CS780 Discrete-State Models

Instructor: Peter Kemper
R 006, phone 221-3462, email:kemper@cs.wm.edu Office hours: Mon, Wed 3-5 pm

Today:
Some Example Bisimulations

References

Bisimulations for CCS

- R. Milner, Communication and Concurrency, Prentice Hall, 1989.

Inverse Bisimulation for Reachability

- P. Buchholz and P. Kemper. Efficient Computation and Representation of Large Reachability Sets for Composed Automata. Discrete Event Dynamic Systems - Theory and Applications (2002)

Bisimulation for Weighted Automata

- P. Buchholz, P. Kemper. Weak Bisimulation for (max/+)-Automata and Related Models. Journal of Automata, Languages and Combinatorics (2003)

Markov Chains, Lumpability
Many, many publications, a Phd that covers many aspects:

- S. Derisavi. Solution of Large Markov Models Using Lumping Techniques and Symbolic Data Structures. Doctoral Dissertation, University of Illinois, 2005. http://www.perform.csl.uiuc.edu/papers.html

Bisimulations

- Bisimulations are always defined in a similar manner
- Examples: Strong and Weak Bisimulation, Observational Congruence, ...
Ingredients:
- equivalence relations, largest is the interesting one
- what the one state can do, the related one can simulate and vice versa

Definition (Strong bisimulation)

A relation $\rho \subseteq \operatorname{Prc} \times \operatorname{Prc}$ is called a strong bisimulation if $P \rho Q$ implies, for every $\alpha \in A c t$,
(1) $P \xrightarrow{\alpha} P^{\prime} \Longrightarrow$ ex. $Q^{\prime} \in \operatorname{Prc}$ such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \rho Q^{\prime}$
(2) $Q \xrightarrow{\alpha} Q^{\prime} \Longrightarrow$ ex. $P^{\prime} \in \operatorname{Prc}$ such that $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \rho Q^{\prime}$
$P, Q \in P r c$ are called strongly bisimilar (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P \rho Q$.

Inverse Bisimulation for Reachability

- Reduction of an Automaton

DEFINITION 3.1 Let $A=\left(S, \delta, s_{0}, L\right)$ be an automaton and \mathscr{R} be an equivalence relation on state space S. The aggregated automaton according to \mathscr{R} is defined as $A_{\mathscr{R}}=\left(\tilde{S}, \tilde{\delta}, \tilde{s}_{0}, \tilde{L}\right)$, in which $\tilde{S}=S_{\mathscr{R}}, \tilde{s}_{0}$ is the unique equivalence class with $s_{0} \in \operatorname{rep}\left(\tilde{s}_{0}\right), \tilde{L}=L$, and $\tilde{\delta}$ is defined as follows: $\left(\tilde{s}_{x}, \tilde{s}_{y}, l\right) \in \tilde{\delta} \Longleftrightarrow s_{x} \in \operatorname{rep}\left(\tilde{s}_{x}\right)$ and $s_{y} \in \operatorname{rep}\left(\tilde{s}_{y}\right)$ with $\left(s_{x}, s_{y}, l\right) \in \delta$ exist.

uses representative states.

\& Weak Inverse Bisimulation
Defintition 3.2 Let $A=\left(S, \delta, s_{0}, L\right)$ be an automaton and \mathscr{R} be an equivalence relation on state space S. \mathscr{R} is a weak inverse bisimulation $\Longleftrightarrow 1)\left(s_{0}, s_{x}\right) \in \mathscr{R}$ implies $Q_{\tau^{*}}(0, x)$ and 2) if $\left(s_{x}, s_{y}\right) \in \mathscr{R}$, then $Q_{l^{*}}(z, x)=1$ implies $Q_{l^{*}}\left(z^{\prime}, y\right)=1$ for some $s_{z^{\prime}}$ with $\left(s_{z}, s_{z^{\prime}}\right) \in \mathscr{R}$ and vice versa.
\checkmark Preserves reachability
\diamond Let $\quad Q_{\tau^{*}}=\sum_{k=0}^{\infty}\left(Q_{\tau}\right)^{k} \quad Q_{l^{*}}=Q_{\tau^{*}} Q_{l} Q_{\tau^{*}}$
\diamond Inverse? Look for $\mathrm{z}, \mathrm{z}^{\prime}$ position in $Q_{l^{*}}(z, x)=1$

