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Abstract—Audit logs, providing information about the current
and past states of systems, are one of the most important parts
of modern computer systems. Providing security for audit logs
on an untrusted machine in a large distributed system is a
challenging task, especially in the presence of active adversaries.
In such a system, it is critical to have forward security such
that when an adversary compromises a machine, she cannot
modify or forge the log entries accumulated before the compro-
mise. Unfortunately, existing secure audit logging schemes have
significant limitations that make them impractical for real-life
applications: Existing Public Key Cryptography (PKC) based
schemes are computationally expensive for logging in task inten-
sive or resource-constrained systems, while existing symmetric
schemes are not publicly verifiable and incur significant storage
and communication overheads.

In this paper, we propose a novel forward secure and aggregate
logging scheme called Blind-Aggregate-Forward (BAF) logging
scheme, which is suitable for large distributed systems. BAF
can produce publicly verifiable forward secure and aggregate
signatures with near-zero computational, storage, and communi-
cation costs for the loggers, without requiring any online Trusted
Third Party (TTP) support. We prove that BAF is secure under
appropriate computational assumptions, and demonstrate that
BAF is significantly more efficient and scalable than the previous
schemes. Therefore, BAF is an ideal solution for secure logging
in both task intensive and resource-constrained systems.

Keywords-Applied cryptography; secure audit logging; digital
forensics; forward security; signature aggregation.

I. INTRODUCTION

Audit logs are a fundamental digital forensic mechanism
for providing security in computer systems. They are used to
keep track of important events about the system activities such
as program executions/crashes, data modifications, and user
activities. Providing information about the current and past
states of systems, audit logs are invaluable parts of system
security. The forensic value of audit logs makes them an
attractive target for attackers, who aim to erase the traces of
their malicious activities recorded by logs. Indeed, the first
target of an experienced attacker is generally the audit logs
(1], [2].

Some naive audit log protection techniques include using
a bug-free tamper-resistant hardware (to prevent the attacker
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from reaching audit logs), and maintaining a continuous and
secure communication channel between each logger and re-
mote trusted entity(ies) (to upload logs to a trusted entity in
real-time before the attack occurs). However, as pointed out
by some recent studies (e.g., [1], [3]-[5]), these techniques are
impractical for modern computer systems. In large distributed
systems (e.g., virtual computing cloud), it is impractical to
assume a continuous end-to-end real-time communication be-
tween a trusted center and a logger [6]. Similarly, assuming a
tamper-resistant hardware being “bug free” and guaranteeing
its presence on all types of platforms are equally impractical
(e.g., logging in smart cards, implantable devices [7] and
wireless sensors [8]).

To address the above problems, a set of cryptographic
countermeasures have been proposed to enable secure logging
on untrusted machines, without assuming a tamper-resistant
hardware or continuous real-time log verifiers (e.g., [1]-[3],
[5], [9]). In the setting where there is no tamper resistant
hardware nor continuous real-time communication, the un-
trusted machine has to accumulate audit log entries when the
log verifiers are not available. After the attacker compromises
the system, no cryptographic technique can prevent her from
manipulating the post-attack log entries (due to her control
over the system). However, it is critical to prevent the attacker
from manipulating the log entries previously accumulated
before the compromise. Such a security property is referred to
as forward security [1], [3], [4].

One group of these schemes rely on symmetric cryptogra-
phy to provide forward security in a computationally efficient
way by using forward-secure Message Authentication Codes
(MAC:s), Pseudo Random Number Generators (PRNGs) (e.g.,
[4], [5], [10]), and one-way hash chains (e.g., [2], [S], [8]).
Despite their simplicity and computational efficiency, these
schemes have significant limitations: (i) Due to their symmet-
ric nature, these schemes cannot achieve public verifiability.
As a result, they either require full symmetric key distribution
(e.g., FssAgg-MAC [8]) or online TTP support (e.g., [2],
[4], [5], [10]). While full symmetric key distribution incurs
significant storage overhead to system entities, the online
TTP requirement brings architectural difficulties, increases
communication overhead, and makes the system vulnerable to
certain attacks (e.g., truncation and delayed detection attacks
[1], [3]). (ii) All the above schemes incur high storage and
communication overheads to the loggers, since they require



storing and transmitting an authentication tag for each log
entry (or logging period) (e.g., [2], [4], [5], [10]).

