
Report Generation for Simulation Traces with Traviando

Peter Kemper
College of William and Mary

Department of Computer Science
Williamsburg, VA 23187, USA

kemper@cs.wm.edu

Abstract

Any model-based evaluation of the dependability of a
system requires validation and verification to justify that its
results are meaningful. Modern modeling frameworks en-
able us to create and evaluate models of great complexity.
However, we believe that much more can be done to support
a modeler in ensuring that the dynamic behavior of an ex-
ecutable simulation model is consistent with the modeler’s
understanding. In this paper, we describe a new command
line version of Traviando that reads an execution trace of a
discrete event simulation and generates a set of HTML for-
matted web pages to document properties that it recognizes
from its input. Those properties include characteristics of
state variables as well as changes to state variables that are
performed by events. The point is to highlight the content of
a simulation run in a format that is immediately accessible
and understandable.

1. Introduction

Stochastic discrete event dynamic system (DEDS) mod-
els have been in use for many years to conduct a depend-
ability or performance assessment of a system under study.
Although other solution techniques for particular classes of
models exist, discrete event simulation is the most com-
monly applied technique due to its few constraints and
broad applicability. A simulation executes a given model
and derives values for dependability and performance mea-
sures based on a statistical evaluation of the observed dy-
namic behavior. This a very low level technique compared
to how models are specified in modeling formalisms sup-
ported in modeling tools and most tools hide such details
from a user and come up with results at a level that corre-
sponds to the abstraction level used in modeling. This is
appropriate if a given model is correct. It is attributed to
George Box, that all models are wrong, but some are use-
ful. So it is important to justify confidence in the usefulness

of the considered model and this justification is with what
is commonly termed validation and verification (V&V) of a
model [9]. Validation relates to the question ”Did we build
the right system?” while verification addresses the transfor-
mation of a conceptual model into an implemented, exe-
cutable model with the question ”Did we build the system
right?”. A valid and verified model is expected to provide
reasonably accurate values for measures of interest that are
consistent with what would be observed for the system of
interest. V&V is a classic topic in simulation and the Win-
ter Simulation Conference devotes a tutorial paper to it in
each year, often by Balci [3] and Sargent [9]. In particular
for model verification, Sargent [9] names structured walk-
throughs, correctness proofs and examining the structure
properties of a simulation program for static ”testing” tech-
niques. For dynamic testing he names traces, investigations
on input-output relations, internal consistency checks, and
reprogramming critical components to determine if same
results are obtained. Such steps are embedded in an overall
procedure of model V&V.

In this paper, we focus on tool support for a verification
that uses dynamic testing and traces, that is rather experi-
mental, and that cannot guarantee absence of errors with its
results. However, on the positive side, it provides feedback
on truly observed model behavior as documented in a sim-
ulation trace. The tool bridges the gap between the details
of a simulation run and a high-level model specification in
a complementary manner to measurement results reported
by a simulator itself and pseudo-realistic animations of the
simulated system which modern simulation frameworks of-
ten provide. We report on a recent extension of Traviando
[8] by a new feature that generates a set of HTML format-
ted web pages which report observations and list warnings.
With the generation of this list of warnings, we attempt to
accumulate ”lessons learned” experiences such that com-
mon errors and pitfalls are detected. The approach is stim-
ulated by the way software development is supported by
static code analysis, where a software tool generates a report
for a given program code that lists locations in the code base



that require further attention based on a set of rules that in-
corporate knowledge on common pitfalls in programming;
see FindBugs as a particular example [7]. In dependabil-
ity modeling, there is no one (or few) common main stream
model notation as it is the case in programming, but there
is a common ground for the execution of stochastic DEDS
models as a state transition system. Möbius [4] is an ex-
ample of a modeling framework based on the concept of
a state transition system, which allows a modeler to com-
pose models specified in different formalisms but all share
a common notion of what is a state and a state transforma-
tion by an event. So, we put forward a simulation execution
checker based on observations made from a trace of states
and transitions of a stochastic DEDS model.