Inverse Bisimulation for Reachability

- Weak Inverse Bisimulation preserves reachability

THEOREM 3.1 If $\tilde{A}_{\mathscr{R}}$ results from automaton A by an aggregation with respect to some weak inverse bisimulation \mathscr{R}, then in every embedding environment the following relation holds:

1. if state $\tilde{s}_{x} \in \tilde{S}$ is reachable after \tilde{A} is embedded, then all $s_{x} \in \operatorname{rep}\left(\tilde{s}_{x}\right)$ are reachable after A is embedded in the same environment, and
2. if state $\tilde{s}_{x} \in \tilde{S}$ is not reachable after \tilde{A} is embedded, then all $s_{x} \in \operatorname{rep}\left(\tilde{s}_{x}\right)$ are not reachable after A is embedded in the same environment.

* Embedding means parallel composition wrt to transition labels, i.e., synchronization of transitions.
- Proof:
- Item 1: induction over number of synchronized transitions
- 1st condition handles reachable states from s_{0} before 1 st synchronized transition
- 2nd condition handles subsequent transitions
- Item 2: follows from def of transitions in aggregated automaton

Weak bisimulation of K-automata (semiring)

An equivalence relation $R \subseteq S \times S$ is a weak bisimulation relation
if for $\operatorname{all}\left(s_{1}, s_{2}\right) \in R$, all $l \in L \backslash\{\tau\} \cup\{\varepsilon\}$, all equivalence classes $C \in S / R$

$$
\begin{array}{lll}
\alpha\left(s_{1}\right)=\alpha\left(s_{2}\right) & \text { or } & \mathbf{a}\left(s_{1}\right)=\mathbf{a}\left(s_{2}\right) \\
\beta^{\prime}\left(s_{1}\right)=\beta^{\prime}\left(s_{2}\right) & \text { in } & \mathbf{b}^{\prime}\left(s_{1}\right)=\mathbf{b}^{\prime}\left(s_{2}\right) \\
T^{\prime}\left(s_{1}, l, C\right)=T^{\prime}\left(s_{2}, l, C\right) & \text { terms } & \text { of } \\
\text { matrices } & \mathbf{M}_{l}^{\prime}\left(s_{1}, C\right)=\mathbf{M}_{l}^{\prime}\left(s_{2}, C\right)
\end{array}
$$

Two states are weakly bisimilar, $s_{1} \approx s_{2}$, if $\left(s_{1}, s_{2}\right) \in R$

Two automata are weakly bisimilar, $A_{1} \approx A_{2}$, if there is a weak bisimulation on the union of both automata such that $\alpha\left(\mathrm{C}_{1}\right)=\alpha\left(\mathrm{C}_{2}\right)$ for all $C \in S / R$

Theorem

If $A_{1} \approx A_{2}$ for Ki - Automata A_{1}, A_{2} then $\mathrm{w}_{1}{ }^{\prime}(\sigma)=\mathrm{w}_{2}{ }^{\prime}(\sigma)$ for all $\sigma \in L^{\prime *}$ where $L^{\prime}=\left(L_{1} \cup L_{2}\right) \backslash\{\tau\} \cup\{\varepsilon\}$

Weights of sequences are equal in weakly bisimilar automata.

Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of labels, may start or stop at any state

Weakly ? Paths can contain subpaths of τ-labeled transitions represented by a single ε-labeled transition.

Theorem

If $A_{1} \approx A_{2}$ and A_{3} are finite Ki - Automata then

1. $A_{1}+A_{3} \approx A_{2}+A_{3}$
2. $A_{1} \cdot A_{3} \approx A_{2} \cdot A_{3}$ and $A_{2} \cdot A_{3} \approx A_{1} \cdot A_{3}$
direct product
3. $A_{1}\left\|_{L_{C}} A_{3} \approx A_{2}\right\|_{L_{C}} A_{3}$ and $A_{3}\left\|_{L_{C}} A_{1} \approx A_{3}\right\|_{L_{C}} A_{2}$ and if choice is defined then

$$
\text { 4. } A_{1} \vee A_{3} \approx A_{2} \vee A_{3} \text { and } A_{3} \vee A_{1} \approx A_{3} \vee A_{2}
$$

choice

Some notes on proofs:

- proofs are lengthy,
- argumentation based matrices helps,
- argumentation along paths, resp. sequences more tedious
- idempotency simplifies valuation for concatenation of $\tau^{*} \tau^{*}$ transitions
- note that algebra does not provide inverse elements wrt + and *

Lumping - Performance Bisimulation for Markov Chains

- Lumping
- Markov Reward Process:

Continuous Time Markov Chain with rate rewards and initial probabilities

- Ordinary lumping, exact lumping
- Exploiting lumping at different levels
- State-level lumping
- Model-level lumping
- Compositional lumping

Markov Reward Process (MRP)

* Various steady-state and transient measures can be computed using rate rewards and initial probabilities for states of CTMC
\diamond MRP is 4-tuple $\quad\left(\mathcal{S}, \mathbf{Q}, \mathbf{r}, \boldsymbol{\pi}^{\text {ini }}\right)$
- $\mathcal{S}=\{0, \ldots,|\mathcal{S}|-1\}$: state space
- $\mathrm{Q}^{(|\mathcal{S}| \times|\mathcal{S}|)}$: generator matrix
- $\mathrm{r}(s)$: rate reward value of state $s \in \mathcal{S}$
- $\pi^{\text {ini }}(s)$: probability of state s at time 0

Ordinary and exact lumping

Ordinary Lumping

Definition: $M=\left(\mathcal{S}, \mathbf{Q}, \mathbf{r}, \boldsymbol{\pi}^{\text {ini }}\right)$ is ordinarily
lumpable w.r.t. to partition \mathcal{P} of \mathcal{S} iff $\mathrm{r}(s)=\mathrm{r}(\widehat{s})$ and $\sum_{s^{\prime} \in C^{\prime}} \mathbf{Q}\left(s, s^{\prime}\right)=\sum_{s^{\prime} \in C^{\prime}} \mathbf{Q}\left(\widehat{s}, s^{\prime}\right)$ for all (equivalence) classes C, C^{\prime} of \mathcal{P}, and all $s, \hat{s} \in C$

Exact Lumping

Definition: $M=\left(\mathcal{S}, \mathbf{Q}, \mathbf{r}, \boldsymbol{\pi}^{\text {ini }}\right)$ is exactly lumpable w.r.t. to partition \mathcal{P} of \mathcal{S} iff $\pi(s)=\pi(\widehat{s})$ and $\left.\sum_{s^{\prime} \in C^{\prime}} \mathbf{Q}\left(s^{\prime}, \mathbf{s}\right)=\sum_{s^{\prime} \in C^{\prime}} \mathbf{Q} \mid \mathbf{s}^{\prime}, \hat{\mathbf{s}}\right)$ for all (equivalence) classes C, C^{\prime} of \mathcal{P}, and all $s, \hat{s} \in C$

Exact and ordinary lumping for DTMC

Definition 1. Let \boldsymbol{P} be the irreducible transition matrix of a finite Markov chain X on state space Z and $\Omega=\{\Omega(1) \cdots \Omega(N)\}$ a partition of the state space with collector matrix \boldsymbol{V}.

- Ω is ordinarily lumpable, iff for all $I \in\{1 \cdots N\}$ and all $i, j \in \Omega(I):\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right) \boldsymbol{P V}=\mathbf{0}$;
- Ω is exactly lumpable, iff for all $I \in\{1 \cdots N\}$ and all $i, j \in \Omega(I):\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right) \boldsymbol{P}^{\mathrm{T}} \boldsymbol{V}=\mathbf{0}$;
- Ω is strictly lumpable, iff it is ordinarily and exactly lumpable.
\boldsymbol{e}_{i} is a row vector with 1.0 in position i and 0 elsewhere.
The above definition of ordinary/exact lumpability defines unique constants $\xi_{l, J}=$ $\boldsymbol{e}_{i} \boldsymbol{P}_{I, J} \boldsymbol{e}^{\mathrm{T}}$ for ordinarily lumpable partitions and $\eta_{I, J}=\boldsymbol{e} \boldsymbol{P}_{I, J} \boldsymbol{e}_{i}^{\mathrm{T}}$ for exactly lumpable partitions, which are independent from $i \in \Omega(I)$.