The other group of schemes rely on Public Key Cryp-
tography (PKC). The scheme in [11] extends the forward-
secure MAC strategy to the PKC domain to achieve public
verifiability. However, it still incurs significant storage and
communication overheads due to the requirements of storing
and transmitting an authentication tag for each log entry or log-
ging period. Recently, a series of studies have been proposed
to reduce storage and communication overheads via forward
secure and aggregate schemes (e.g., FssAgg-BLS [8], FssAgg-
BM and FssAgg-AR [1], [3], [9]). These schemes require
only one authentication tag for all the accumulated log entries
(due to the ability of aggregating individual authentication
tags into a single compact tag), and therefore are storage
and bandwidth efficient. Unfortunately, all these PKC-based
schemes are computationally expensive for the logger and even
more for the log verifier. These costs make them impractical
for logging in task-intensive or resource constrained systems.

The above discussion indicates that an efficient audit log-
ging mechanism refrained from all the above limitations is
solely needed. In order to fulfill this requirement, we propose a
novel forward secure and aggregate logging scheme for secure
audit logging in distributed systems, which we call Blind-
Aggregate-Forward (BAF) logging scheme. BAF can address
all the aforementioned limitations of the existing approaches
simultaneously. We summarize the properties of BAF below:

1) Efficient Log Generation: In BAF, the computational
cost of logging a single data item is only three crypto-
graphic hash operations. This is as efficient as existing
symmetric schemes (e.g., [2], [4], [5], [8], [10]), and
is much more efficient than all existing PKC-based
schemes (e.g., [1], [3], [8], [9], [11]).

2) Logger Storage/Bandwidth Efficiency: BAF introduces
near zero storage and communication overheads to the
logger. That is, independent from the number of time
periods or data items to be signed, the storage over-
head of the logger is always constant and so is the
size of the resulting signature (which is equal to a
single compact signature). Thus, our scheme is much
more storage/bandwidth efficient than existing symmet-
ric schemes (e.g., linear overhead on the logger [2], [4],
(51, [8], [10).

3) Efficient Log Verification: In BAF, the computational
cost of verifying a single log entry is only a single
ECC scalar multiplication, which is more efficient than
existing PKC-based schemes (e.g., [1], [3], [8], [9],
[L1]).

4) Public Verifiability: BAF produces publicly verifiable
signatures (which implies no full symmetric key dis-
tribution), and therefore is much more scalable for
distributed systems than symmetric schemes (e.g., [2],
(4], (5], [8], [10D).

5) Offline TTP and Immediate Verification: Unlike some
previous schemes (e.g., [2], [5]), BAF does not need
online TTP support to enable log verification. Hence, it
eliminates the bandwidth overhead that stems from the
frequent communication between log verifiers and the

TTP. This also makes BAF more scalable and reliable
due to the simple architectural design and being free
of single point of failures. Last, since BAF achieves
immediate verification, it is secure to delayed detection
attacks [1]".

The above properties make BAF a perfect choice for secure
audit logging in large distributed systems even for highly
resource constrained environments such as smart cards, im-
plantable devices [7] and wireless sensors [8].

The remainder of this paper is organized as follows. Section
IT provides the BAF syntax and security model. Section III
describes BAF in detail. Section IV gives detailed security
analysis of BAF. Section V presents performance analysis and
compares BAF with previous approaches. Section VI briefly
discusses the related work. Section VII concludes this paper.

II. SYNTAX AND SECURITY MODEL

We first give notation and assumptions used in our scheme.
We then give the BAF syntax to clarify generic BAF algo-
rithms, following the example of [8], [9], [12], [13]. Such a
syntax enables us to formally define the security model, in
which BAF is analyzed for the forward secure and aggregate
unforgeability against adaptive chosen plaintext attacks. The
actual algorithms are presented in Section III, while the
analysis of BAF security model is provided in Section IV.

