CS780 Discrete-State Models Instructor: Peter Kemper R 006, phone 221-3462, email:kemper@cs.wm.edu

Office hours: Mon, Wed 3-5 pm

Today:

Milner's Calculus of Communicating Systems Strong & Weak Bisimulation Observational Congruence

Quick Reference:

Robin Milner, A Calculus of Communicating Systems, Springer, LNCS 92, 1980.

Robin Miner, Communication and Concurrency, Prentice Hall, 1989.

- Calculus of Communicating Systems (CCS)
- Trace Equivalence
- Bisimulation
 - Strong
 - Weak
- Observational Congruence

Slides from Noll, Katoen, RWTH Aachen, Germany, 2007/08

Definition 1.2 (Syntax of CCS)

• Let N be a set of (action) names.

• $\overline{N} := \{\overline{a} \mid a \in N\}$ denotes the set of co-names.

• $Act := N \cup \overline{N} \cup \{\tau\}$ is the set of actions where τ denotes the silent (or: unobservable) action.

3

- Let *Pid* be a set of process identifiers.
- The set *Prc* of process expressions is defined by the following syntax: *P* ::= nil (inaction)

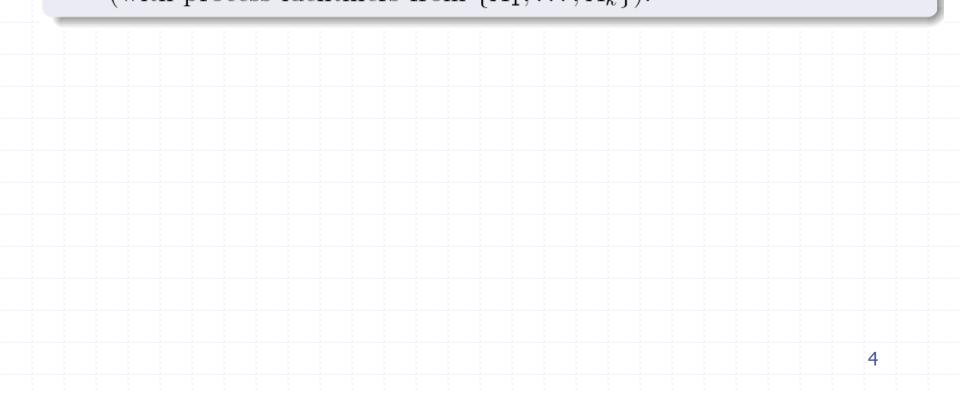
where $\alpha \in Act, a, a_i \in N$, and (prefixing) $| \alpha.P (prefixing)$ $| P_1 + P_2 (choice)$ $| P_1 \parallel P_2 (parallel composition)$ | (restriction) $| A(a_1, \dots, a_n) (process call)$

Definition 1.2 (continued)

• A (recursive) process definition is an equation system of the form

$$(A_i(a_{i1},\ldots,a_{in_i})=P_i \mid 1 \le i \le k)$$

where $k \ge 1$, $A_i \in Pid$ (pairwise different), $a_{ij} \in N$, and $P_i \in Prc$ (with process identifiers from $\{A_1, \ldots, A_k\}$).



Meaning of CCS Operators

- nil is an inactive process that can do nothing.
- $\alpha . P$ can execute α and then behaves as P.
- An action $a \in N$ ($\overline{a} \in \overline{N}$) is interpreted as an input (output, resp.) operation. Both are complementary: if executed in parallel (i.e., in $P_1 \parallel P_2$), they are merged into a τ -action.
- $P_1 + P_2$ represents the non-deterministic choice between P_1 and P_2 .
- $P_1 \parallel P_2$ denotes the concurrent execution of P_1 and P_2 , involving interleaving or communication.
- The restriction new a P declares a as a local name which is only known in P.
- The behavior of a process call $A(a_1, \ldots, a_n)$ is defined by the right-hand side of the corresponding equation where a_1, \ldots, a_n replace the formal name parameters.

Notational Conventions

- • $\overline{\overline{a}}$ means a
 - $P_1 + \ldots + P_n \ (n \in \mathbb{N})$ sometimes written as $\sum_{i=1}^n P_i$ where $\sum_{i=1}^0 P_i := \mathsf{nil}$
- ".nil" can be omitted: a.b means a.b.nil
- new a, bP means new a new bP
- $A(a_1, \ldots, a_n)$ sometimes written as $A(\vec{a}), A()$ as A
- prefixing and restriction binds stronger than composition,
 composition binds stronger than choice:

new $a P + b Q \parallel R$ means (new a P) + ((b Q) $\parallel R$)

Labelled Transition System

Goal: represent behavior of system by (infinite) graph

- nodes = system states
- edges = transitions between states

Definition 2.1 (Labeled transition system)

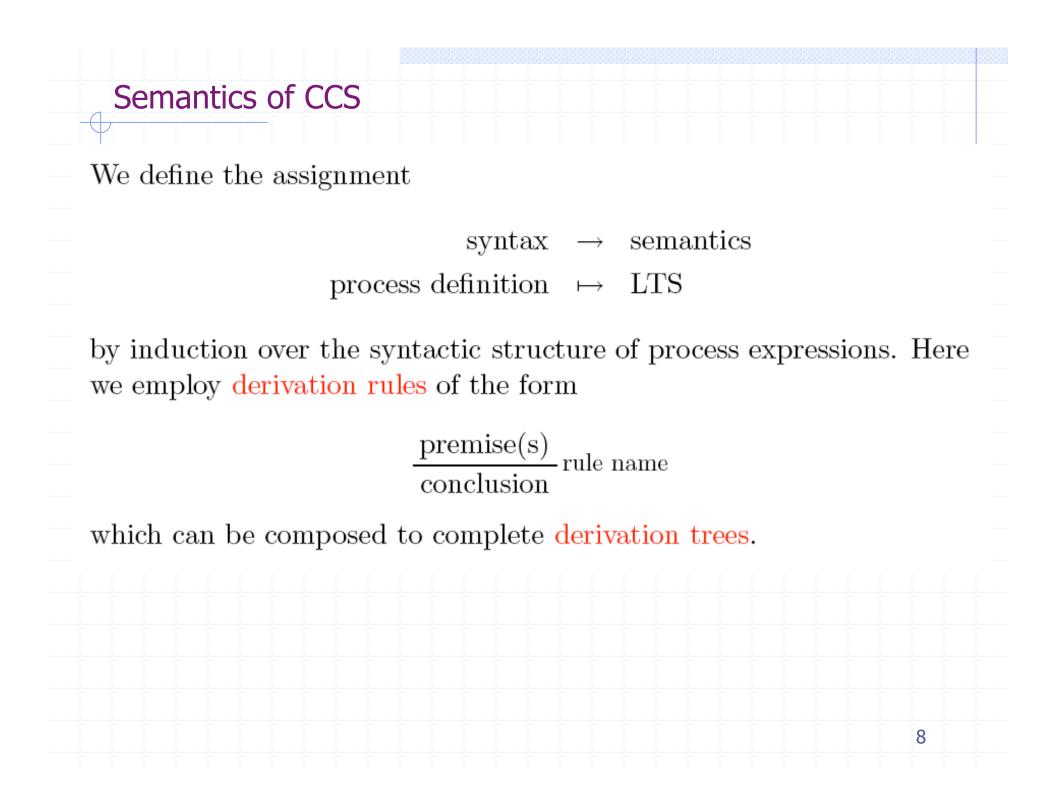
A (Act-)labeled transition system (LTS) is a triple $(S, Act, \longrightarrow)$ consisting of