In the area of business process modeling, there exists re-
lated work that goes a step further and attempts to identify a
business process model based on a log file of a workflow. To
do so, the workflow log contains information on cases and
their corresponding tasks that are logged with a time stamp.
Van der Aalst and coworkers have developed a rich body of
knowledge for similar concerns in business process model-
ing and workflows, e.g. the identification of models from
observed behavior, detection of anomalies, equivalence of
models based on observes to name a few. E.g. in [10],
Weijters and Maruster discuss for which kinds of workflow
models it is possible to rediscover a corresponding, equiv-
alent model. This work is very promising for any applica-
tion where events correspond to entities, e.g., as for simula-
tion models that follow a process interaction approach. For
the work presented here, the trace data gives information on
states and events, where in particular the state information
allows us to deduce other properties, e.g., the identification
of cyclic behavior. So we focus on a slightly different type
of information and consequently focus on different prop-
erties, in particular properties of states and regularities in
traversing the state space of a model. With respect to model
identification, we only conduct an invariant analysis similar
to classical Petri net invariant analysis for a matching subset
of state variables and actions.

The rest of the paper is structured as follows: Section 2
outlines the tool architecture. Section 3 describes the con-
tent of the generated web pages. Section 4 shows how to
identify an error in a model with the information provided
in the generated report. We conclude in Section 5.

2. Tool Architecture

The command line version of Traviando [2] has a min-
imalistic user interface that outputs a report as a set of
HTML-formatted files for an XML-formatted trace given as
input. In this section, we outline input, output and internal
structure of Traviando.

Input. An input trace file consists of a prefix and a se-
quence part. The prefix part contains information on all
state variables and actions that perform changes to state
variables. State variables can be partitioned into subsets
and each subset corresponds to a so-called process. An ac-
tion performs changes to value settings of state variables.
So actions can be partitioned into local actions that change
only values of variables of a single process and so-called
interactions that change values of variables of more than
one process. The sequence part of the trace consists of an
initial state that assigns values to all state variables and a
sequence of events, each described by an action identifier,
a time stamp (optional) and value assignments to state vari-
ables which yield the successor state. We assume that vari-
ables that are not explicitly assigned a new value remain un-
changed (a common inertia rule). The file format is XML,
for a more detailed description and a document type defini-
tion (DTD), see [2]. This input format has been successfully
used for simulation traces generated with Möbius [4], NS2
[1], ProC/B toolset [6] and the APNN toolbox [5].

Output. Traviando scans the trace and generates a set
of web pages with a main webpage that provides an outline
with sections on variables, actions, invariants and warnings.
The list of warnings also contains links to static webpages
which provide a generic and detailed description of the ra-
tionale, symptoms and solutions for any particular warning.
We elaborate on the generated content in Section 3.

Architecture. Traviando’s command line version is im-
plemented in Java 1.5 and shares code with the full, interac-
tive version of Traviando, an interactive trace analyzer and
visualizer. The software parses a trace file (with the help
of a SAX parser) and creates an internal representation in
the size of the trace and conducts a series of analysis steps.
Any graphics are in PNG format and generated with the
jFreeChart library. The code is developed and tested in a
MacOS and a Linux environment. The command-line in-
terface of Traviando minimizes the learning curve to apply
it to a simulation trace. Since knowledge on web browsing
is common, user appreciation of Traviando relies mainly on
the quality of the generated content, its presentation on web
pages, and the scalability of internal algorithms to apply to
lengthy simulation runs. Figure 1 outlines the tool’s archi-
tecture. Traviando makes use of a set of libraries including
a parser support (SAX), graphics (jfreechart), and statistics
(commons-math).

