(last) = M’
RS, =RS, U{M'}
search(i,ng,M’)

check-TS(h,start-TS)
pick one array element M between start-TS and last
decode M into M7 for j < h (exploit MJ = M7 for j > h)
foreach array element M between start-TS and last
decode M only at position h and update M* = M"
foreach t € T'S
ifVie IC(1) : EIQ%(Mi,ng) #+0
then foreach combination of nonzero elements Qi (M?*, M, ) over 1C(t)
M'= M+ cr0(My — M) - g;
it M ¢ RS,
then insert M’ in RS, and S,

Compared to the algorithm of Sec. 3, local transitions are only considered by
a component specific call for function search, which stores new states in a special
array, while synchronized transitions are only considered in function check-TS,
which stores new states in stack S, as before. Apart from the sophisticated de-
coding, function check-TS corresponds to the 2nd foreach-loop in the previous
algorithm. A call for function search causes a component specific depth-first-
search (DFS) via local transitions whose termination depends on RS,. Since
array entries are caused by local transitions and new states are inserted behind
position stop, all entries between positions start and stop have equivalent values
M when component i is considered. A byproduct of this calculation is that a set
of successor states is successively stored in the array (between positions check-TS
and last), which differs only in component i, hence this structural information
can be exploited to speed up decoding of states and checking synchronized transi-
tions. In summary this technique avoids unnecessary interleavings, saves division
and modulo operations for decoding, and simplifies enabling tests for synchro-
nized transitions; surely these effects occur only if the model under consideration
allows for a sufficient amount of independent, local transition firings.

Termination follows from the observation that any state is inserted at most
once into the array or S;. To ensure that the algorithm actually considers all
reachable states, we have to show that any successor of a state in RS, is either
already element of RS, or it still has a predecessor on stack Sy :

Lemma6. After every step z holds: YM € RS\S; : if I € T : M[t>
M' ANM'"& RS, then AM” € Sy, 0 €T : M"[o> M.

12



Proof. Proof by induction, initially RSy = So = {Mop} so lemma is trivially
fulfilled by RS\ S, = 0.
Induction step: indirect proof by contradiction, assume lemma does hold for
step x but does not hold in step x+1. In this case for any counterexample M €
RSEz+1\Sz+1 holds M[o,> M so we choose a suitable M with shortest o,.

case M, = M Since all transitions enabled by M, are considered by the
algorithm At € T : M[t> M’ such that M’ € RSy41.

case M € RS, 41\(Se41U{My}) i.e. M was reached in step x+1 for the first
time and inserted into RSy4+1 but not in Sy41. Consider the kind of transition
tyr by which M was reached: if {3y € TS then according to the algorithm
any marking reached for the first time is inserted into RS;41 and Sy41 which
contradicts the above assumption, hence ty; € T'S. So tyy € TP\T'S is local to a
certain component ¢ € IS. Since M is reached for the first time searching from
My, it is reached by the search algorithm following a sequence opr € (T\T'S)" :
Mgloar > M of local transitions in the order of components, so o3 = g -
o1 ...on—1 with o; € (T*\T'S)* forall i € IS.
Consider now the critical transition t for M[t> M': t € TS is not possible,
because M was reached for the first time, so according to the algorithm all
synchronized transitions are considered for M. So ¢ € T/\T'S must be local to
some component j € [.
If i < j then t € TY\TS is considered within a DFS-search for M, since M is
stored in the array as any new element reached by local transitions and a search
is called as for all elements between start and stop. In consequence M’ would be
element of RSy41.
If ¢ = j then M is reached within a DFS-search of the same component i=j.
According to the algorithm every ¢ € TP\T'S = T/\T'S is considered such that
M’ would be reached and inserted into RS,41.
If ¢ > j then Mg[opmt> M’ and the firing sequence does not follow the order
of I due to transition t. Due to the independence of the firing of local transi-
tions which belong to different components, firing sequence o7t has permutation
Operm = 01 - 0;t0j41...0n which can be fired and yields M’ as well. Accord-
ing to our assumption M, € RSz4+1 and M’ € RS, 41, hence this firing sequence
has a first break where M;[t;> Ms and My € RSz41 and Ms & RSz41. Let o
denote the firing sequence reaching M; being a prefix of operp,. Since t1 € T\T'S
must be a local transition and Ms is not reached by a DFS-search, DFS must
terminate at M; because My € RS;4+1 holds already. There are 2 possibilities:
Firstly M1 € RS, was reached in one of the previous steps. Then due to Ms ¢
RSy C RSy either My € S; or AM” € Sy, 00 € T* : M"[09> Mo.
If My € S, then due to Ms & RS,4+1 must be M, # M;. Hence My € Spq1,
which in turn implies M is a suitable element in Syy1, 301 € T : My[o1>M'.
Otherwise if IM” € Sy, 00 € T* : M"[02> My and if M = M, is the only
suitable element of S, from which M5 can be reached then M; is already a
suitable element for a counterexample like M, but with a shorter sequence than
o contradicting our assumption. Hence AM" # M, € Sy, 00 € T* : M"'[05> M.
Since M, is the only element removed from S, in step x+1, M" is element of
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Sr+1 as well. Finally the first break cannot be at M, since this is ensured already
above by M, # M.

