

References

Bisimulations for CCS

♦ R. Milner, Communication and Concurrency, Prentice Hall, 1989.

Inverse Bisimulation for Reachability

 P. Buchholz and P. Kemper. Efficient Computation and Representation of Large Reachability Sets for Composed Automata. Discrete Event Dynamic Systems - Theory and Applications (2002)

Bisimulation for Weighted Automata

P. Buchholz, P. Kemper. Weak Bisimulation for (max/+)-Automata and Related Models. Journal of Automata, Languages and Combinatorics (2003)

Markov Chains, Lumpability

Many, many publications, a Phd that covers many aspects:

S. Derisavi. Solution of Large Markov Models Using Lumping Techniques and Symbolic Data Structures. Doctoral Dissertation, University of Illinois, 2005. http://www.perform.csl.uiuc.edu/papers.html

Bisimulations

Bisimulations are always defined in a similar manner

- Examples: Strong and Weak Bisimulation,
 - Observational Congruence, ...
- Ingredients:
 - equivalence relations, largest is the interesting one
 - what the one state can do, the related one can simulate and vice versa

Definition (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a strong bisimulation if $P\rho Q$ implies, for every $\alpha \in Act$,

 $@ Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

 $P, Q \in Prc$ are called strongly bisimilar (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

Inverse Bisimulation for Reachability

Reduction of an Automaton

DEFINITION 3.1 Let $A = (S, \delta, s_0, L)$ be an automaton and \mathscr{R} be an equivalence relation on state space S. The aggregated automaton according to \mathscr{R} is defined as $A_{\mathscr{R}} = (\tilde{S}, \tilde{\delta}, \tilde{s}_0, \tilde{L})$, in which $\tilde{S} = S_{\mathscr{R}}$, \tilde{s}_0 is the unique equivalence class with $s_0 \in rep(\tilde{s}_0)$, $\tilde{L} = L$, and $\tilde{\delta}$ is defined as follows: $(\tilde{s}_x, \tilde{s}_y, l) \in \tilde{\delta} \iff s_x \in rep(\tilde{s}_x)$ and $s_y \in rep(\tilde{s}_y)$ with $(s_x, s_y, l) \in \delta$ exist.

uses representative states.

Weak Inverse Bisimulation

DEFINITION 3.2 Let $A = (S, \delta, s_0, L)$ be an automaton and \mathscr{R} be an equivalence relation on state space S. \mathscr{R} is a weak inverse bisimulation $\iff 1$) $(s_0, s_x) \in \mathscr{R}$ implies $Q_{\tau^*}(0, x)$ and 2) if $(s_x, s_y) \in \mathscr{R}$, then $Q_{l^*}(z, x) = 1$ implies $Q_{l^*}(z', y) = 1$ for some $s_{z'}$ with $(s_z, s_{z'}) \in \mathscr{R}$ and vice versa.

Preserves reachability
Let
$$Q_{\tau*} = \sum_{k=0}^{\infty} (Q_{\tau})^k$$
 $Q_{l*} = Q_{\tau*}Q_lQ_{\tau*}$
Inverse? Look for z, z' position in $Q_{l*}(z,x) = 1$

Inverse Bisimulation for Reachability

Weak Inverse Bisimulation preserves reachability

THEOREM 3.1 If $\tilde{A}_{\mathcal{R}}$ results from automaton A by an aggregation with respect to some weak inverse bisimulation \mathcal{R} , then in every embedding environment the following relation holds:

- 1. *if state* $\tilde{s}_x \in \tilde{S}$ *is reachable after* \tilde{A} *is embedded, then all* $s_x \in rep(\tilde{s}_x)$ *are reachable after* A *is embedded in the same environment, and*
- 2. *if state* $\tilde{s}_x \in \tilde{S}$ *is not reachable after* \tilde{A} *is embedded, then all* $s_x \in rep(\tilde{s}_x)$ *are not reachable after* A *is embedded in the same environment.*
 - Embedding means parallel composition wrt to transition labels, i.e., synchronization of transitions.
- Proof:
 - Item 1: induction over number of synchronized transitions
 - 1st condition handles reachable states from s₀ before 1st synchronized transition
 - 2nd condition handles subsequent transitions
 - Item 2: follows from def of transitions in aggregated automaton