- ${\scriptstyle \bullet}$ a set S of states
- a set Act of (action) labels
- a transition relation $\longrightarrow \subseteq S \times Act \times S$

If $(s, \alpha, s') \in \longrightarrow$ we write $s \xrightarrow{\alpha} s'$. An LTS is called finite if S is so.

Remarks:

- sometimes an initial state $s_0 \in S$ is distinguished
- (finite) LTSs correspond to (finite) automata without final states



Semantics of CCS

Definition 2.2 (Semantics of CCS)

A process definition $(A_i(a_{i1},\ldots,a_{in_i}) = P_i \mid 1 \le i \le k)$ determines the LTS $(Prc, Act, \longrightarrow)$ whose transitions can be inferred from the following rules $(P, P', Q, Q' \in Prc, \alpha \in Act, \lambda \in N \cup \overline{N}, a \in N)$: $\frac{P \xrightarrow{\lambda} P' \ Q \xrightarrow{\overline{\lambda}} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'} (Com)$ $\alpha \xrightarrow{P} \xrightarrow{\alpha} \xrightarrow{P} (Act)$ $\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} (\mathsf{Sum}_1)$ $\frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'} (\mathsf{Sum}_2)$ $\frac{P \xrightarrow{\alpha} P'}{P \parallel Q \xrightarrow{\alpha} P' \parallel Q} (\mathsf{Par}_1)$ $\frac{Q \xrightarrow{\alpha} Q'}{P \parallel Q \xrightarrow{\alpha} P \parallel Q'} (\mathsf{Par}_2)$ $\frac{P \xrightarrow{\alpha} P' \quad \alpha \notin \{a, \overline{a}\}}{\operatorname{new} a P \xrightarrow{\alpha} \operatorname{new} a P'} (\operatorname{New}) \quad \frac{A(\vec{a}) = P \quad P[\vec{a} \mapsto \vec{b}] \xrightarrow{\alpha} P'}{A(\vec{b}) \xrightarrow{\alpha} P'} (\operatorname{Call})$ (Here $P[\vec{a} \mapsto \vec{b}]$ denotes the replacement of every a_i by b_i in P.) 9

Example 2.3

• One-place buffer:

Semantics of CCS

$$B(in, out) = in.\overline{out}.B(in, out)$$

Sequential two-place buffer:

$$B_0(in, out) = in.B_1(in, out)$$

$$B_1(in, out) = \overline{out}.B_0(in, out) + in.B_2(in, out)$$

$$B_2(in, out) = \overline{out}.B_1(in, out)$$

Parallel two-place buffer:

 $B_{\parallel}(in, out) = \operatorname{new} com \left(B(in, com) \parallel B(com, out)\right)$ $B(in, out) = in.\overline{out}.B(in, out)$

Semantics of CCS

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

 $\begin{array}{ccc} B_{\parallel}(in, out) & \operatorname{new} com \left(B(in, com) \parallel B(com, out)\right) \\ \downarrow in \swarrow in \uparrow \overline{out} \\ \operatorname{new} com \left(\overline{com}.B(in, com) \parallel \xrightarrow{\tau} \operatorname{new} com \left(B(in, com) \parallel \\ B(com, out)\right) & \overbrace{out} & \swarrow in \\ \operatorname{new} com \left(\overline{com}.B(in, com) \parallel \overline{out}.B(com, out)\right) \end{array}$

Recursion

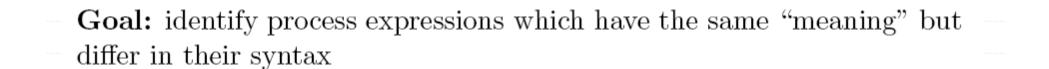
Here: recursive processes defined using equations such as

$$B(in, out) = in.\overline{out}.B(in, out)$$

(simultaneous recursion)

Alternative: explicit fixpoint operator

• syntax:
$$P ::= \operatorname{nil} | \dots | \operatorname{fix} A P \in Prc$$
 (where $A \in Pid$)
• semantics: $\frac{P[A \mapsto P] \xrightarrow{\alpha} P'}{\operatorname{fix} A P \xrightarrow{\alpha} \operatorname{fix} A P'}$ (Fix)
• example: $\frac{\overline{in.out.in.out.B} \xrightarrow{in} \overline{out.in.out.B}}{\operatorname{fix} B in.out.B \xrightarrow{in} \operatorname{fix} B \overline{out.in.out.B}}$ (Fix)
(nested scalar recursion)
Advantage: only process term level required (no equations)
 \implies simplification of theory
Disadvantage: bad readability of process definitions

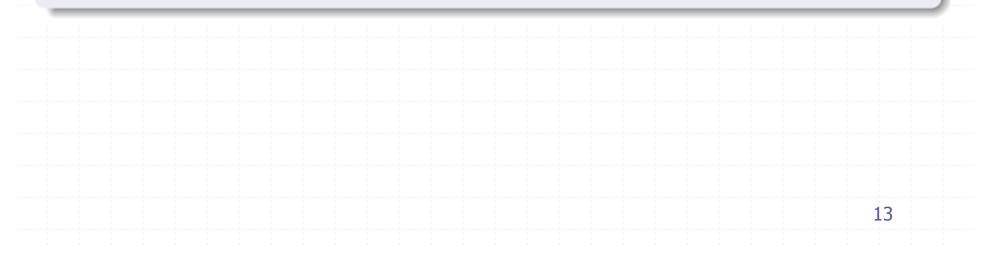


Definition 3.1 (Equivalence relation)

Equivalence

Let $\cong \subseteq S \times S$ be a binary relation over some set S. Then \cong is called an equivalence relation if it is

- reflexive, i.e., $s \cong s$ for every $s \in S$,
- symmetric, i.e., $s \cong t$ implies $t \cong s$ for every $s, t \in S$, and
 - transitive, i.e., $s \cong t$ and $t \cong u$ implies $s \cong u$ for every $s, t, u \in S$.