Difference Between Traviando’s Command-line and
GUI version. The new command-line interface draws on
a newly implemented classification package that provides
functionality to characterize variables and actions and to
detect anomalies. New functionality includes a basic type
recognition of variables, a check for variables being un-
changed or actions not being performed towards the end of
a trace which may suggest a deadlock situation, a check for



Figure 1. Commandline version of Traviando

actions performing state transformations to overflow a nu-
merical range for integer type variables, the identification
of state transformations performed by actions and a detec-
tion of invariants for actions and variables, the generation
of a list of warnings to help a user recognize particular as-
pects of the observed behavior, to name a few. This new
functionality has also been made available in the interactive
GUI of Traviando but in a different format. In providing two
different ways to access the information we extract from a
trace, we want to explore which works better in practice.
There is a clear difference on what the generated HTML
report can provide compared to the interactive GUI. The re-
port is strong at providing a firsthand feedback with figures,
statistics, and warnings across the overall trace, but not to
visualize particular states or locations in the trace. The lat-
ter is a strong point of the interactive GUI which provides a
model-checker and a trace browser among other features to
locate areas of interest in a trace which are then visualized
graphically in the style of a message sequence chart.

3. Generated Content

In this section, we describe the structure and content of
the generated web report.

Main Page. The main page provides some aggregated in-
formation and links to other pages. It reports the total num-
ber of variables and actions as well as the number of events
in the trace. It contains a table that lists the number of lo-
cal variables, local actions and interactions for each process.
The numerical entries carry a link to web pages that provide
further information, e.g., the number of local actions of a
particular process links to a page with further information
for all local actions of that process. The page also provides
generated text passages to explain the content of tables and
figures. The main page further shows a bar chart with the
total number of changes being made by the events in the
trace. This helps in recognizing variables that are changed
very often or very rarely, as well as groups of variables that
are changed in a similar manner. A second chart shows how
often each action occurs, which allows a user to recognize
extremes and patterns as for the previous figure on the num-

ber of value assignments. The third and the fourth figure
show characteristics of how the simulation run visits states
in the state space of the model. The third figure associates
an integer index 1, 2, ... to the sequence of states in an in-
creasing order, such that there is a 1-1 mapping between
states and indices. Fig. 2 shows an example; it shows the
state index as a function of the position in the trace. This
plot indicates if the simulation returns to previously visited
states in a regular manner (which simulation models often
do). The fourth and last figure shows how the length of any
prefix of the simulation run evolves if cycles are removed.
This is called ”progress” in [8] and illustrates in a different
manner if the simulation run returns to previously visited
states. Plots of the progress measure show certain patterns
for certain problematic situations, see [8] for further details.

Figure 2. States visited by a trace of an exam-
ple server model

Finally the page lists links to six further sections (pages),
that give details 1) for all variables, 2) for all actions, 3) for
action invariants observed in the trace, 4) for action invari-
ants calculated from an invariant analysis, 5) for variable in-
variants in a similar manner, and 6) a list of warnings. There
is also an individual page for each variable and action that
includes characteristics and warnings. We will summarize
the contents of those pages in the following paragraphs.

Variables. A state is described by the value settings of
state variables. For state variables, certain characteristics
are straightforward to obtain from a simulation trace, yet
can provide useful feedback. For state variables that are
numbers (integer, floating point), we can consider the range
of values and the sequence of value assignments. We iden-
tified three types of variables:

• constants: variables that are initialized and never mod-
ified. Such a variable may hold a parameter value of a
parameterized model in a series of experiments.

• state: variables that change in value, often on a dis-
crete, integer domain. Such a variable may encode the



state of a component of a system.

• counters: variables that are monotonously non-
decreasing (non-increasing). Such a variable may en-
code a way to obtain measurement data from a simula-
tion run.