The second possibility is that My € RS;+1\R S, i.e. M1 was reached before but
within step x+1. Then M; is itself a starting point for DFS and ¢; follows in the
order of components (o1t is an ordered sequence), the transition ¢; is checked at
My [t> M. O

Correctness of the algorithm simply follows from the lemma above in combina-
tion with the termination criterion S; = 0.

Breadth-First-Search (BFS) can be used instead of DFS for the price of an
additional decoding at one component. The main advantage from a practical
point of view is that the array entries can be reused as a BFS-queue such that
no extra memory is required and recursion as in DFS can be avoided.

5 Examples

As examples for SGSPNs we consider the “benchnet model” of Caselli et al. [6, 7]
and the flexible manufacturing system given by Ciardo et al. [10].

The Benchnet model This model has a simple net structure shown in Fig. 2,
whose obvious symmetries are ignored by the implemented approach. The size
of the state space is increased by modifying arc weights, i.e. by increasing values
for parameter k. The net i1s partitioned into 4 components to obtain a SGSPN,
namely A,B,C, and D as denoted in Fig. 2. Finiteness for the state space of
component A is achieved by exploiting P-invariants [19], i.e. a P-invariant of the
SGSPN implies that py contains at most 3 tokens. Caselli et al. state that main
memory is the main bottleneck for state space exploration. Since the SGSPN
approach does not solve the state space explosion problem, but reliefs its impacts,
it 1s interesting to see how far state space exploration can be pushed on a given
hardware configuration. Figure 3 shows the CPU-time and the elapsed time in
seconds for the basic and the improved method as a function of |RS|; the CPU-
time does not differ significantly from the elapsed time for [RS| < 43 million
states. These results are obtained on a Sparc 5 with 70 MHz CPU and 32 MB
main memory.

Fraction RS/PS = 25% is constant for all values of k in this model; nev-
ertheless it shows clearly that |PS| >> |RS|. The computation times for the
component state spaces are negligible, 1.e. they are less than 1 sec for the state
spaces considered here. Component state spaces have very moderate cardinal-
ities, i.e. [RSA| = 4 and |[RS?| = |[RS®| = [RS”| = k + 2. The number of
nonzero entries which have to be stored for the structured representation re-
mains less than 1600 for & < 498. The benchnet model 1s a kind of best case
example for the improved method because large values of k imply a high degree
of enabling for local transitions, such that a lot of interleaving occurs; which in
turn is successfully treated by the improved method. The results clearly indicate
that the improved method is much more efficient than the basic method for this
example. Compared to computation times given in [7] note that the conventional
approach in a sequential implementation fails for [RS| > 10° on a Sparc 2 with
64 MB main memory; computation times for a parallel implementation on a
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Fig. 2. The benchnet model with a partition into components A,B,C, and D
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Comparisons with results in [6, 7] should be drawn carefully, since the new al-
gorithm relies on the partition into components inherent to SGSPNs and SAN,
but the conventional method (sequential or parallel) for GSPNs can be applied
on arbitrary GSPNs without such an information. Hence we only conclude that
for this example the SGSPN method allows to outperform the conventional se-
quential approach by far and furthermore to outweigh advantages obtained from
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Fig.3. Computation time t in seconds for benchnet model up to 125 million states

CM-5 are similar to the improved method up to the state space cardinalities
considered in [7], i.e. up to 1.7 million states.

parallel computation. Since the new algorithm is amenable to parallelization at
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least as much as the conventional state space exploration, further improvements
are foreseen.