Weak bisimulation of K-automata (semiring)

An equivalence relation $R \subseteq S \times S$ is a weak bisimulation relation

if for all $(s_1, s_2) \in R$, all $l \in L \setminus \{\tau\} \cup \{\varepsilon\}$, all equivalence classes $C \in S / R$

 $\begin{array}{c|cccc} \alpha(s_1) = \alpha(s_2) & \text{or} & \mathbf{a}(s_1) = \mathbf{a}(s_2) \\ \beta'(s_1) = \beta'(s_2) & \text{terms} & \mathbf{b}'(s_1) = \mathbf{b}'(s_2) \\ T'(s_1, l, C) = T'(s_2, l, C) & \text{of} & \mathbf{M'}_l(s_1, C) = \mathbf{M'}_l(s_2, C) \end{array}$

Two states are weakly bisimilar, $s_1 \approx s_2$, if $(s_1, s_2) \in \mathbb{R}$

Two automata are weakly bisimilar, $A_1 \approx A_2$, if there is a weak bisimulation on the union of both automata such that $\alpha(C_1) = \alpha(C_2)$ for all $C \in S / R$

Theorem

If $A_1 \approx A_2$ for Ki - Automata A_1, A_2 then $w_1'(\sigma) = w_2'(\sigma)$ for all $\sigma \in L'^*$ where $L' = (L_1 \cup L_2) \setminus \{\tau\} \cup \{\varepsilon\}$

Weights of sequences are equal in weakly bisimilar automata.

Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of labels, may start or stop at any state

7

Weakly ? Paths can contain subpaths of τ -labeled transitions represented by a single ϵ -labeled transition.

Theorem

If $A_1 \approx A_2$ and A_3 are finite Ki - Automata then direct sum 1. $A_1 + A_3 \approx A_2 + A_3$ 2. $A_1 \cdot A_3 \approx A_2 \cdot A_3$ and $A_2 \cdot A_3 \approx A_1 \cdot A_3$ direct product 3. $A_1 \parallel_{L_C} A_3 \approx A_2 \parallel_{L_C} A_3$ and $A_3 \parallel_{L_C} A_1 \approx A_3 \parallel_{L_C} A_2$ synchronized product and if choice is defined then choice 4. $A_1 \lor A_3 \approx A_2 \lor A_3$ and $A_3 \lor A_1 \approx A_3 \lor A_2$ Some notes on proofs: proofs are lengthy, argumentation based matrices helps, argumentation along paths, resp. sequences more tedious • idempotency simplifies valuation for concatenation of $\tau^* \tau^*$ transitions note that algebra does not provide inverse elements wrt + and * 8

Lumping - Performance Bisimulation for Markov Chains

Lumping

- Markov Reward Process:
 - Continuous Time Markov Chain with rate rewards

- and initial probabilities
- Ordinary lumping, exact lumping
- Exploiting lumping at different levels
 - State-level lumping
 - Model-level lumping
 - Compositional lumping

Markov Reward Process (MRP)

 Various steady-state and transient measures can be computed using rate rewards and initial probabilities for states of CTMC

 ${igar}$ MRP is 4-tuple $(\mathcal{S}, \mathbf{Q}, \mathbf{r}, \pi^{\mathsf{ini}})$

- $S = \{0, \dots, |S| 1\}$: state space
- $\mathbf{Q}^{(|\mathcal{S}| \times |\mathcal{S}|)}$: generator matrix
- $\mathbf{r}(s)$: rate reward value of state $s \in S$
- $\pi^{ini}(s)$: probability of state s at time 0

10

Ordinary and exact lumping

Definition: $M = (S, \mathbf{Q}, \mathbf{r}, \pi^{\text{ini}})$ is ordinarily lumpable w.r.t. to partition \mathcal{P} of S iff $\mathbf{r}(s) = \mathbf{r}(\hat{s})$ and $\sum_{s' \in C'} \mathbf{Q}(s, s') = \sum_{s' \in C'} \mathbf{Q}(\hat{s}, s')$ for all (equivalence) classes C, C' of \mathcal{P} , and all $s, \hat{s} \in C$

