
CS780 Project: The Weighted Automata Network Analyzer

Peter Kemper
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187, USA

kemper@cs.wm.edu

Abstract

Weighted automata generalize a number of concepts found in discrete event dynamics systems
of various kind. Semirings are used as a base algebra for describing weights which implies a variety
different interpretations for particular application cases. In this project, we want to explore how
theoretical results in fact boil down to algorithms and techniques that work in practice. The goal
of this project is to derive a proof-of-concept implementation of approaches based on weighted
automata.

1 Motivation and Overview

Model checking discrete event dynamic systems is an area that combines a variety of types of automata
with a variety of types of modal logics to evaluate if a given system has a particular property or not.
Those automata models differ in important aspects; for instance untimed automata are used for stan-
dard model checking, probabilistic automata for timed and probabilistic model checking, stochastic
automata for stochastic model checking and various other forms of timed automata have been consid-
ered as well. By considering the wide area of finite state automata, one can notice that in addition
to these types of automata other models have been proposed and applied successfully in different
application areas. Examples are min/plus, max/plus, or min/max automata that have been used
for the analysis of real time systems, communication system, and discrete event systems. Further-
more, similar models have been applied for natural language processing or image compression. It is
quite natural and for most of the mentioned applications also very useful to extend model checking
approaches to all these types of automata. Since the class of weighted automata provides in some
sense a superset of different automata types, which includes different forms of probabilistic automata
and also untimed automata, one may strive for a general framework of model checking which can be
applied to a wide variety of different types of weighted automata without defining a new approach for
each type. Such a framework is of theoretical interest to get a better understanding of model checking
and to get a common ground for model checking in various application areas. From a methodological
point of view, it gives direct access to model checking techniques for various types of automata that
do not profit from these techniques yet. Finally, it supports tool development: in an object oriented
setting, implementation of a specific model checker can inherit basic techniques from a more general
class that implements techniques valid for the whole framework.

Weighted automata are a well known class of automata where transitions are labeled with labels
from a finite alphabet and, additionally, receive weights or costs that are elements of some semiring.
A key observation is that the algebraic structure of a semiring is sufficient to define model checking for
weighted automata. The advantage is that by selecting appropriate semirings, one obtains different
types of automata that include most of the above mentioned types. This general type of automata is
suitable to define a bisimulation as we did in [4, 2]. In [3], the process algebra GPA has been introduced
for the specification of models in a compositional way such that the underlying semantic model is a
weighted automaton in the case of a finite set of states. In [1] we propose a model checking approach

1



for weighted automata. The approach allows us to check formulas of the newly defined logic Valued
Computational Tree Logic (CTL$) over a weighted automaton. Algorithms for model checking are
developed and it will be shown that by an appropriate definition of the semiring used for the definition
of transitions weights, we naturally define model checking approaches for different model types without
developing new approaches in each case. The special cases include untimed, probabilistic, min/plus,
max/plus, and min/max automata such that known model checking approaches are covered and new
approaches are introduced in the case of min/plus, max/plus, and min/max automata. By the use
of other semirings for transition weights, the proposed approach applies to a wide class of automata
models. In so far, we develop some form of a generic approach for model checking that is applicable
to other model classes and that includes algorithms to perform model checking.

Schedule and Management plan ”The proof of the pudding is in the eating” is the motto of this
project, which aims at developing a proof-of-concept implementation of a number of concepts known
for weighted automata. Before we discuss a schedule with milestones, let’s consider a number of issues
that formulate challenges and possible solutions for our endeavor.

• The implementation should be generic in the sense that the underlying semiring can be exchanged
without any other changes to the code base. This could be derived by working with a semiring
interface that specific semirings implement and the prototype pattern (e.g. as discussed in
Horstmann).

• Automata come with a number of composition operations, such that bisimulations turn out to
be congruences. A compositional structure is known to provide valuable information for state
space exploration (symbolic or Kronecker methods) as well as for bisimulation based reduction
operations. Classes that represent automata may retain and take advantage of information
on a given compositional structure and may use the Composite pattern (e.g. as discussed in
Horstmann).

• Subtle yet important differences between semirings, automata, representations should be indi-
cated by attributes or resolved by polymorphism.

• State space exploration and state-based methods have simple straightforward implementations
and sophisticated ones based on symbolic or Kronecker representations. A symbolic exploration
has to rely on an existing library to be feasible within the given time frame, hence we should
start of with a simple implementation and have the state space exploration and its outcome be
properly encapsulated such that it is simple to replace a straightforward algorithm by a symbolic
one.

• Modeling and analysis techniques consider conceptually the same discrete event dynamic system
yet from different perspectives. In Mobius, this is resolved by a so-called model-level abstract
functional interface and by a state-level abstract functional interface (model-level and state-level
AFI). While the former encapsulates the representation of a state and state transition function
of a model, the latter allows an analysis technique to consider a DEDS basically as a transition
matrix. A similar distinction may be useful for this project as well.

