X CS780 Discrete-State Models

" Instructor: Peter Kemper

R 006, phone 221-3462, email:kemper@cs.wm.edu
Office hours: Mon,Wed 3-5 pm

Today:
Some Example Bisimulations

1N




References

N

L/
Bisimulations for CCS
# R. Milner, Communication and Concurrency, Prentice Hall, 1989.

Inverse Bisimulation for Reachability

# P. Buchholz and P. Kemper. Efficient Computation and Representation of
Large Reachability Sets for Composed Automata. Discrete Event Dynamic
Systems - Theory and Applications (2002)

Bisimulation for Weighted Automata

# P. Buchholz, P. Kemper. Weak Bisimulation for (max/+)-Automata and
Related Models. Journal of Automata, Languages and Combinatorics (2003)

Markov Chains, Lumpability

Many, many publications, a Phd that covers many aspects:

# S. Derisavi. Solution of Large Markov Models Using Lumping Techniques and
Symbolic Data Structures. Doctoral Dissertation, University of Illinois, 2005.

http://www.perform.csl.uiuc.edu/papers.html




Bisimulations

N
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# Bisimulations are always defined in a similar manner
s Examples: Strong and Weak Bisimulation,
Observational Congruence, ...

Ingredients:
+ equivalence relations, largest is the interesting one
+ what the one state can do, the related one can simulate
and vice versa

Definition (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if Pp(@Q implies,
for every v € Act,

Q@ P P — ex. Q' € Prcsuch that Q — Q' and P'pQ’
Q@ Q - Q = ex. P’ € Prcsuch that P — P’ and P'pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there
exists a strong bisimulation p such that PpQ.




_ Inverse Bisimulation for Reachability

T@ Reduction of an Automaton

DEFINITION 3.1 LetA = (S, 0.5¢,L) be an automaton and # be an equivalence relation on
state space S. The aggregated automaton according to R is defined as Az = = (S, o, 50, L),
in which S = Sy So IS the unique equivalence class with soezep(so) L=L, and & is

defined as follows: (5,,5y,l) € 0<==s €rep(s,) and sy € rep(sy) with (s, sy, ) €0 exist.
‘ USEeS representatlve states.
# Weak Inverse Bisimulation

DEFINITION 3.2 Let A = (S,0,s0.L) be an automaton and A be an equivalence relation
on state space S. X is a weak inverse bisimulation <=-1)(sy.s,) € Z implies Q,«(0,x) and
2)if (s..5,) €A, then Q«(z,x) = 1 implies Q< (Z',y) = 1 for some s with (s,,s.) € # and
vice versa.

@ Preserves reachability

& Llet Q=300 O = Q00
# Inverse? Look for z, z' position in Q,.(z,x) =1




_ Inverse Bisimulation for Reachability

T@ Weak Inverse Bisimulation preserves reachability

THEOREM 3.1 [fA, results from automaton A by an aggregation with respect to some weak
inverse bisimulation X, then in every embedding environment the following relation holds:

1. ifstate s, €S is reachable after A is embedded, then all s, € rep(s, ) are reachable after
A is embedded in the same environment, and

2. if state s, €S is not reachable after A is embedded, then all s erep(s,) are not
reachable after A is embedded in the same environment.

#® Embedding means parallel composition wrt to transition labels, i.e.,
synchronization of transitions.

# Proof:

= Item 1: induction over number of synchronized transitions

+ 1st condition handles reachable states from s, before 1st synchronized
transition

+ 2nd condition handles subsequent transitions
m Item 2: follows from def of transitions in aggregated automaton




Weak bisimulation of K-automata (semiring)

An equivalence relation R C S x S'is a weak bisimulation relation
It forall(s;,s,)ER,alllEL\{r} U{e},all equivalence classes CES /R

a(s)) =a(sy) %r a(sy) =a(sy)
p(s1)=p"(s2) tarms b'(s;) =b(s;)

I'(s,1,C)=T"(52,1,C)  matrices  M'1(51,C) =M (s52,C)

Two states are weakly bisimilar, sy =s, ,if (51,80)ER

Two automata are weakly bisimilar, 4, = 4, ,ifthereisa
weak bisimulation on the union of both automata such that

a(Cy))=a(C,y)forallCES/R



i Theorem
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It 4, = 4, for Ki- Automata 4;, 4, then w, (o) = w, (0)
forallo€ L™ *where L'=(L; U L,) \{t} U {¢e}
\/Leights of sequences are equal in weakly bisimilar automata.

Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of
labels, may start or stop at any state

Weakly ? Paths can contain subpaths of t-labeled transitions
represented by a single s-labeled transition.