A Flexible Manufacturing System Ciardo et al. [10] describe a flexible manufac-
turing system (FMS) to discuss the benefits of an approximate analysis tech-
nique based on decomposition. Figure 4 models this FMS as given in [10], it
consists of three machines m,m,, and ms. Machine m; processes parts of type
p1, up to three at a time as My(my) = 3 indicates. Machines m2 and m3 are
modeled similarly. Machine msy processes parts of type ps or ps, but parts of
type ps have a higher priority than ps. Machine mg assembles parts p; and ps
into a new type pio. Finished parts pi,pa,ps, or p12 can be shipped and in this
case the same number of rough parts enters the system, to maintain a constant
inventory. Since we are only interested in RS exploration here, we omit the ad-
ditional assumptions considering aspects of time in [10] apart from the fact that
T; := {tm1,tm2,tm3, ipl, tp2,iplj tp2e} are immediate transitions and all other
transitions are timed. In [10] “flushing” arcs connect corresponding transitions
tpls,tp2s,tp3s, and tpl2s; they have a marking dependent cardinality equal to
the number of tokens in the input place for the transition. This exceeds the
GSPN definition underlying the SGSPNs introduced here. For simplicity we as-
sume constant arc weights for transitions tpls tp2s;tp3s, and tpl2s. The FMS
model is exercised for 2 different partitions:

FMS with partition into 2 components A decomposition into 2 components by
separating processing of parts of type p1,ps and pys from parts ps. In this model
transition tp3m2 is the only synchronized transition. Table 1 shows the corre-
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N|[TRS*|TRSP|PS = TRS[>" NZ(Q")[Comp-expl. in sec[TRS-expl. in sec
3] 652 10 6520 3391 2 2
4| 2394 15 35910 14088 5 6
5/ 7272 21 152712 46719 19 22
6| 19206 28 537768 131769 66 77
7| 45540 36| 1639440 328830 259 296

Table 1. Results of FMS model with partition into 2 components

sponding results for increasing values of N = n; = ns = ng: the columns TRSA
and TRS® give the sizes of component state spaces. TRS* contains processing
of parts py,ps, and pio; TRSP processing of parts ps. Column four shows the
size of PS which equals 7RS for this partition. Column Y NZ(Q") gives the
number of matrix elements which are explicitly stored in the structured repre-
sentation. Column six gives the elapsed time used for the state space exploration
of components; the total elapsed time in seconds for state space exploration us-
ing the improved method is given in column seven, note that the values include
values of column six.

Obviously the synchronization of components A and B via transition tp3m2
does not restrict reachability, all elements of the cross-product of component
state spaces are reachable in this model. As a consequence the TRS-exploration
of the SGSPN can safely be omitted for analysis purposes, nevertheless it 1s an
interesting extreme case, in which the hash table is completely filled. The results
demonstrate that most of the time in state space exploration is used to explore
the state space of component A which uses the conventional approach. Once
generation of component state spaces is finished, exploration of the overall TRS
is extremely fast, e.g. 296-259=37 seconds for exploration of a TRS with more
than 1.6 million states. Trivially, the implementation with hashing into a bit
vector using a perfect hash function is insensitive to the filling of the hash table.

Since the dimension of component state spaces are of different orders of

magnitude, such that their generation times differ significantly, a further decom-
position of component A seems to be worthwhile.
FMS with partition into 3 components Component A of this model can be split
into 2 components if transition ¢z is merged with transition tp12. The new model
is partitioned into three components A ,B,C as shown in Fig. 5, where transi-
tions tp12s, tpl2 and tp3m?2 are synchronized transitions. Finiteness of T'RS®
is ensured by taking place capacities/limits into consideration which follow from
P-invariants of the complete model [19]. Nevertheless introducing an additional
place pa derived from a P-invariant is helpful to avoid useless states in 7RS .
Informally pz aggregates the processing of pl12. Result values are given in Ta-
ble 2 and Fig. 6. Note that for this partition |PS| >> |7RS| and the fraction
TRS/PS is rapidly decreasing for increasing values of N.