Equivalence of CCS Processes

- Generally: two syntactic objects are equivalent if they have the same "meaning"
- Here: two processes are equivalent if they have the same "behavior" (i.e., communication potential)
- Communication potential described by LTS
- Idea: choose

meaning of a process P := LTS(P)

• But: yields too many distinctions:

Ľ

Example 3.2

$$X(a) = a.X(a) \quad Y(a) = a.a.Y(a)$$

$$\Gamma S: \qquad \stackrel{\bullet}{\bigcirc}_{a} \qquad \qquad a \downarrow \uparrow a$$

although both processes can (only) execute infinitely many a-actions, and should be considered equivalent therefore

Desired Properties of Equivalence

Wanted: a "feasible" (i.e., efficiently decidable) semantic equivalence between CCS processes which

- Identifies processes whose LTSs coincide,
- implies trace equivalence, i.e., considers two processes equivalent only if both can execute the same actions sequences (formal definition later), and
- is a congruence, i.e., allows to replace a subprocess by an equivalent counterpart without changing the overall semantics of the system (formal definition later).

Formally: we are looking for a congruence relation $\cong \subseteq Prc \times Prc$ such that

$$LTS(P) = LTS(Q) \implies P \cong Q \implies Tr(P) = Tr(Q)$$

Congruence

- **Goal:** replacing a subcomponent of a system by an equivalent process should yield an equivalent systems
 - \implies modular system development

Definition 3.3 (CCS congruence)

An equivalence relation $\cong \subseteq Prc \times Prc$ is said to be a CCS congruence if it is preserved by the CCS constructs; that is, if $P, Q, R \in Prc$ such that $P \cong Q$ then

 $\begin{array}{l} \alpha.P\cong\alpha.Q\\ P+R\cong Q+R\\ R+P\cong R+Q\\ P\parallel R\cong Q\parallel R\\ R\parallel P\cong R\parallel Q\\ \mathrm{new}\,a\,P\cong \mathrm{new}\,a\,Q \end{array}$

16

for every $\alpha \in Act$ and $a \in N$.

Trace Equivalence

Definition 3.4 (Trace language)

For every $P \in Prc$, let

 $Tr(P) := \{ w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P' \}$

- be the trace language of P.
- $P, Q \in Prc$ are called trace equivalent if Tr(P) = Tr(Q).

Example 3.5 (One-place buffer)

 $B(in, out) = in.\overline{out}.B(in, out)$

$$\implies Tr(B) = (in \cdot \overline{out})^* \cdot (in + \varepsilon)$$

Trace Equivalence

Remarks:

- The trace language of $P \in Prc$ is accepted by the LTS of P, interpreted as an automaton where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).
- Trace equivalence possesses the postulated properties of a process equivalence:
 - it identifies processes with identical LTSs: the trace language of a process consists of the (finite) paths in the LTS. Hence processes with identical LTSs are trace equivalent.
 - **2** it implies trace equivalence: trivial
 - (a) it is a congruence:

Congruence

Goal: replacing a subcomponent of a system by an equivalent process should yield an equivalent systems

 \implies modular system development

Definition (CCS congruence)

An equivalence relation $\cong \subseteq Prc \times Prc$ is said to be a CCS congruence if it is preserved by the CCS constructs; that is, if $P \cong Q$ then

$$\alpha.P \cong \alpha.Q$$

$$P + R \cong Q + R$$

$$R + P \cong R + Q$$

$$P \parallel R \cong Q \parallel R$$

$$R \parallel P \cong R \parallel Q$$

$$ew a P \cong new a Q$$

19

for every $\alpha \in Act, R \in Prc$, and $a \in N$.

n

Trace Equivalence

Theorem 3.6

Trace equivalence is a congruence.

Proof.

(only for +; remaining operators analogously)

Clearly we have:

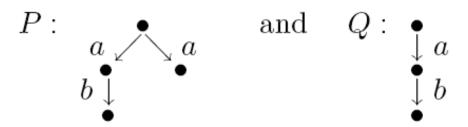
 $Tr(P_1 + P_2) = Tr(P_1) \cup Tr(P_2)$

Now let $P, Q, R \in Prc$ with Tr(P) = Tr(Q). Then:

 $Tr(P+R) \qquad Tr(R+P) = Tr(P) \cup Tr(R) = Tr(R) \cup Tr(P) = Tr(Q) \cup Tr(R) = Tr(R) \cup Tr(Q) = Tr(Q+R) = Tr(R+Q) = Tr(R+Q) = R+P, R+Q \text{ trace equiv.}$

Trace Equivalence

- We have found a process equivalence with the three required properties.
- Are we satisfied? No!



are trace equivalent $(Tr(P) = Tr(Q) = \{\varepsilon, a, ab\})$

- But P and Q are distinguishable:
 - ${\scriptstyle \bullet }\,$ both can execute ab
 - but P can deny b
 - ${\scriptstyle \bullet }$ while Q always has to offer b after a

take into account such deadlock properties

Deadlock

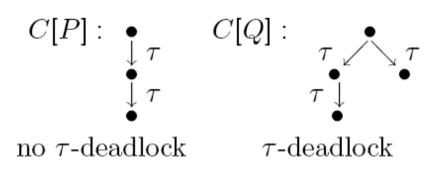
Definition 3.7 (Deadlock)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w}^* Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

- Thus P := a.b.nil + a.nil has an *a*-deadlock, in contrast to Q := a.b.nil.
- Such properties are important since it can be crucial that a certain communication is eventually possible.
- We therefore extend our set of postulates: our semantic equivalence \cong should
 - identify processes with identical LTSs;
 - imply trace equivalence;
 - **(3)** be a congruence; and
 - **(4)** be deadlock sensitive, i.e., if $P \cong Q$ and if P has a w-deadlock, then Q has a w-deadlock (and vice versa, by equivalence).