Ordinary Lumping

Definition: $M = (S, \mathbf{Q}, \mathbf{r}, \pi^{\text{ini}})$ is **exactly** lumpable w.r.t. to partition \mathcal{P} of S iff $\pi(s) = \pi(\hat{s})$ and $\sum_{s' \in C'} \mathbf{Q}(s', s) = \sum_{s' \in C'} \mathbf{Q}(s', \hat{s})$ for all (equivalence) classes C, C' of \mathcal{P} , and all $s, \hat{s} \in C$

Exact Lumping

Exact and ordinary lumping for DTMC

-

Definition 1. Let **P** be the irreducible transition matrix of a finite Markov chain X on state space Z and $\Omega = {\Omega(1) \cdots \Omega(N)}$ a partition of the state space with collector matrix **V**.

- Ω is ordinarily lumpable, iff for all $I \in \{1 \cdots N\}$ and all $i, j \in \Omega(I)$: $(e_i e_j)PV = 0$;
- Ω is exactly lumpable, iff for all $I \in \{1 \cdots N\}$ and all $i, j \in \Omega(I)$: $(e_i e_j)P^T V = 0$;
- Ω is strictly lumpable, iff it is ordinarily and exactly lumpable.

 e_i is a row vector with 1.0 in position i and 0 elsewhere.

The above definition of ordinary/exact lumpability defines unique constants $\xi_{I,J} = e_i P_{I,J} e^T$ for ordinarily lumpable partitions and $\eta_{I,J} = e P_{I,J} e^T_i$ for exactly lumpable partitions, which are independent from $i \in \Omega(I)$.

Theorem 3 ([15], Section 5). If Ω is an exactly lumpable partition on the state space Z of a finite Markov chain with transition matrix **P** and $\hat{\mathbf{P}} = \mathbf{WPV}$ is the transition matrix of the aggregated chain according to Ω and resulting from $W = \text{diag}(\mathbf{eV})^{-1}\mathbf{V}^{T}$, then $\hat{\boldsymbol{\pi}} = \boldsymbol{\Pi}$ and $\boldsymbol{\pi}_{I} = \hat{\boldsymbol{\pi}}(I)/n_{I}\mathbf{e}$. The elements of $\hat{\mathbf{P}}$ are given by $\hat{P}(I, J) = (n_{J}/n_{I})\eta_{IJ}$.

Theorem 4 ([16], §3]). If Ω is an ordinarily lumpable partition on the state space Z of a finite Markov chain with transition matrix \mathbf{P} , then $\hat{\mathbf{P}} = \mathbf{WPV}$ the transition matrix of the aggregated chain according to Ω is independent from the weight vector α and $\hat{\boldsymbol{\pi}} = \boldsymbol{\Pi}$. The elements $\hat{P}(I, J)$ are equal to $\xi_{I, J}$.

Exact and ordinary lumping

Lumping works for both CTMCs and DTMCs

Main motivation:

- Solution of reduced MC yields smaller vector $\boldsymbol{\pi}$
 - which is the basis to compute rewards like
 - utilization, throughput, population (e.g. in buffers), ...
- Exact lumping:
 - Detailed distribution inside equivalence class is known to be uniform
 - Reward measure may differ for different states in same equivalence class
- Ordinary lumping:
 - Detailed distribution inside equivalence class is unknown
 - Reward measures can only be evaluated if they do not distinguish among states in same equivalence class

Lumping can be a very effective reduction technique!