Theorem

If A; = A, and A4; are finite Ki- Automata then

1. Al + A3 == A2 + A3 direct sum

2. Al : A3 =~ A2 : A3 and A2 : A3 =~ Al : A3 direct produci

3.4 A, = A A, and 4 A = A A, fsynchronized
i, A=Al 43 3l A=A, 4 Pyt

and 1f choice 1s defined then
4. Al V A3 ~ Az V A3 and A3 V A] ~ A3 V Az choice

Some notes on proofs:

proofs are lengthy,

argumentation based matrices helps,

argumentation along paths, resp. sequences more tedious
idempotency simplifies valuation for concatenation of t*| t* transitions
note that algebra does not provide inverse elements wrt + and *

¢ ®®ee



Lumping - Performance Bisimulation for Markov Chains
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# Lumping
s Markov Reward Process:
Continuous Time Markov Chain with rate rewards

and initial probabilities
= Ordinary lumping, exact lumping
# Exploiting lumping at different levels
= State-level lumping
= Model-level lumping
s Compositional lumping




Markov Reward Process (MRP)

# Various steady-state and transient measures can be
computed using rate rewards and initial probabilities for
states of CTMC

® MRPis 4-tuple (S, Q,r, ')
e S={0,...,|S| —1}: state space
e QUSIXISD: generator matrix

e r(s): rate reward value of state s € S
e w'Ni(5): probability of state s at time 0

# Ordinary and exact lumping
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Ordinary Lumping

Definition: M = (S, Q,r,n'™) is ordinarily
lumpable w.r.t. to partition P of & Iff

I‘(S) = I‘(g) and ZS/EC/Q(S,S/) — ZS/EC/Q(§7 S/)
for all (equivalence) classes C,C’ of P,

and all s,s e C

@{ JORO
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Exact Lumping

Definition: M = (S,Q,r,ﬂ'i”i) IS exactly
lumpable w.r.t. to partition P of § iff

n(s) =m(5) and ZS’EC’Q‘S”S) — ZS/€C/Q1S',§)
for all (equivalence) classes C,C’ of P,

and all s,se€ C
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Exact and ordinary lumping for DTMC

Definition 1. Let P be the irreducible transition matrix of a finite Markov chain X
on state space Z and Q = {(1)- - -Q(N)} a partition of the state space with collector
matrix V.

o Qisordinarily lumpable, iff forallI€{1---N}andalli,jEQI): (e, — )PV = 0;

o Qs exactly lumpable, iff forall IE{1---N}andalli,jEQI): (e; — ¢)PTV = 0;

o Q is strictly lumpable, iff it is ordinarily and exactly lumpable.

e; is a row vector with 1.0 in position i and 0 elsewhere.

The above definition of ordinary/exact lumpability defines unique constants ¢; ; =
e,P, ;e7 for ordinarily lumpable partitions and 7, ; = eP, ;' for exactly lumpable
partitions, which are independent from i € Q(J).

Theorem 3 ([15], Section 5). IfQ is an exactly lumpable partition on the state space
Z of a finite Markov chain with transition matrix P and P = WPV is the transition matrix
of the aggregated chain according to Q and resulting from W = diag(eV)~'V7, then
#=T11 and n, = (I)/n,e. The elements of P are given by P(I,J) = (n,/n;)n,,.

Theorem 4 ([16], §3]). IfQ is an ordinarily lumpable partition on the state space Z of
a finite Markov chain with transition matrix P, then P = WPV the transition matrix of the
aggregated chain according to Q is independent from the weight vector a and #®t = I1. The
elements P(I, J) are equal to &, ;.
13



Exact and ordinary lumping
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# Lumping works for both CTMCs and DTMCs
# Main motivation:
= Solution of reduced MC vyields smaller vector =

which is the basis to compute rewards like
utilization, throughput, population (e.g. in buffers), ...

= Exact lumping:
» Detailed distribution inside equivalence class is known to be uniform

+ Reward measure may differ for different states in same equivalence
class

s Ordinary lumping:
» Detailed distribution inside equivalence class is unknown

+ Reward measures can only be evaluated if they do not distinguish
among states in same equivalence class

# Lumping can be a very effective reduction technique!
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Types of Lumping Algorithms
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# State-level lumping
= First generate the overall CTMC, then lump

#® Model-level lumping

= Exploit symmetry among components and directly generate a
lumped CTMC

# Compositional lumping
= State-level lumping at component level
= Often formalism-dependent

# All three types are complementary
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More Details
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# Compositional lumping
= Local and global equivalences for Matrix Diagrams
s Compositional lumping theorem
= Computation of local equivalence
= Case study
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Refresher: Matrix Diagram
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# Different elements multiplied by
different matrices

# Generalization of Kronecker product

(i

\

—t

w
AN

BN =

# Structurally similar to MDDs

-bNO/

W ON

W o
BN

Multi-valued Decision Diagram

# May represent a supermatrix of the
state transition rate matrix

= Accompanied by state space represented as
MDD

= When projected on the MDD gives the exact
state transition rate matrix
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MDD: Refresher

@ Represents function  f: X S —{0,1,...,n}

=1
S; ={0,...,]S;] — 1} Z

# Special case: n =1
= frepresents a set of vectors

0

1

2

1 b

\.OL/%

{(OIOI]')I (OIOIZ)I (Ollll)l (0,1,2),
(1IOI1)I (1IOI2)I (1I1IO)I (1I1I1)l
(2,0,0), (2,0,1), (2,1,1), (2,1,2)}
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MDD: Refresher