The combination of congruence and deadlock sensitivity also excludes the following equivalence:

If $P \cong Q$, by congruence this equivalence should hold in every context. But $C[\cdot] := \operatorname{new} a, b, c (\overline{a}.\overline{b}.\operatorname{nil} \| \cdot)$ yields the following conflict:



23

(Note: P and Q are obviously trace equivalent)

Deadlock

Desired Properties of Equivalence

Wanted: a "feasible" (i.e., efficiently decidable) semantic equivalence
between CCS processes which

- identifies processes whose LTSs coincide,
- implies trace equivalence, i.e., considers two processes equivalent only if both can execute the same actions sequences (formal definition later), and
- is a congruence, i.e., allows to replace a subprocess by an equivalent counterpart without changing the overall semantics of the system (formal definition later).
- (4) is deadlock sensitive, i.e., if $P \cong Q$ and if P has a w-deadlock, then Q has a w-deadlock (and vice versa, by equivalence).

Formally: we are looking for a deadlock-sensitive congruence relation $\cong \subseteq Prc \times Prc$ such that

$$LTS(P) = LTS(Q) \implies P \cong Q \implies Tr(P) = Tr(Q)$$

Strong Bisimulation Observation: equivalence should be deadlock sensitive

 \implies needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

 $P, Q \in Prc$ are equivalent iff, for every $\alpha \in Act$, every α -successor of P is equivalent to some α -successor of Q, and vice versa.

In the first version we will ignore the special function of the silent action τ (\implies weak bisimulation)

Strong Bisimulation

Definition 4.1 (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a strong bisimulation if $P\rho Q$ implies, for every $\alpha \in Act$,

 $\bullet \ P \stackrel{\alpha}{\longrightarrow} P' \implies \text{ex. } Q' \in Prc \text{ such that } Q \stackrel{\alpha}{\longrightarrow} Q' \text{ and } P' \rho Q'$

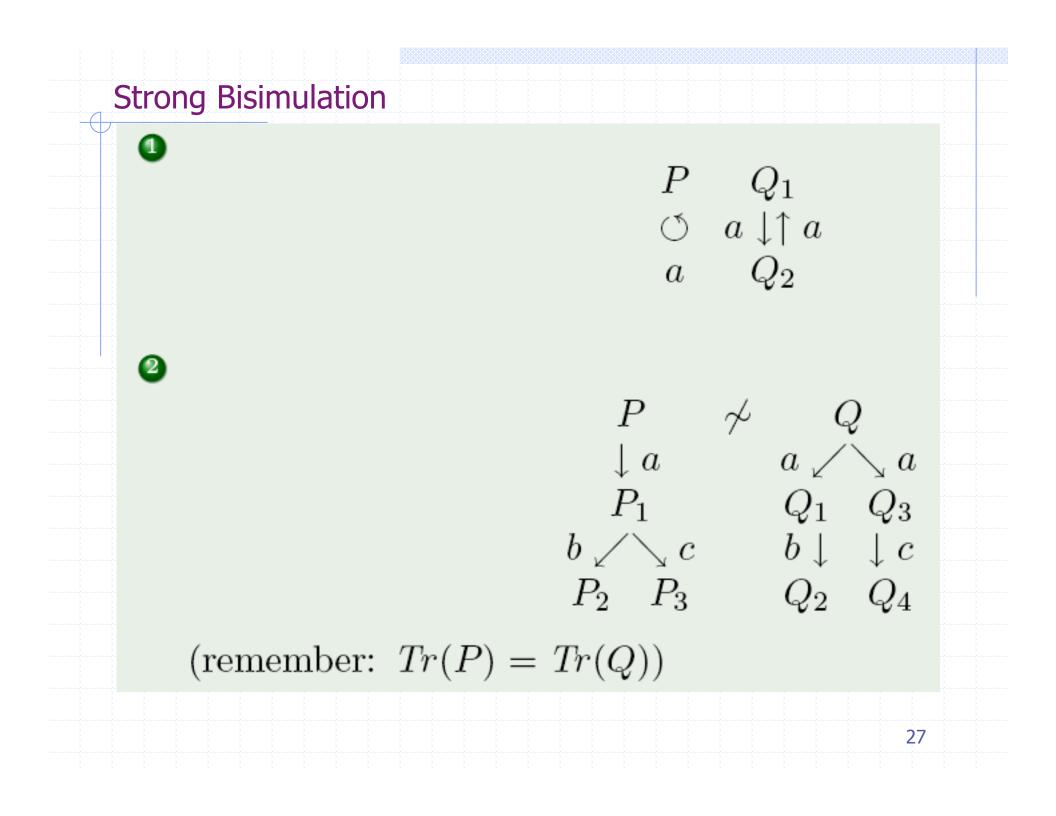
 $@ Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

 $P, Q \in Prc$ are called strongly bisimilar (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

26

Theorem 4.2

 \sim is an equivalence relation.



Strong Bisimulation

Example 4.4

Binary semaphore

(controls exclusive access to two instances of a resource) Sequential definition:

> $Sem_0(get, put) = get.Sem_1(get, put)$ $Sem_1(get, put) = get.Sem_2(get, put) + put.Sem_0(get, put)$ $Sem_2(get, put) = put.Sem_1(get, put)$

Parallel definition:

 $S(get, put) = S_0(get, put) \parallel S_0(get, put)$ $S_0(get, put) = get.S_1(get, put)$ $S_1(get, put) = put.S_0(get, put)$

Proposition: $Sem_0(get, put) \sim S(get, put)$ How to prove this?

Strong Bisimulation

Example 4.5

Two-place buffer Sequential definition:

$$B_0(in, out) = in.B_1(in, out)$$

$$B_1(in, out) = \overline{out}.B_0(in, out) + in.B_2(in, out)$$

$$B_2(in, out) = \overline{out}.B_1(in, out)$$

Parallel definition:

 $\begin{array}{lll} B_{\parallel}(in, out) &=& \mathsf{new} \ com \ (B(in, com) \parallel B(com, out)) \\ B(in, out) &=& in. \overline{out}. B(in, out) \end{array}$

29

Proposition: $B_0(in, out) \not\sim B_{\parallel}(in, out)$ How to prove this?

Properties of Strong Bisimulation

It remains to show that strong bisimulation has the required properties of a process equivalence:

Identification of processes with identical LTSs: since the definition of strong bisimulation directly relies on the transition relation, processes with identical transition trees are clearly strongly bisimilar

- **2** Implication of trace equivalence: following slides
- **3** CCS congruence: following slides
- **Deadlock sensitivity**: following slides

Strong Bisimulation => Trace Equivalence

Definition (Trace language; repetition)

The trace language of $P \in Prc$ is given by $Tr(P) := \{ w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P' \}.$

Theorem 5.1

For every $P, Q \in Prc$, $P \sim Q$ implies Tr(P) = Tr(Q).