More Details

Compositional lumping

Local and global equivalences for Matrix Diagrams

- Compositional lumping theorem
- Computation of local equivalence
- Case study

Refresher: Matrix Diagram

- Structurally similar to MDDs
 Multi-valued Decision Diagram
- May represent a supermatrix of the state transition rate matrix
 - Accompanied by state space represented as MDD
 - When projected on the MDD gives the exact state transition rate matrix

Simplified Notation

Consider level c of MD for lumping conditions

- All levels above/below c can be merged into one level
- Without loss of generality:
 - Discussing 3-level MD and focusing on level 2 instead of discussing m-level MD and focusing on level c
 - Makes notation and main concepts straightforward to understand and theorems easier to prove

State represented as vector of substates, i.e.,

$$s = (s_1, s_2, s_3)$$
 where $s \in S$, $s_c \in S_c$, and

 $c \in \{1, 2, 3\}$

$$\mathbf{r}(s) = g(f_1(s_1), f_2(s_2), f_3(s_3))$$

- **Theorem**: CTMC represented by MD is ordinarily lumpable with respect to global equivalence \approx_{go}
 - Therefore, \approx_{lo} satisfies sufficient conditions on matrices of one level of MD such that it gives ordinary lumpability for overall MD
 - Theorem holds for any local and global equivalences stricter than \approx_{lo} and \approx_{go}
 - Similar sufficient conditions and theorem for exact lumpability

Compositio										
Tandem	ne	tw	ork							
Jobs a	re s	erv	ed in	i two ph	ases					
 MS 	MQ	poll	ing-b	ased syst		queue	es, 3 s	ervers	s)	
◆ Hyp	berc	ube	mult	iprocesso)r					
3-level	ME) ar	nd MI	DD						
					SS siz	e				
				unlumpe			lumpe	d		
		J	$ \mathcal{S}_1 $	unlumpe $ \mathcal{S}_2 $			$\frac{ \text{Iumper} }{ \tilde{\mathcal{S}}_2 }$	$\frac{1}{ \tilde{\mathcal{S}}_3 }$		
		1	2	<i>S</i> ₂ 650	ed <i>S</i> ₃ 160	$ \widetilde{\mathcal{S}}_1 $ 2	$\frac{ \widetilde{\mathcal{S}}_2 }{30}$	$\frac{ \widetilde{\mathcal{S}}_3 }{40}$		
		1 2	2 3	<i>S</i> ₂ 650 3,575	ed <i>S</i> ₃ 160 700	$\frac{ \widetilde{\mathcal{S}}_1 }{2}$	$ \widetilde{\mathcal{S}}_2 $ 30 178	$\frac{ \widetilde{\mathcal{S}}_3 }{40}$ 175		
		1	2	<i>S</i> ₂ 650	ed <i>S</i> ₃ 160	$ \widetilde{\mathcal{S}}_1 $ 2	$ \widetilde{\mathcal{S}}_2 $ 30 178	$\frac{ \widetilde{\mathcal{S}}_3 }{40}$		
J	- (1 2 3 ove	2 3 4 rall S	S ₂ 650 3,575 14,300 S size	ed <i>S</i> ₃ 160 700 2,220 # of №	$ \tilde{S}_{1} $ 2 3 4 MD	$ \widetilde{\mathcal{S}}_{2} $ 30 178 803 genera	$\frac{ \widetilde{\mathcal{S}}_3 }{40}$ 175 555	lumping	
	- (1 2 3 ove	2 3 4 rall S	S ₂ 650 3,575 14,300 S size lumped	ed <i>S</i> ₃ 160 700 2,220 # of №	$ \tilde{S}_{1} $ 2 3 4 MD	$ \widetilde{\mathcal{S}}_{2} $ 30 178 803 generating	$ \tilde{\mathcal{S}}_{3} $ 40 175 555 tion (s)	time (s)	
J 1 2	ur	1 2 3 ove	2 3 4 rall S	S ₂ 650 3,575 14,300 S size	ed <i>S</i> ₃ 160 700 2,220 # of №	$ \tilde{S}_{1} $ 2 3 4 MD	$ \widetilde{\mathcal{S}}_{2} $ 30 178 803 generating	$\frac{ \widetilde{\mathcal{S}}_3 }{40}$ 175 555		

Conclusion

State-level lumping

- Suffers from handling very large state spaces, matrices
- Model-level lumping
 - Various options, formalism dependent
 - Stochastic Well-formed Nets (SWNs)
 - Mobius Rep/Join and Graph Composed models
 - Superposed GSPNs
- Compositional lumping
 - Based on congruence:
 - Automata with parallel composition
 - PEPA, Superposed GSPNs, ...
 - Based on symbolic matrix representation
 - Work by S. Derisavi ...