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CS780 Discrete-State Models

Today:
Some Example Bisimulations

Instructor: Peter Kemper
R 006, phone 221-3462, email:kemper@cs.wm.edu
Office hours: Mon,Wed 3-5 pm
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Bisimulations

Bisimulations are always defined in a similar manner
 Examples: Strong and Weak Bisimulation,

Observational Congruence, …
Ingredients:

 equivalence relations, largest is the interesting one
 what the one state can do, the related one can simulate

and vice versa
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Inverse Bisimulation for Reachability

Reduction of an Automaton

uses representative states.
Weak Inverse Bisimulation

Preserves reachability
Let
Inverse?  Look for z, z’ position in
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Inverse Bisimulation for Reachability

Weak Inverse Bisimulation preserves reachability

Embedding means parallel composition wrt to transition labels, i.e.,
synchronization of transitions.
Proof:
 Item 1: induction over number of synchronized transitions

 1st condition handles reachable states from s0 before 1st synchronized
transition

 2nd condition handles subsequent transitions
 Item 2: follows from def of transitions in aggregated automaton
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Weak bisimulation of K-automata (semiring)

An equivalence relation is a weak bisimulation relation
if

Two states are weakly bisimilar, , if

Two automata are weakly bisimilar, , if there is a
weak bisimulation on the union of both automata such that
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Theorem

Weights of sequences are equal in weakly bisimilar automata.

Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of
labels, may start or stop at any state

Weakly ? Paths can contain subpaths of τ-labeled transitions
represented by a single ε-labeled transition.
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Theorem

Some notes on proofs:
proofs are lengthy,
argumentation based matrices helps,
argumentation along paths, resp. sequences more tedious
idempotency simplifies valuation for concatenation of  τ*l τ* transitions
note that algebra does not provide inverse elements wrt + and *
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Lumping - Performance Bisimulation for Markov Chains

Lumping
 Markov Reward Process:

Continuous Time Markov Chain with rate rewards
and initial probabilities

 Ordinary lumping, exact lumping

Exploiting lumping at different levels
 State-level lumping
 Model-level lumping
 Compositional lumping
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Markov Reward Process (MRP)

Various steady-state and transient measures can be
computed using rate rewards and initial probabilities for
states of CTMC
MRP is 4-tuple

Ordinary and exact lumping
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Ordinary Lumping
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Exact Lumping
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Exact and ordinary lumping for DTMC
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Exact and ordinary lumping

Lumping works for both CTMCs and DTMCs
Main motivation:
 Solution of reduced MC yields smaller vector π

which is the basis to compute rewards like
utilization, throughput, population (e.g. in buffers), …

 Exact lumping:
 Detailed distribution inside equivalence class is known to be uniform
 Reward measure may differ for different states in same equivalence

class

 Ordinary lumping:
 Detailed distribution inside equivalence class is unknown
 Reward measures can only be evaluated if they do not distinguish

among states in same equivalence class

Lumping can be a very effective reduction technique!
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Types of Lumping Algorithms

State-level lumping
 First generate the overall CTMC, then lump

Model-level lumping
 Exploit symmetry among components and directly generate a

lumped CTMC

Compositional lumping
 State-level lumping at component level
 Often formalism-dependent

All three types are complementary
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More Details

Compositional lumping
 Local and global equivalences for Matrix Diagrams
 Compositional lumping theorem
 Computation of local equivalence
 Case study
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Refresher: Matrix Diagram

Different elements multiplied by
different matrices
Generalization of Kronecker product
Structurally similar to MDDs
Multi-valued Decision Diagram
May represent a supermatrix of the
state transition rate matrix
 Accompanied by state space represented as

MDD
 When projected on the MDD gives the exact

state transition rate matrix
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MDD: Refresher

Represents function                               where

Special case: n = 1
  f represents a set of vectors

0 1 2

0 1 0 1

0 1 2 0 1 2

0 1

0 1

{(0,0,1), (0,0,2), (0,1,1), (0,1,2),

(1,0,1), (1,0,2), (1,1,0), (1,1,1),

(2,0,0), (2,0,1), (2,1,1), (2,1,2)}
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MDD: Refresher

Represents function                               where

Special case: n = 1
  f represents a set of vectors

0 1 2

0 1 0 1

0 1 2 0 1 2

0 1

0 1

{(0,0,1), (0,0,2), (0,1,1), (0,1,2),

(1,0,1), (1,0,2), (1,1,0), (1,1,1),

(2,0,0), (2,0,1), (2,1,1), (2,1,2)}

 Representation of a set of
states of a discrete-state
model

 Partition set of state var.
 Assign index to unique

value assignment of
variables of each block

 Vector of indices
represents a state
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MD Notation
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Goal: Compositional Lumping at individual levels

Lumping level 1
of MD

projection of MD on
MDD

projection of lumped MD on
lumped MDD
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Consider level c of MD for lumping conditions
 All levels above/below c can be merged into one level

Without loss of generality:
 Discussing 3-level MD and focusing on level 2 instead of

discussing m-level MD and focusing on level c
 Makes notation and main concepts straightforward to understand

and theorems easier to prove

State represented as vector of substates, i.e.,

Simplified Notation
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Local and Global Equivalences
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Compositional Lumping Theorem
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Computation of Local Equivalence (1)
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Computation of Local Equivalence (2)
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Computation of Local Equivalence (3)
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Compositional: Performance Study

Tandem network
 Jobs are served in two phases

 MSMQ polling-based system (4 queues, 3 servers)
 Hypercube multiprocessor

 3-level MD and MDD
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Conclusion

State-level lumping
 Suffers from handling very large state spaces, matrices

Model-level lumping
 Various options, formalism dependent

 Stochastic Well-formed Nets (SWNs)
 Mobius Rep/Join and Graph Composed models
 Superposed GSPNs

Compositional lumping
 Based on congruence:

 Automata with parallel composition
 PEPA, Superposed GSPNs, …

 Based on symbolic matrix representation
Work by S. Derisavi …