• Team effort vs individual grades. Obviously the overall project is more interesting if we investi-
gate and implement different aspects and not redundant ones. In order to allow for individual
grades, subprojects will be assigned to the sole responsibility of a single person and will be eval-
uated and graded within its own test environment. However, as an incentive towards the overall
bonus points given for an overall working solution.

We make use of a test driven design with several iteration phases. The idea is to start of from a
basic implementation that has default implementations for particular examples such that only limited
functionality is in fact available and which will grow over time and phases.

2



• phase 1 (Feb 19- Feb 26, 1 week): class design with CRC cards, definition of model-level and
state-level AFI, implementing a test suite for a use case and trivial default implementation, phase
is finished if overall design is consistent with respect to interfaces and required functionality.

• phase 2 (Feb 26 - March 11, 2 weeks): extending the test suite for one example taken from
the literature and a first implementation that handles at least the example from the literature.
Phase is finished if overall implementation handles the example.

• phase 3 (March 11 - March 25, 2 weeks): extending the test suite to cover further examples that
use more features, full fledged implementation, phase ends if overall implementation handles set
of well-specified correct examples that exercise full functionality.

• phase 4 (March 25 - April 8): extending the test suite for use cases that check exceptional cases,
phase ends if overall implementation is able to handle complete set of examples in a reasonable
manner.

• phase 5 (April 8 - April 22): wrap up, evaluation and documentation phase. In this phase, the
result of phase 4 is evaluated with respect to its potential and limitations. Final results include
an evaluation report, a documented and tested code base with a set of examples.

In what follows, we break down the overall project into five individual tasks.
Task 1 is to obtain a weighted automaton from a simulation trace. The outcome of this task will

help us to obtain application examples for subsequent analysis in a convenient and automated manner.
Task 2 is to obtain a weighted automaton from a general process algebra. Similar to task 1, the

outcome will make the overall project more useful and easier to evaluate.
Task 3 is to transform a model-level description (implementation of the model-level AFI) into an

implementation of the state-level AFI. This task requires a state space exploration and is fundamental
for any state based analysis.

Task 4 is to support the transformation in task 3 by a bisimulation minimization. The outcome
helps to make the overall approach scale further.

Task 5 is to provide modelchecking functionality based on the state-level AFI such that we can
evaluate models for terms of an appropriate modal logic like CTL$ .

In what follows, we describe these tasks in further detail.

2 Task 1: Implementing a model-level interface: Automata derived
from traces

A trace σ is an alternating sequence of states and transitions that may result from monitoring a system
or from simulating a discrete event dynamic system. We can derive traces from simulators like Mobius
and can make use of a trace parser (in Java) from the existing Traviando trace analyzer.

The model level AFI requires us to implement a weighted automaton that has an internal notion
of state and state transitions. We need to provide an initial state, a state transition relation, access to
all enabled transitions for a given state and an equality and an equivalence relation for states. For the
state transition relation, we need to produce a successor state for a given transition label (if enabled)
as well as a weight for that transition. We also need to provide a prototype implementation of the
semiring, that is used for this model. For a start, we use the (R,+,x,0,1) semiring, we are familiar
with.

If the model is compositional, we need to identify the type of composition (direct product, syn-
chronized product, choice, sum of automata), we need to give access to the constituents as well as to
the set of shared labels in case of a synchronized product.

Traviando traces can be seen as a synchronized product of weighted automata in a natural manner.
A traviando trace has a prefix that identifies a number of processes that have individual state variables
and individual (local) actions as well as a set of actions that are shared and used between processes for

3



synchronisation. Since the state of each process can be identified by the settings of its state variables
and state changes by the occurrence of corresponding actions in σ, we can create one automaton
for each process with as many states as there are different local states for that trace in σ. For any
action that takes place with respect to a particular automaton, we can check the difference of time
stamps to the previous action (of that process) and take those numerical values as weights. If several
actions with same label and to the same successor state are observed for a particular state, where the
timing is different, we represent that set of values by its mean, minimum and maximum value. For
synchronized actions, we need to keep track of the most recent predecessor action to get the relevant
timing information. Note that the language of the resulting automata is richer than just σ, it includes
σ as one element but is likely o contain many more.

Other derivations of automata are possible as well, e.g. a trivial one that creates a single automaton
that generates that particular finite sequence σ. One may consider the Sequitur algorithm as one way
to derive a concise internal representation of that trace. Furthermore, one can adopt the CTMC
generation algorithm of Sen, Viswanathan and Agha to obtain a weighted automaton from a set of
traces.