The results demonstrate that the time for state space exploration is signif-
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N|[TRSA|TRSP|TRSY|PS (x 1000)[TRS (x 1000)[TRS/PS|>_ NZ(Q")
3| 56 10| 35 19 6] 0.3327 289
40 126 15 70 132 35 0.2714 697
5 2521 21 126 666 152 0.2290 1458
6| 462 28] 210 2716 537|  0.1980 2758
7| 792 36| 330 9408 1639  0.1742 4838
8| 1287| 45| 495 28667 4459 0.1556 8001
9| 2002| 55| 715 78728 11058|  0.1405 12619
10| 3003 66| 1001 198396 25397 0.1280 19140
11| 4368/ 78| 1365 465060 54682 0.1176 28095

Table 2. Results of FMS model with partition into 3 components

icantly reduced if component state spaces are chosen to be small, e.g. for N=7
the elapsed time for the generation of component state spaces is 1 second instead
of 259 for the model with 2 components and the complete 7RS exploration re-
quires 68 (52) seconds for the basic (improved) algorithm instead of 296 before.
On the other hand it is quite clear that components should not be decomposed
arbitrarily fine since their “local” behavior is one source of an efficient TRS-
exploration, cf. Sec. 4 and |PS| >> |TRS| is the price paid for superposition.
For N=11 the bitvector requires about 58 MB and exceeds the available 32 MB
by far, such that a significant amount of paging activities increase the elapsed
time, i.e. it takes 9109 seconds for the improved method to explore 54 million
states while the CPU-time is only 2442 seconds. This effect is well known from
the conventional approach and is experienced there for much smaller state spaces.

1800
1: Basic algorithm,elapsed time 1
2: Basic algorithm,CPU-time_
1500 3: Improved algorithm,elapsed time 3
4: Improved algorithm,CPU-time
2
1200 +
t 900 E
600
300
0 | | | | |
0 5000 10000 15000 20000 25000

|TRS|( x 1000)

Fig. 6. Computation time t in seconds for FMS model up to 25 million states
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6 Conclusions

In this paper a state space exploration algorithm is described, which computes
the set of tangible reachable states (7RS) for superposed generalized stochastic
Petri nets (SGSPNs) and stochastic automata networks (SANs). Computation
of the reachability set (RS) for untimed Place/Transition nets is included as a
special case. The algorithm exploits that SANs and SGSPNs by definition pro-
vide a decomposition of a model into components and profits from the structured
representation known for the generator matrix  of the associated CTMC. Q is
trivially suitable as a state transition matrix for reachability analysis. Addition-
ally the algorithm is based on hashing with a bitvector for the cross-product of
component state spaces PS and a perfect(!) hash function derived from the struc-
tured representation. An improvement of this basic algorithm which reduces the
impact of interleaving is also presented. The applicability of the new method is
demonstrated by two examples for SGSPNs taken from literature [7, 10]. For the
given decomposition the new approach outperforms the conventional algorithm
in a sequential implementation by far in terms of the size of state spaces and
computation times. Both examples show that state space cardinalities of several
million states can be handled on a workstation with 32MB main memory.

Although originally designed to improve iterative numerical analysis of SANs
and SGSPNs, efficiency of the algorithm motivates its application for any purely
functional analysis which is based on state space exploration, e.g. to decide
reachability, liveness etc. Since the algorithm does not(!) rely on stochastic timing
its application to colored Petri nets with transition fusion [9] is straightforward.
In [4, 5] structured representations similar to SANs are given for Markovian
process algebras (MPAs), a modeling formalism where a set of processes interact
via synchronized transitions as well. The approach given here can be adapted to
MPAs as well.

So far the method requires that a decomposition of a model into components
with finite component state spaces is given as a prerequisite. Ongoing work is
dedicated to clarify the role of P-invariants for the derivation of a suitable decom-
position. Another promising perspective is parallelization, since the generation
of component state spaces is trivially possible in parallel and the computation of
successor states based on component matrices shows at least as much potential
for parallelization as the parallel computation of transition firings in GSPNs.
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