Theorem 3 ([15], Section 5). If Ω is an exactly lumpable partition on the state space Z of a finite Markov chain with transition matrix \boldsymbol{P} and $\hat{\boldsymbol{P}}=\boldsymbol{W} \boldsymbol{P} \boldsymbol{V}$ is the transition matrix of the aggregated chain according to $\boldsymbol{\Omega}$ and resulting from $\boldsymbol{W}=\operatorname{diag}(\boldsymbol{e V})^{-1} \boldsymbol{V}^{\mathrm{T}}$, then $\hat{\boldsymbol{\pi}}=\Pi$ and $\boldsymbol{\pi}_{I}=\hat{\pi}(I) / n_{I} \boldsymbol{e}$. The elements of $\hat{\boldsymbol{P}}$ are given by $\hat{P}(I, J)=\left(n_{J} / n_{I}\right) \eta_{I J}$.

Theorem 4 ([16], §3]). If Ω is an ordinarily lumpable partition on the state space Z of a finite Markov chain with transition matrix \boldsymbol{P}, then $\hat{\boldsymbol{P}}=\boldsymbol{W} \boldsymbol{P V}$ the transition matrix of the aggregated chain according to Ω is independent from the weight vector α and $\hat{\boldsymbol{\pi}}=\Pi$. The elements $\hat{P}(I, J)$ are equal to $\xi_{I, J}$.

Exact and ordinary lumping

\diamond Lumping works for both CTMCs and DTMCs

- Main motivation:
- Solution of reduced MC yields smaller vector π which is the basis to compute rewards like utilization, throughput, population (e.g. in buffers), ...
- Exact lumping:
- Detailed distribution inside equivalence class is known to be uniform
- Reward measure may differ for different states in same equivalence class
- Ordinary lumping:
- Detailed distribution inside equivalence class is unknown
- Reward measures can only be evaluated if they do not distinguish among states in same equivalence class
\diamond Lumping can be a very effective reduction technique!

Types of Lumping Algorithms

- State-level lumping
- First generate the overall CTMC, then lump
- Model-level lumping
- Exploit symmetry among components and directly generate a lumped CTMC
\diamond Compositional lumping
- State-level lumping at component level
- Often formalism-dependent

All three types are complementary

More Details

- Compositional lumping

- Local and global equivalences for Matrix Diagrams
- Compositional lumping theorem
- Computation of local equivalence
- Case study

Refresher: Matrix Diagram

- Different elements multiplied by different matrices
- Generalization of Kronecker product
- Structurally similar to MDDs

Multi-valued Decision Diagram

- May represent a supermatrix of the state transition rate matrix
- Accompanied by state space represented as MDD
- When projected on the MDD gives the exact state transition rate matrix

MDD: Refresher

- Represents function

$$
f: \underset{i=1}{m} S_{i} \rightarrow\{0,1, \ldots, n\}
$$ $S_{i}=\left\{0, \ldots,\left|S_{i}\right|-1\right\}$ - Special case: $\mathrm{n}=1$

- f represents a set of vectors

$$
\begin{aligned}
& \{(0,0,1),(0,0,2),(0,1,1),(0,1,2), \\
& (1,0,1),(1,0,2),(1,1,0),(1,1,1), \\
& (2,0,0),(2,0,1),(2,1,1),(2,1,2)\}
\end{aligned}
$$

MDD: Refresher

- Represents function $S_{i}=\left\{0, \ldots,\left|S_{i}\right|-1\right\}$
\diamond Special case: $\mathrm{n}=1$
- f represents a set of vectors

Representation of a set of states of a discrete-state model

- Partition set of state var.