Proof.

- Assume that $P \sim Q$ but $w \in Tr(P) \setminus Tr(Q)$.
- Let $v \in Act^*$ be the longest prefix of w such that $v \in Tr(Q)$ (i.e., $w = v\alpha u$ for some $\alpha \in Act$ and $u \in Act^*$).
- Let $P', P'' \in Prc$ such that $P \xrightarrow{v} {}^* P' \xrightarrow{\alpha} P''$.
- Since $P \sim Q$ there exists $Q' \in Prc$ such that $Q \xrightarrow{v} {}^* Q'$ and $P' \sim Q'$ (by induction on |v|).
- But we have that $P' \xrightarrow{\alpha} P''$ whereas $Q' \xrightarrow{\alpha} \Longrightarrow$ contradiction

Congruence Property

Makes use of following Lemma

Lemma 5.2

- For every $P, Q, R \in Prc$,
 - $P + Q \sim Q + P$
 - **2** $P + (Q + R) \sim (P + Q) + R$
 - $P + nil \sim P$

 $\bigcirc P \parallel \mathsf{nil} \sim P$

- $P \parallel Q \sim Q \parallel P$
- $\bigcirc P \parallel (Q \parallel R) \sim (P \parallel Q) \parallel R$

Congruence

Definition (CCS congruence; repetition)

An equivalence relation $\cong \subseteq Prc \times Prc$ is said to be a CCS congruence if it is preserved by the CCS constructs; that is, if $P \cong Q$ then

 $\alpha.P \cong \alpha.Q$ $P + R \cong Q + R$ $R + P \cong R + Q$ $P \parallel R \cong Q \parallel R$ $R \parallel P \cong R \parallel Q$ new $a P \cong$ new a Q

33

for every $\alpha \in Act, R \in Prc$, and $a \in N$.

Theorem 5.3

 \sim is a CCS congruence.

Definition (Deadlock; repetition)

- Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w}^* Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.
- An equivalence relation $\cong \subseteq Prc \times Prc$ is called **deadlock sensitive** if for every $P \cong Q$ such that P has a w-deadlock, Q also has a w-deadlock.

34

Theorem	5.4
---------	-----

Deadlock

\sim	is	deadlock	sensitive.
--------	----	----------	------------

Summary

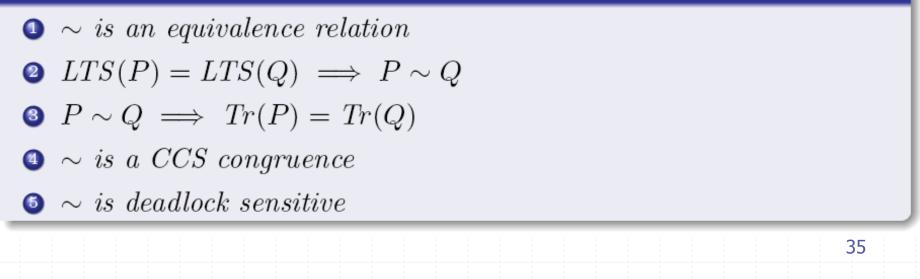
Definition (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a strong bisimulation if $P\rho Q$ implies, for every $\alpha \in Act$,

 $@ Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

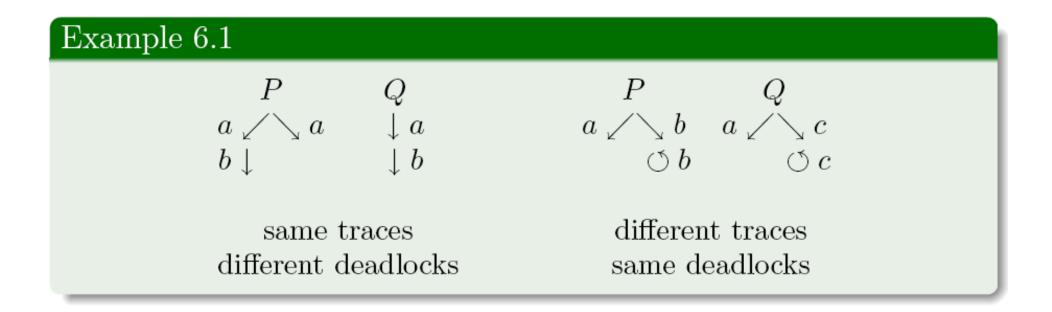
 $P, Q \in Prc$ are called strongly bisimilar (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

Theorem



Traces and Deadlocks

Remark: traces and deadlocks are independent in the following sense



But: if all traces are finite, then processes with identical deadlocks are trace equivalent (since every trace is a prefix of some deadlock)

Computing Equivalences

Problem

Given: $P, Q \in Prc$

Question: $P \sim Q$?

- Basic Algorithm:
 - Paige, Tarjan: Three partition refinement algoriths, SIAM J. Computing, 16, 1987.

Multiple variants and refinements, in particular wrt stochastic models

- P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of Applied Probability, 31:59–75, 1994.
- S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal State-Space Lumping in Markov Chains, Information Proc. Letters, 87, 6, 2003

Remark: if states from two disjoint LTSs $(S_1, Act_1, \longrightarrow_1)$ and $(S_2, Act_2, \longrightarrow_2)$ (where $S_1 \cap S_2 = \emptyset$) are to be compared, their union $(S_1 \cup S_2, Act_1 \cup Act_2, \longrightarrow_1 \cup \longrightarrow_2)$ is chosen as input (here usually $Act_1 = Act_2$)

Partition Refinement Algorithm

Theorem 6.2 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \longrightarrow) (S finite)$

Procedure: ① Start with initial partition $\Pi := \{S\}$ **2** Let $B \in \Pi$ be a block and $\alpha \in Act$ an action \bullet For every $P \in B$, let $\alpha(P) := \{ C \in \Pi \mid ex. \ P' \in C \ with \ P \xrightarrow{\alpha} P' \}$ be the set of P's α -successor blocks • Partition $B = \bigcup_{i=1}^{k} B_i$ such that $P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$ $Let \Pi := (\Pi \setminus \{B\}) \cup \{B_1, \ldots, B_k\}$ **6** Continue with (2) until Π is stable Output: Partition $\hat{\Pi}$ of S Then, for every $P, Q \in S$, $P \sim Q \iff ex. \ B \in \hat{\Pi} \ with \ P, Q \in B$

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features)

Definition 7.1 (Strong simulation)

A relation $\rho \subseteq Prc \times Prc$ is called a strong simulation if, whenever $P\rho Q$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P'\rho Q'$. We say that Q strongly simulates P if there exists a strong simulation ρ such that $P\rho Q$.