N

m

# Represents function  f: X S;—{0,1,...,n}
o)

S; =10,...,]S;| — 1} Z 0l1]2

# Special case: n = 1 ] }
1 0

m frepresents a set of vectors
. .
Representation of a set of \% G E

states of a discrete-state
moce o

Partition set of state var.
Assign index to unique
value assignment of 0.0.1) (0.0.2). (01.1) (012
variables of each block {(0,0,1), (0,0,2), (0,1,1), (0,1,2),
(1,0,1), (1,0,2), (1,1,0), (1,1,1),

Vector of indices

19



MD Notation

e N.. nodes of level ¢

e n- € N a node ID in

level ¢

e Ry, . matrix represented

by nOde nc Tng,n?:,(Qvl

® Tnengyq(Sc,se): real
number in element | |
(307 Slc) of node n.
that points to n.1

20



Goal: Compositional Lumping at individual levels
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Lumping level
@\ of MD

>

—_

projection of MD on

MDD

=

projection of lumped MD on

lumped MDD
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Simplified Notation
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# Consider level c of MD for lumping conditions
= All levels above/below c can be merged into one level

# Without loss of generality:

= Discussing 3-level MD and focusing on level 2 instead of
discussing m-level MD and focusing on level c

= Makes notation and main concepts straightforward to understand
and theorems easier to prove

# State represented as vector of substates, i.e.,

s = (s1,89,83) Where s € S, s € S¢, and
ce {1,2,3}
r(s) = g(f1(s1), f2(s2), f3(s3))

22




Local and Global Equivalences

e Local equivalence =, (partition P;,) on Sy
S$o X, §2 1i Vno € No, Cé < PZO

fo(s2) = f2(52) and

> Rny(s2,85) = > Rn,(52,55)
s,€C5 s5€C5

r(s) = r(5) and

> Q(s,s) = > Q(,5")

s'eC’ s'eC’
e Global equivalence ~g4,: Extending =, to
complete state space S:

S Rgo s if sy =351, so ~lo So, and sz = s3 .



Compositional Lumping Theorem

e Theorem: CTMC represented by MD is ordinarily
lumpable with respect to global equivalence =g,

— Therefore, =, satisfies sufficient conditions on
matrices of one level of MD such that it gives
ordinary lumpability for overall MD

— Theorem holds for any local and global equiva-
lences stricter than ~;, and =4

— Similar sufficient conditions and theorem for ex-
act lumpability

24



Computation of Local Equivalence (1)

e Should satisfy

f2(s2) = f2(52) and

Z Rn2(3275/2): Z Rn2(§275/2)
s5eCh e}

e [esting the second condition involves ma-
trices of size |Sy x 83| X |Sp x 83
= computationally too expensive

e Resort to easier-to-compute stricter (i.e.,
sufficient) condition

25



Computation of Local Equivalence (2)

N
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z Rn2(8298’2) — Z Rn2(§278/2) Iff

s,eC}

Z Z 70”2’”3(829812)1:{713(83,8%) — Z Z Tnz,n3(§298/2)Rn3(33,S%)

5/2605 T3 €N3

s,eCl

SIQECé n3€N3

?
¢le]

______________________________________
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Computation of Local Equivalence (3)

Z Z Troms (52, 85) R, (83, 85) = Z Z Tryma (32, 55) R, (53, 55)

s,eCs n3seN;

s,eCs nseNs

iff )

n3EN;

2

nsEN3

Z rnz,n3(827 8/2)

8/2602

Z Tn27n3(§29 8/2)

SIQGCQ

Rn3(837 5,3) —

Rn3(83>8£’>) (1)

o (1) holds if Y, ¢, Tron:(52,85) = D, o, Prams (82, 85)

— Equality testing involves |S>| x |S2| matrices, i.e.,
local conditions
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# Tandem network

Compositional: Performance Study

= Jobs are served in two phases

MSMQ polling-based system (4 queues, 3 servers)
Hypercube multiprocessor

s 3-level MD and MDD

SS size
J unlumped lumped

|51 Sol | IS3] | [S1] | [So] | [S3]

1 2 650 160 2| 30| 40

2 3| 3,575 700 3178|175

3 4 114,300 | 2,220 4 | 803 | 555
J overall SS size # of MD | generation | lumping
unlumped | lumped nodes time (s) | time (s)
1 22,100 395 7 0.05 0.04
2 197,600 4,075 10 0.8 0.26
311,236,300 | 28,090 13 12.1 1.8
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Conclusion
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# State-level lumping
= Suffers from handling very large state spaces, matrices

# Model-level lumping

= Various options, formalism dependent
+ Stochastic Well-formed Nets (SWNSs)
+ Mobius Rep/Join and Graph Composed models
+ Superposed GSPNs

# Compositional lumping

= Based on congruence:
+ Automata with parallel composition
m PEPA, Superposed GSPNs, ...
= Based on symbolic matrix representation
Work by S. Derisavi ...
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