- Assign index to unique value assignment of variables of each block
- Vector of indices represents a state

$$
\begin{aligned}
& \{(0,0,1),(0,0,2),(0,1,1),(0,1,2), \\
& (1,0,1),(1,0,2),(1,1,0),(1,1,1), \\
& (2,0,0),(2,0,1),(2,1,1),(2,1,2)\}
\end{aligned}
$$

MD Notation

- N_{c} : nodes of level c
- $n_{c} \in N_{c}$: a node ID in level c
- $\mathrm{R}_{n_{c}}$: matrix represented by node n_{c}
- $r_{n_{c}, n_{c+1}}\left(s_{c}, s_{c}^{\prime}\right)$: real number in element (s_{c}, s_{c}^{\prime}) of node n_{c}
 that points to n_{c+1}

Goal: Compositional Lumping at individual levels

projection of MD on
MDD
projection of lumped MD on lumped MDD

Simplified Notation

Consider level c of MD for lumping conditions

- All levels above/below c can be merged into one level
- Without loss of generality:
- Discussing 3-level MD and focusing on level 2 instead of discussing m -level MD and focusing on level c
- Makes notation and main concepts straightforward to understand and theorems easier to prove
State represented as vector of substates, i.e.,
$s=\left(s_{1}, s_{2}, s_{3}\right)$ where $s \in \mathcal{S}, s_{c} \in \mathcal{S}_{C}$, and
$c \in\{1,2,3\}$
$\mathbf{r}(s)=g\left(f_{1}\left(s_{1}\right), f_{2}\left(s_{2}\right), f_{3}\left(s_{3}\right)\right)$

Local and Global Equivalences

- Local equivalence $\approx_{l o}$ (partition $\mathcal{P}_{l o}$) on \mathcal{S}_{2}

$$
\begin{aligned}
& s_{2} \approx_{l o} \hat{s}_{2} \text { if } \forall n_{2} \in N_{2}, C_{2}^{\prime} \in \mathcal{P}_{l o} \\
& f_{2}\left(s_{2}\right)=f_{2}\left(\hat{s}_{2}\right) \text { and } \\
& \sum_{s_{2}^{\prime} \in C_{2}^{\prime}} \mathbf{R}_{n_{2}}\left(s_{2}, s_{2}^{\prime}\right)=\sum_{s_{2}^{\prime} \in C_{2}^{\prime}} \mathbf{R}_{n_{2}}\left(s_{2}, s_{2}^{\prime}\right) \\
& \mathbf{r}(s)=\mathbf{r}(\hat{s}) \text { and } \\
& \sum_{s^{\prime} \in C^{\prime}} \mathbf{Q}\left(s, s^{\prime}\right)=\sum_{s^{\prime} \in C^{\prime}} \mathbf{Q}\left(\hat{s}, s^{\prime}\right)
\end{aligned}
$$

- Global equivalence $\approx_{g o}$: Extending $\approx_{l o}$ to complete state space \mathcal{S} :
$s \approx_{g o} \hat{s}$ if $s_{1}=\hat{s}_{1}, s_{2} \approx_{l o} \hat{s}_{2}$, and $s_{3}=\hat{s}_{3}$

Compositional Lumping Theorem

- Theorem: CTMC represented by MD is ordinarily lumpable with respect to global equivalence $\approx_{g o}$
- Therefore, $\approx_{l o}$ satisfies sufficient conditions on matrices of one level of MD such that it gives ordinary lumpability for overall MD
- Theorem holds for any local and global equivalences stricter than $\approx_{l o}$ and $\approx_{g o}$
- Similar sufficient conditions and theorem for exact lumpability

Computation of Local Equivalence (1)

- Should satisfy

$$
\begin{aligned}
& f_{2}\left(s_{2}\right)=f_{2}\left(\widehat{s}_{2}\right) \text { and } \\
& \sum_{s_{2}^{\prime} \in C_{2}^{\prime}} \mathbf{R}_{n_{2}}\left(s_{2}, s_{2}^{\prime}\right)=\sum_{s_{2}^{\prime} \in C_{2}^{\prime}} \mathbf{R}_{n_{2}}\left(\widehat{s}_{2}, s_{2}^{\prime}\right)
\end{aligned}
$$

- Testing the second condition involves matrices of size $\left|\mathcal{S}_{2} \times \mathcal{S}_{3}\right| \times\left|\mathcal{S}_{2} \times \mathcal{S}_{3}\right|$
\Rightarrow computationally too expensive
- Resort to easier-to-compute stricter (i.e., sufficient) condition

Computation of Local Equivalence (2)