Thus: if Q strongly simulates P, then whatever transition path P takes, Q can match it by a path which retains all of P's options.

	P $a \swarrow a$ $P_1 P_3$ $b \downarrow \downarrow c$ $P_2 P_4$	$egin{array}{c} Q \ \downarrow a \ Q_1 \ b \swarrow \searrow c \ Q_2 \ Q_3 \end{array}$	Q strongly simulates P , but not vice versa
--	--	---	--

Strong Simulation and Bisimulation

Corollary 7.3

If $P \sim Q$, then Q strongly simulates P, and P strongly simulates Q.

Proof.

-4

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: the converse does generally not hold!

P_1 $b\downarrow$	P_3	$\begin{array}{c} \mathbb{Q}_1 \\ \downarrow b \\ Q_2 \end{array}$			D	ut J	E 7	~ Ç				
P_2											2	

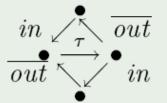
Strong Bisimulation is not an ideal solution!

Example 7.5

Sequential and parallel two-place buffer:

$$B_{0}(in, out) = in.B_{1}(in, out) \qquad B_{\parallel}(in, out) = \mathsf{new} \operatorname{com} (B(in, com) \parallel B_{\parallel}(in, out) = \underline{\operatorname{new}} \operatorname{com} (B(in, com) \parallel B(com, out)) \qquad B(com, out)) \qquad B(in, out) = in.\overline{out}.B(in, out) \qquad B(in, out) = in.\overline{out}.B(in, out)$$

$$\begin{array}{c} in \downarrow \uparrow \overline{out} \\ in \downarrow \uparrow \overline{out} \end{array}$$



Idea: abstract from silent actions

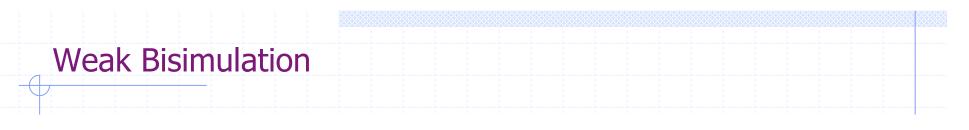
Definition 7.6

- Given $w \in Act^*$, $\hat{w} \in (N \cup \overline{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\hat{\tau^n} = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

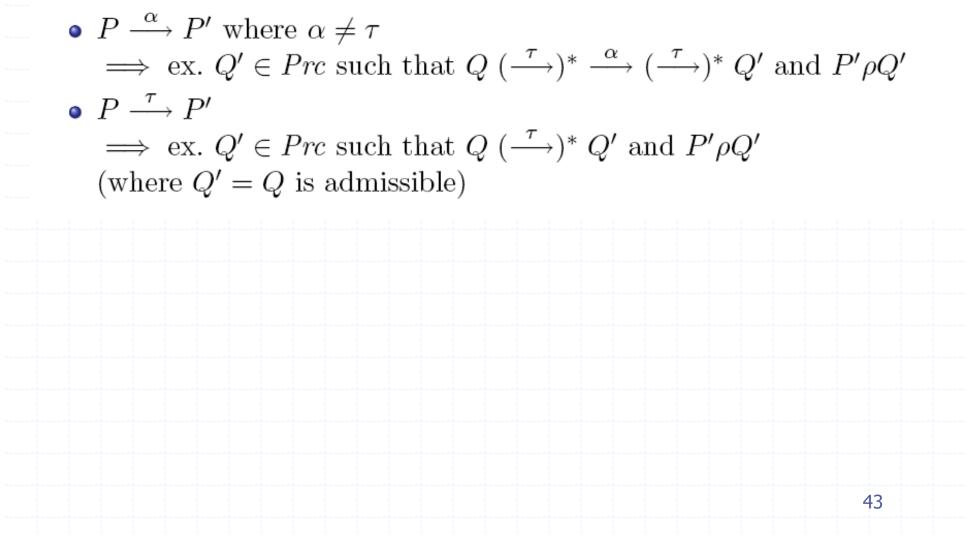
$$P \stackrel{w}{\Longrightarrow} Q \iff P (\stackrel{\tau}{\longrightarrow})^* \stackrel{\alpha_1}{\longrightarrow} (\stackrel{\tau}{\longrightarrow})^* \dots (\stackrel{\tau}{\longrightarrow})^* \stackrel{\alpha_n}{\longrightarrow} (\stackrel{\tau}{\longrightarrow})^* Q$$

(and hence: $\stackrel{\varepsilon}{\Longrightarrow} = (\stackrel{\tau}{\longrightarrow})^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a weak bisimulation if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $\begin{array}{ccc} \bullet & P \xrightarrow{\alpha} P' \implies \text{ex. } Q' \in Prc \text{ such that } Q \stackrel{\hat{\alpha}}{\Longrightarrow} Q' \text{ and } P'\rho Q' \\ \hline \bullet & Q \stackrel{\alpha}{\longrightarrow} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \stackrel{\hat{\alpha}}{\Longrightarrow} P' \text{ and } P'\rho Q' \end{array}$
- $P, Q \in Prc$ are called weakly bisimilar (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P\rho Q$.



Remark: each of the two clauses in the definition of weak bisimulation subsumes two cases:



Theorem 7.8

 \approx is an equivalence relation.

Proof.

in analogy to the corresponding proof for \sim (Theorem 4.2)

In particular, the following characterization is still valid:

 $\approx = \bigcup \{ \rho \mid \rho \text{ weak bisimulation} \},\$

44

i.e., \approx is again itself a weak bisimulation.

Moreover Definition 7.6 implies that every strong bisimulation is also a weak one (since, for every $\alpha \in Act$, $\xrightarrow{\alpha} \subseteq \stackrel{\hat{\alpha}}{\Longrightarrow}$). This yields the desired connection to LTS equivalence: for every $P, Q \in Prc$,

$$LTS(P) = LTS(Q) \implies P \sim Q \implies P \approx Q.$$

Furthermore trace equivalence is implied if the definition is adapted:

$$P \approx Q \implies \hat{Tr}(P) = \hat{Tr}(Q)$$

45

where $\hat{T}r(P) := \{\hat{w} \mid w \in Tr(P)\} \subseteq (N \cup \overline{N})^*$.

Lemma 7.9

For every $P \in Prc$,

 $P\approx \tau.P$

Proof.