Of course, variables can turn out to be in one of the cate-
gories due to missing or faulty state transformations. So, we
consider it useful to provide the range of values, statistical
values of mean, mode and variance as well as information
on which action performs what kind of state transformation.
If variables do change in value but not in a monotonous
manner, it is interesting to obtain more detailed informa-
tion on the distribution of values as well as to see if there
is a trend in the sequence of values; for the latter, a de-
tailed diagram and the aggregated information of a linear
regression are provided. For regular behavior, we assume
that the slope of the regression is close to zero and that the
frequency with which the variable gets modified shows lit-
tle variation. For each variable, we report on which actions
perform changes to its values and in which manner. We also
check, if a variable is rarely changed or frequently changed
and if after an initial period of changes those die out and the
variable remains constant for the rest of the trace. The lat-
ter can indicate a deadlocking situation, if actions that have
made changes to that variable die out as well.

Actions. For each action, we want to provide feedback
about which states enable this action and what state trans-
formations are observed. This feedback helps a modeler to
recognize faulty action specifications. The first issue is to
recognize actions that are declared in the prefix but never
occur in the trace, which may indicate dead model com-
ponents or indicate that the trace is too short to represent
the dynamic behavior of a model completely. For those
actions that are indeed present in the trace, we are inter-
ested in a characterization of states where they can occur
(enabling conditions) and what changes an action causes to
which state variable (state transformation function). We try
to fit the transformation that an action a performs for a nu-
merical variable with current value v and resulting value
v′ as a linear function v′ = b · v + c. Linear transforma-
tions are often seen for encodings of automata, in particular
for Petri nets. If a linear function does not fit, we consider
the function as dependent on the current state s, such that
v′ = v + δ(v, a, s), which works for all deterministic state
transformations. In those cases, we report how often a in-
creases, decreases, or does not change the value of v as well
as the range of values seen for δ(v, a, ∗). One possible rea-
son for a state dependent function may actually be a range
overflow of an integer-valued variable. We check this by
looking at states preceding action a and detect the one with
the highest value seen for v. Given that value, we see if

we can exceed a common integer range threshold (e.g., 28

for unsigned short, 232 for unsigned integer) by adding a
possible value seen for δ(v, a, s). In a similar manner, we
check for underflow for signed and unsigned short and in-
teger variables. By checking all predecessor and succes-
sor states of events that perform a particular action, we can
also detect if the action shows a non-deterministic behavior
(same action yields different successor states for equal pre-
decessor states). As for variables, we check if occurrences
of an action are seen only for some initial phase of the trace,
which can indicate a deadlock situation.

Immediate actions. A discrete event simulator schedules
events according to its time stamps. In practice, it is pos-
sible that multiple events get scheduled for a single point
of time. Examples for this scenario are discrete time steps,
actions that have particular deterministic, discrete delays,
or actions that model immediate reactions to state changes
triggered by some other actions. It is often difficult for
a modeler to evaluate how a simulator schedules multiple
events at a single point of time. Documentation may not be
detailed and specific enough to cover all cases or may not
be up to date and in sync with the simulator code.

In any case, a sequence of events with the same time
stamps can be easily recognized in a given trace. We iden-
tify those sequences and report the triggering actions, pro-
vide a set of immediate successor actions and the length
of such subsequences. However, for an investigation of
full details, the interactive use of Traviando with its event
browser and its trace visualization with message sequence
charts is more suitable than what can be provided in a gen-
erated HTML report.

Invariants. So far, we have considered properties of in-
dividual variables or actions. However, models often carry
invariants like a constant number of customers in a closed
queueing network or that particular sets of actions may
cause the simulation to return to a state, e.g., a failure and
repair of a subsystem. We aim to detect some of these in-
variants of a model as well. We consider invariants of two
kinds, namely (1) action invariants that describe occurrence
counts for sequences of actions that describe a cyclic subse-
quence in a trace, i.e., a sequence of events that leads back
to its starting state, and (2) state (variable) invariants, i.e.,
weighted sums of numerical state variables that remain con-
stant throughout a trace. The presence or absence of an in-
variant provides useful feedback to a modeler. For example,
a particular component like a resource goes through differ-
ent levels of utilization and operational modes, which often
constitutes a state invariant if there are state variables that
account for how many components are in which operational
mode and an action invariant accounting for all actions that
take place between two states where the resource is idle and



operational. If those expected invariants are not seen, a
modeler may want to check all involved actions and their
state transformations to identify the reason for an absence
of the expected regular behavior.