Side issues: Traviando traces are available in an XML format, a parser that reads a given trace into
a Java class ”trace” is available. Interface and implementation of semirings following the prototype
pattern (e.g. as presented by Horstmann) is shared with other tasks. The notion of equivalence should
support bisimulations considered in Task 4.

3 Task 2: Implementing a model-level interface: Automata derived
from a Process Algebra

For this task, we need to parse a GPA model description, presumedly from a yet to be defined XML
format. With that information, we need to implement the model-level AFI, which means that we
design and implement a notion of state and a state-transition relation based on the grammatical rules
defined for the GPA in [3].

The model level AFI requires us to implement a weighted automaton that has an internal notion
of state and state transitions. We need to provide an initial state, a state transition relation, access to
all enabled transitions for a given state and an equality and an equivalence relation for states. For the
state transition relation, we need to produce a successor state for a given transition label (if enabled)
as well as a weight for that transition. We also need to provide a prototype implementation of the
semiring, that is used for this model. For a start, we use the (R,+,x,0,1) semiring, we are familiar
with.

If the model is compositional, we need to identify the type of composition (direct product, syn-
chronized product, choice, sum of automata), we need to give access to the constituents as well as
to the set of shared labels in case of a synchronized product. For GPA, it is expected to use the
synchronized product to come up with a compositional model.

Side issues: Interface and implementation of semirings following the prototype pattern (e.g. as
presented by Horstmann) is shared with other tasks. The notion of equivalence should support bisim-
ulations considered in Task 4.

4 Task 3: State space exploration

For this task, we need to adopt one of the known state space exploration algorithms. For an initial
trivial solution, one can derive a BFS-algorithm as performed for symbolic exploration but in fact use
simple set data structures and explore one transition and state after the other. Subsequent versions
may then make use of a decision diagram library like libddd to proceed further. The challenge for a
symbolic exploration is in the generation of a suitable encoding of the next state relation based on
what is provided by the model-level AFI. There is related work by Siegle and Lampka to do so.

4



The outcome of this task is an implementation of the state-level AFI, that allows us to access a
model like a state transition matrix, i.e., we can identify its dimension and obtain state=transitions
based on ids. If a symbolic exploration is achieved, we can generalize the interface to handle sets of
states instead of single states. Note that this transformation must also transform the evaluation of
atomic propositions as labels of the state space S in order to support model checking.

5 Task 4: Bisimulation minimization

For this task, we need to implement a partition refinement algorithm that serves various semirings (one
implementation should suffice), various types of bisimulations (one implementation should suffice, or
minor variations that exploit inheritance). The outcome should be a data structure in close cooperation
with task 3 such that the state space exploration in fact can take advantage of a compositional
minimization of a model. For a given model, a set of atomic propositions, a particular bisimulation,
this tasks produces a minimal equivalent weighted automaton that implements the same interfaces as
the input and can safely replace the input model for any further analysis. The various and closely
related kinds of bisimulations are discussed in [2], [1] Section 5, [3] Section 4, and as forward and
backward bisimulationsin [4]. For algorithms, check references [7,10] given in [2] and work by S.
Derisavi and H. Herrmanns on this topic.

6 Task 5: Modelchecking

For this task, we need to implement modelchecking algorithms described in [?] for the modal logic
CTL$ based on the state-level AFI. The connection to the particular modeling formalism is based on
atomic propositions - the usual formal trick seen in the literature to separate modal logics and model
checking from particularities of a modeling formalism. Atomic propositions are boolean functions that
evaluate for a given state to true or false. This implies requirements for a model-level AFI to support
atomic propositions and for state space exploration and bisimulation minimizations to preserve those
propositions and to make those accessible via the state-level AFI.

The logic CTL$ has mainly two non-trivial path operators, U and AU that require considerations
of paths in a weighted automaton.

7 Examples

A number of examples can be adopted from the various papers on weighted automata, for instance,
see Section 6 in [2], the driving test example in [1], page 4 and Section 6 in [1] and Section 5 in [3].

References

[1] P. Buchholz, P. Kemper. Model Checking for Automata with Transition Costs. submitted for
publication.

[2] Buchholz,P. and Kemper,P. Weak bisimulation for (max/+) automata and related models Jour-
nal of Automata, Languages and Combinatorics, selected papers of the workshop Weighted Au-
tomata: Theory and Applications (Dresden, Germany, March 4-8, 2002), Vol. 8 (2003) Number
2.

[3] Buchholz,P; Kemper,P. Quantifying the Dynamic Behavior of Process Algebras In Proc. of the
joint PAPM-PROBMIV workshop, September, 2001, Aachen, Germany, Springer, LNCS 2165,
pp. 184-199, 2001.

[4] P. Buchholz. Bisimulation Relations for Weighted Automata. To appear in Theoretical Computer
Science.

5