We show that

$$\rho := \{(P, \tau.P)\} \cup id_{Prc}$$

46

is a weak bisimulation:

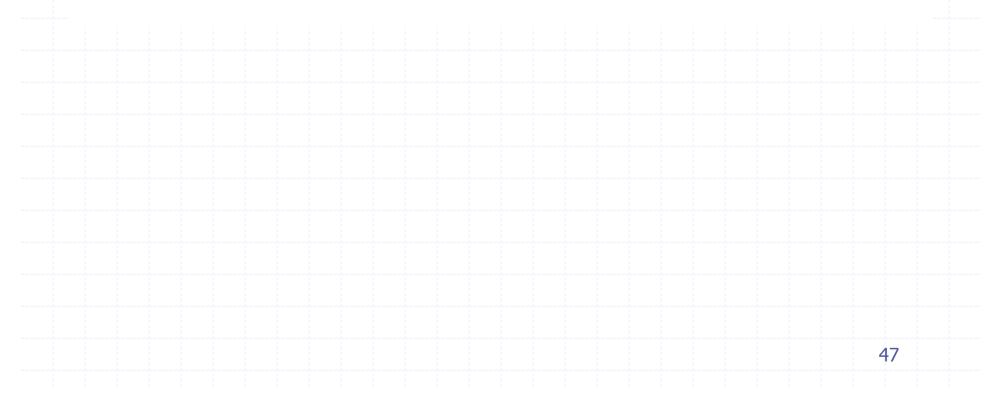
$$\begin{array}{l} \bullet \quad \text{let } P \xrightarrow{\alpha} P' \\ \implies \tau . P \xrightarrow{\tau} P \xrightarrow{\alpha} P' \\ \implies \tau . P \xrightarrow{\hat{\alpha}} P' \text{ with } P' \rho P' \text{ (since } id_{Prc} \subseteq \rho \end{array}$$

2 the only transition of
$$\tau . P$$
 is $\tau . P \xrightarrow{\tau} P$;
it is simulated by $P \xrightarrow{\varepsilon} P$ with $P\rho P$

Using Lemma 7.9, however, we can show that \approx is not a congruence:

It is true that $b.nil \approx \tau.b.nil$ (Theorem 7.8, Lemma 7.9) but $a.nil + b.nil \not\approx a.nil + \tau.b.nil$ (Example 7.7(b))

The other operators are uncritical, i.e., weak bisimilarity is preserved under prefixing, parallel composition, and restriction.



Also deadlock sensitivity is guaranteed if τ -actions are appropriately handled:

Theorem 7.10

Let $P, Q \in Prc$ such that $P \approx Q$. Then, for every $w \in (N \cup \overline{N})^*$,

 $P \stackrel{w}{\Longrightarrow} \not\longrightarrow \quad \Longleftrightarrow \quad Q \stackrel{w}{\Longrightarrow} \not\longrightarrow.$

48

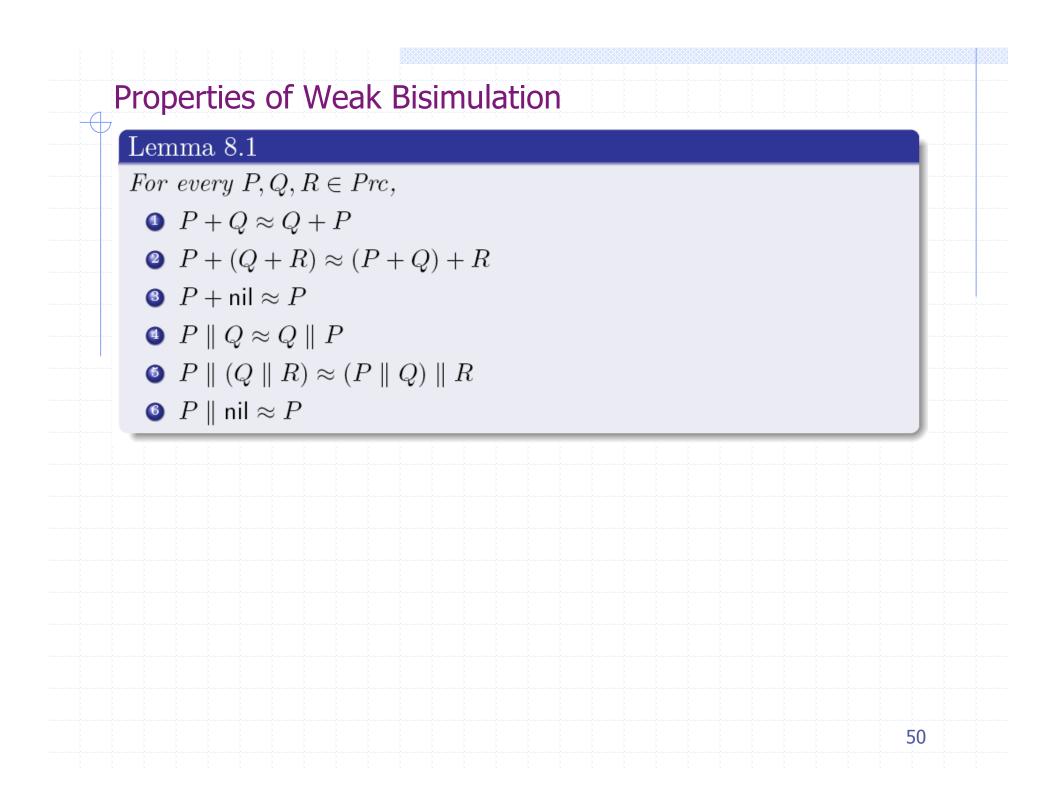
Proof.

analogously to Theorem 5.4 (induction on |w|)

Properties of Weak Bisimulation

Properties

 $P \sim Q \implies P \approx Q$ $2 \approx is an equivalence relation$ $ITS(P) = LTS(Q) \implies P \approx Q$ $P \approx Q \implies \hat{T}r(P) = \hat{T}r(Q)$ $\mathbf{O} \approx \text{is (non-}\tau)$ deadlock sensitive **6** For every $P \in Prc, P \approx \tau P$ $\bigcirc \approx \text{ is not a congruence:}$ It is true that $b.nil \approx \tau.b.nil$ $a.nil + b.nil \not\approx a.nil + \tau.b.nil$ but



Goal: introduce an equivalence which has most of the desirable properties of \approx and which is preserved under all CCS operators

Definition 8.2

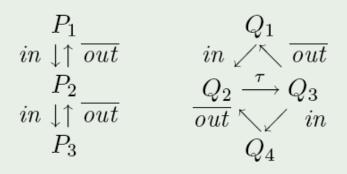
 $P, Q \in Prc$ are called observationally congruent (notation: $P \simeq Q$) if, for every $\alpha \in Act$,

$$@ Q \xrightarrow{\alpha} Q' \implies \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \approx Q'$$

Remark: \simeq differs from \approx only in the use of $\stackrel{\alpha}{\Longrightarrow}$ rather than $\stackrel{\alpha}{\Longrightarrow}$, i.e., it requires τ -actions from P or Q to be simulated by at least one τ -step in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not $P' \simeq Q'$).