Invariants can be obtained in two ways, either by ob-
serving and checking invariants throughout the trace or, for
a subclass of models, by identifying an underlying vector
addition system that allows us to apply traditional invari-
ant analysis known for Petri nets. For actions, both ways
are currently supported; for variables, only the latter is cur-
rently available. From exercising a set of traces from a vari-
ety of example models, we have seen that sets of invariants
tend to be large, such that we decided to restrict the set of
observed invariants that are reported on a web page to those
vectors that are linearly independent.

For a modeler, it is of interest to obtain a list of invari-
ants as well as an enumeration of all actions (all variables)
that are not covered by any invariant (whose computation is
immediate). This information is provided on the same page
with some further textual explanations and the list of invari-
ants such that the search feature of a web browser make it
straightforward to identify invariants that cover a particular
action (or variable).

Warnings. While the generated content we discussed so
far gives guidance to a model on the dynamic behavior of
a discrete event model as observed in a simulation run, we
also generate a list of warnings. Conceptually, the warn-
ings are of two kinds. The main category is for warnings
that describe anomalies detected for certain actions, vari-
ables and combinations thereof. The second category con-
sists of warnings that indicate difficulties the analysis tech-
niques can face, e.g., the fitting of a state transformation
function to a linear function is based on a single occurrence
of an action, which is not enough data, or if a trace may be
too short to observe all actions, such that a lot of actions are
not present and detected as potentially dead code.

Each warning carries a link to a corresponding external
and static webpage that documents the underlying rule that
raises the warning, its rationale, symptoms, diagnosis and
therapy as a concrete advice on how to fix the problem.

4. Example

In this section, we briefly discuss how to detect an error
in the specification of an action in a simple queueing model
with two customer classes, where the server is subject to
failures and repair. The model is described with Möbius and
we consider a generated trace of 113,654 events. The model
is taken from [8], where it is described how the progress
measure of the trace points us to the error. The new ver-
sion of Traviando generates a report of 73 webpages for this

model of 6 processes with a total of 11 variables and 12 ac-
tions. The purpose of the report is to give guidance to a
modeler if something is wrong and what that can be. It pro-
vides multiple clues that help to recognize the faulty state
transformation including the results of [8]. Fig. 2 shows
the sequence of states reached in the trace, which indicates
that certain events seem to prohibit the simulation to return
to previous states which is not as expected. The figure for
the progress measure gives a similar message. If we check

Figure 3. Progress measured for a single pro-
cess of the server model

the page for all variables, we see the same stepwise func-
tion for the progress of variables in process FullModel as
in Fig. 3. The name of the process should not be under-
stood as being the complete server model; this process cor-
responds to the top-level Join node in the Möbius model
where four variables are shared that are seen as variables
of this process in Traviando. The webpage reports for each
variable the first and last events that make assignments to it
and, if its type is numerical, the range of values observed.
For variables corresponding to one customer class, we can
easily detect that there are more customers than specified
since the range of values is reported as {0, 1, ..., 12} in-
stead of {0, 1}. Following a link for one of those variables,
namely C1WaitsForServer gets us to the variable’s detailed
page which informs us how the value of that variable in-
creases throughout the trace, which actions perform which
state transformation to the variable (as given in Table 1) and
finally a warning that this variable is not an element of any
variable invariant computed for this trace. By checking the
list of actions that increase the value of this variable, we see
that an action C2RestartIfFailed occurs 11 times and incre-
ments the variable. This tells us that this action which is
supposed to deal with customers of class 2 is faulty. Al-
though at this point, it is clear where the problem comes
from, we can also follow the link to the detailed page of that
action and check what else this action does. We see that the
state transformations performed with other variables are all
as expected, only the one to C1WaitsForServer is incorrect.