- $\sum_{s_{2} C_{C}^{\prime}} \mathbf{R}_{n_{2}}\left(s_{2}, s_{2}^{\prime}\right)=\sum_{s_{2} \in C_{2}^{\prime}} \mathbf{R}_{n_{2}}\left(\hat{s}_{2}, s_{2}^{\prime}\right)$ iff

$$
\sum_{s_{2}^{\prime} \in C_{2}^{\prime}} \sum_{n_{3} \in N_{3}} r_{n_{2}, n_{3}}\left(s_{2}, s_{2}^{\prime}\right) \mathbf{R}_{n_{3}}\left(s_{3}, s_{3}^{\prime}\right)=\sum_{s_{2}^{\prime} \in C_{2}^{\prime}} \sum_{n_{3} \in N_{3}} r_{n_{2}, n_{3}}\left(\hat{s}_{2}, s_{2}^{\prime}\right) \mathbf{R}_{n_{3}}\left(s_{3}, s_{3}^{\prime}\right)
$$

Computation of Local Equivalence (3)

$$
\begin{align*}
& \sum_{s_{2}^{\prime} \in C_{2}} \sum_{n_{3} \in N_{3}} r_{n_{2}, n_{3}}\left(s_{2}, s_{2}^{\prime}\right) \mathbf{R}_{n_{3}}\left(s_{3}, s_{3}^{\prime}\right)=\sum_{s_{2}^{\prime} \in C_{2}} \sum_{n_{3} \in N_{3}} r_{n_{2}, n_{3}}\left(\widehat{s}_{2}, s_{2}^{\prime}\right) \mathbf{R}_{n_{3}}\left(s_{3}, s_{3}^{\prime}\right) \\
& \text { iff } \sum_{n_{3} \in N_{3}}\left[\sum_{s_{2}^{\prime} \in C_{2}} r_{n_{2}, n_{3}}\left(s_{2}, s_{2}^{\prime}\right)\right] \mathbf{R}_{n_{3}}\left(s_{3}, s_{3}^{\prime}\right)= \\
& \sum_{n_{3} \in N_{3}}\left[\sum_{s_{2}^{\prime} \in C_{2}} r_{n_{2}, n_{3}}\left(\hat{s}_{2}, s_{2}^{\prime}\right)\right] \mathbf{R}_{n_{3}}\left(s_{3}, s_{3}^{\prime}\right) \tag{1}
\end{align*}
$$

- (1) holds if $\sum_{s_{2}^{\prime} \in C_{2}} r_{n_{2}, n_{3}}\left(s_{2}, s_{2}^{\prime}\right)=\sum_{s_{2}^{\prime} \in C_{2}} r_{n_{2}, n_{3}}\left(\widehat{s}_{2}, s_{2}^{\prime}\right)$
- Equality testing involves $\left|\mathcal{S}_{2}\right| \times\left|\mathcal{S}_{2}\right|$ matrices, i.e., local conditions

Compositional: Performance Study

- Tandem network

- Jobs are served in two phases
- MSMQ polling-based system (4 queues, 3 servers)
- Hypercube multiprocessor
- 3-level MD and MDD

J	SS size					
	unlumped			lumped		
	$\left\|\mathcal{S}_{1}\right\|$	$\left\|\mathcal{S}_{2}\right\|$	$\left\|\mathcal{S}_{3}\right\|$	$\left\|\widetilde{\mathcal{S}}_{1}\right\|$	$\left\|\widetilde{\mathcal{S}}_{2}\right\|$	$\left\|\tilde{\mathcal{S}}_{3}\right\|$
1	2	650	160	2	30	40
2	3	3,575	700	3	178	175
3	4	14,300	2,220	4	803	555

J	overall SS size		\# of MD nodes	generation time (s)	lumping time (s)
	unlumped	lumped			
1	22,100	395	7	0.05	0.04
2	197,600	4,075	10	0.8	0.26
3	1,236,300	28,090	13	12.1	1.8

Conclusion

\diamond State-level lumping

- Suffers from handling very large state spaces, matrices
- Model-level lumping
- Various options, formalism dependent
- Stochastic Well-formed Nets (SWNs)
- Mobius Rep/Join and Graph Composed models
- Superposed GSPNs
- Compositional lumping
- Based on congruence:
- Automata with parallel composition
- PEPA, Superposed GSPNs, ...
- Based on symbolic matrix representation Work by S. Derisavi ...