Example 8.3

Sequential and parallel two-place buffer:



 $P_1 \simeq Q_1$ since $P_1 \approx Q_1$ (cf. Example 7.7) and neither P_1 nor Q_1 has initial τ -steps

- ② $\tau.a.nil \not\simeq a.nil$ (since $\tau.a.nil \xrightarrow{\tau}$ but $a.nil \xrightarrow{\tau}$)
- 3 $a.\tau.nil \simeq a.nil$ (since $\tau.nil \approx nil$)

Corollary 8.4

For every $P, Q \in Prc$,

$$P \sim Q \implies P \simeq Q$$

$$P \simeq Q \implies P \approx Q$$

Proof.

$$I since \xrightarrow{\alpha} \subseteq \stackrel{\alpha}{\Longrightarrow} and \sim \subseteq \approx$$

$$ince \stackrel{\alpha}{\Longrightarrow} \subseteq \stackrel{\hat{\alpha}}{\Longrightarrow}$$

Remark: this implies that

- processes with identical LTSs are \simeq -equivalent,
- \simeq -equivalent processes are (non- τ) trace equivalent, and

53

• \simeq is (non- τ) deadlock sensitive.

Theorem 8.5

For every $P, Q \in Prc$,

$P\simeq Q \iff P+R\approx Q+R \ \text{for every} \ R\in Prc.$

Remark: \simeq is therefore the largest congruence contained in \approx

Theorem 8.6

 \simeq is an equivalence relation.

Theorem 8.7

 \simeq is a CCS congruence.

Theorem 8.8

For every $P, Q \in Prc$,

$$P\approx Q\iff P\simeq Q \ or \ P\simeq \tau. Q \ or \ \tau. P\simeq Q.$$

Goal: introduce an equivalence which has most of the desirable properties of \approx and which is preserved under all CCS operators

Definition

 $P,Q \in Prc$ are called observationally congruent (notation: $P \simeq Q$) if, for every $\alpha \in Act$,

Remark: \simeq differs from \approx only in the use of $\stackrel{\alpha}{\Longrightarrow}$ rather than $\stackrel{\alpha}{\Longrightarrow}$, i.e., it requires τ -actions from P or Q to be simulated by at least one τ -step in the other process. This only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not $P' \simeq Q'$).

Properties

-

$$\begin{array}{l} \text{Toperus} \\ \bullet & LTS(P) = LTS(Q) \\ \Rightarrow & P \sim Q \\ \Rightarrow & P \simeq Q \\ \Rightarrow & P \approx Q \\ \Rightarrow & \hat{Tr}(P) = \hat{Tr}(Q) \\ \bullet & \simeq \text{ is an equivalence relation} \\ \bullet & \simeq \text{ is (non-}\tau) \text{ deadlock sensitive} \\ \bullet & \simeq \text{ is a CCS congruence} \\ \bullet & \text{ For every } P, Q \in Prc, \\ & P \simeq Q \iff P + R \approx Q + R \text{ for every } R \in Prc \\ \bullet & \text{ For every } P, Q \in Prc, \\ & P \approx Q \iff P \simeq Q \text{ or } P \simeq \tau.Q \text{ or } \tau.P \simeq Q \\ \end{array}$$

Observation Congruence Theorem 9.1 (Partitioning algorithm for \approx) Input: $LTS (S, Act, \longrightarrow)$ (S finite) Procedure: • Start with initial partition $\Pi := \{S\}$ **2** Let $B \in \Pi$ be a block and $\alpha \in Act$ an action \bigcirc For every $P \in B$, let $\alpha^*(P) := \{ C \in \Pi \mid ex. \ P' \in C \ with \ P \stackrel{\alpha}{\Longrightarrow} P' \}$ be the set of P's α -successor blocks • Partition $B = \sum_{i=1}^{k} B_i$ such that $P, Q \in B_i \iff \alpha^*(P) = \alpha^*(Q)$ for every $\alpha \in Act$ **6** Continue with (2) until Π is stable **Output:** Partition $\hat{\Pi}$ of S Then, for every $P, Q \in S$, $P \approx Q \iff ex. B \in \Pi \text{ with } P, Q \in B$ 57

Remarks:

- Since S is finite, $\alpha^*(P)$ is effectively computable in step (3) of the algorithm.
- 2 The \approx -partitioning algorithm can be interpreted as the application of the \sim -partitioning algorithm to an appropriately modified LTS:

Theorem 9.1 for $(S, Act, \longrightarrow)$

 $\hat{=}$ Theorem 6.2 for $(S, Act, \longrightarrow')$

where $\longrightarrow' := \bigcup_{\alpha \in Act} \xrightarrow{\alpha}'$ with $\xrightarrow{\alpha}' := \xrightarrow{\hat{\alpha}}$

Since the definition of \simeq requires the weak bisimilarity of the intermediate states after the first step, Theorem 9.1 yields the decidability of \simeq :

Theorem 9.2 (Decidability of \simeq)

Let $(S, Act, \longrightarrow)$ and $\hat{\Pi}$ as in Theorem 9.1. Then, for every $P, Q \in S$, $P \simeq Q \iff \alpha^+(P) = \alpha^+(Q)$ for every $\alpha \in Act$ where $\alpha^+(P) := \{C \in \hat{\Pi} \mid ex. \ P' \in C \ with \ P \stackrel{\alpha}{\Longrightarrow} P'\}.$

Summary

- Origin of Process Algebras:
 - Calculus of Communicating Systems (CCS)
- Trace Equivalence
 - Insensitive to deadlocks!
- Bisimulation
 - Strong Bisimulation:
 - too restrictive to be used for an equivalence between an abstract specification and a detailed implementation model,
 - we need to abstract from internal operations
 - Weak Bisimulation:
 - no congruence wrt to choice, problem is an initial Tau step
- Observational Congruence
 - Compromise between strong and week bisimulation
 - Yields congruence wrt CCS operations
- Equivalence classes can be determined with algorithms based on partition refinement