Action Occurrences Transformation
C1RestartIfFailed(a7) 18 v’=v+1
C2RestartIfFailed(a8) 11 v’=v+1

C1StartService(a9) 19340 v’=v-1
C1StopThinking(a17) 19323 v’=v+1

Table 1. Table of actions that change variable
C1WaitsForServer as given in the report

Alternatively, we can check results of the invariant anal-
ysis: the page on observed action invariants lists four in-
variants and informs us that action C2RestartIfFailed is the
only that is not present in any invariant. Again, this points
us check this particular action. Action invariants computed
from a Petri-net type invariant analysis give a similar re-
sult. The variable invariants computed with invariant anal-
ysis tell us that three variables are not covered by any in-
variant, namely C1WaitsForServer, C1WaitsForUser, and
C1Thinking which are all state variables modeling the cus-
tomer class that does not have a constant population of cus-
tomers. The computed three variable invariants, on the other
hand, confirm that the server is either in the state failed or
available, a constant number of customers of class 2 dis-
tribute over four variables and the server is either idle or
serving a customer of class 1 or of class 2, which is all as
expected. The list of warnings contains 4 warnings, one for
each of the three variables and one for the action that are all
not covered by any invariant, which guides us to the error in
the model.

For further details and the full report for the server
model, see the Traviando’s example page [2].

5. Conclusion

We presented an approach to identify model character-
istics from a simulation trace that contains information on
states as a set of value settings for state variables and events
with associated information on time stamps and actions.
The approach is implemented as a command-line extension
to Traviando and generates a detailed report in HTML for-
mat. Among other information, the report lists warnings
for unusual behavior and those warnings come with links to
webpages that contain further documentation on the rules
that are associated with a warning. A webpage for a partic-
ular rule gives guidance on symptoms, possible causes and
suggests solutions for known pitfalls in simulation model-
ing. Ongoing work is dedicated to extending the ruleset
and increasing the size of the sample set. At this point, the
existing software is available on request for research and

teaching purposes. We plan to make a future version freely
available together with a rule set of modeling rules.

Acknowledgements. We would like to thank the re-
viewers and Daniel Varro for their constructive comments
and Ruth Lamprecht for her editorial assistance, which all
helped to improve this paper.

References

[1] NS2: The network simulator.
http://www.isi.edu/nsnam/ns/.

[2] Traviando: www.cs.wm.edu/∼kemper/traviando.html,
www.cs.wm.edu/∼kemper/traviando/examples.html.

[3] O. Balci. Quality assessment, verification, and valida-
tion of modeling and simulation applications. In Proc.
of the 2004 Winter Simulation Conference, pages 122–
129. IEEE, 2004.

[4] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. De-
risavi, J. M. Doyle, W. H. Sanders, and P. G. Webster.
The Möbius framework and its implementation. IEEE
Trans. Software Eng., 28(10):956–969, 2002.

[5] F. Bause et al. A toolbox for functional and quanti-
tative analysis of DEDS. In Computer Performance
Evaluation / TOOLS, Springer LNCS 1469, pages
356–359, 1998.

[6] F. Bause et al. The ProC/B toolset for the modelling
and analysis of process chains. In T. Field et al, editor,
Computer Performance Evaluation / TOOLS, Springer
LNCS 2324, pages 51–70, 2002.

[7] D. Hovemeyer and W. Pugh. Finding more null
pointer bugs, but not too many. In Proc. 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, 2007.

[8] P. Kemper and C. Tepper. Automated trace analysis of
discrete event system models. IEEE Transactions on
Software Engineering, in print, 2009.

[9] R. G. Sargent. Verification and validation of simula-
tion models. In Winter Simulation Conference, pages
157–169. ACM, 2008.

[10] A. J. M. M. Weijters and L. Maruster. Workflow
mining: Discovering process models from event logs.
IEEE Transactions on Knowledge and Data Engineer-
ing, 16, 2004.