A. Syntax

Notation. G is a generator of group G defined on an Elliptic
Curve (EC) E(F,) over a prime field F},, where p is a large
prime number and ¢ is the order of G. kG, where k is an

integer, denotes a scalar multiplication. x & F), denotes that
x is selected uniformly from F,. Operators || and |z| denote
the concatenation operation and the bit length of variable z,
respectively. H; and Hy are two distinct Full Domain Hash
(FDH) functions [14], which are defined as H; : {0, 1}/s*l —
{0,1}Pl and Hy : {0,1}* — {0,1}/7l, respectively, where
sk & L.

Assumption 1 The cryptographic primitives used in our
scheme possess all the required semantic security proper-
ties [15]: Hy/Hj are strong collision-free and secure FDHs
[14], producing indistinguishable outputs from the random
uniform distribution (i.e., behaves as a Random Oracle [16]).
Elliptic Curve Discrete Logarithm Problem (ECDLP) [17] is
intractable with appropriate parameters. That is, for a given
random point () € E(F}), it is computationally infeasible to
determine an integer k such that @ = kG, where G € G.

BAF is an integrated scheme that achieves both forward
security and sequential signature aggregation simultaneously.
Hence, BAF has a Key Update algorithm that follows the

'Delayed detection attack occurs if the log protection mechanism cannot
achieve immediate verification (due to the lack of online TTP support). In
this case, log verifiers cannot detect whether the log entries are manipulated
until the TTP provides necessary keying information to them. Details of this
problem is discussed in Section IV.



“evolve-and-delete strategy” to achieve forward security sim-
ilar to generic forward secure signatures (e.g., [18]). More-
over, it has Key Generation, Aggregate Signature Generation,
Aggregate Signature Verification algorithms similar to the
aggregate signatures (e.g., [8], [12], [13], [19], [20]).

Definition 1 BAF is four-tuple of algorithms BAF =
(Kg,Upd, ASig, AVer) that behave as follows:

e BAFKg: BAF.Kg is the key generation algorithm, which
takes the maximum number of key updates L and identity
of signer ¢ (ID;) as the input and returns L public keys
(pkos, . ..,pkr—1), initial secret key sko, and index n &
F, for I1D; as the output.

e BAF.Upd: BAF.Upd is the key update algorithm, which
takes the current secret key sk; where j < L — 1 as the
input, and returns the next secret key sk;_; as the output.
BAF.Upd also deletes sk; from the memory.

o BAFASig: BAF.ASig is the aggregate signature genera-
tion algorithm, which takes sk;, data item D; € {0,1}"
to be signed, and an aggregate signature og j_; (for
previously accumulated data items) as the input. It returns
an aggregate signature og; by folding the individual
signature of D; (i.e., o;) into 0g j_1.

e BAFAVer: BAF.AVer is the aggregate signature verifi-
cation algorithm, which takes (D, ..., D;) € {0,1}", its
associated aggregate signature oy j, index n and public
keys (pko, . ..,pk;) of ID; as the input. If the signature
is successfully verified, BAF.AV er returns success. Oth-
erwise, it returns failure. We require that any o generated
by BAF.ASig is accepted by BAF.AVer.

Definition 2 BAF defines two key update models for the
accumulated data: Per-data item and per-time interval models.
In per-data item model, each collected data item is signed
and aggregated as soon as it is received. In per-time interval
model, in a given time interval t,,, the signer accumulates
each collected data item and signs them once at the end
of t,, as one large data item. These two models are the
same from the perspective of the “evolve-and-delete” strategy;
however, they allow a security-storage trade-off that can be
decided according to application requirements. The per-data
item model guarantees forward security of each individual log
entry, but imposes higher storage overhead on the verifier side.
In contrast, the per-time interval model guarantees forward
security for across time intervals, but incurs less storage
overhead. That is, if the attacker compromises the system
in t,, she can forge the log entries accumulated from the
beginning of t,,. However, she cannot forge the log entries
accumulated before t,,.

BAF behaves according to the same-signer-distinct-message
model similar to existing forward secure and aggregate logging
schemes (e.g, [1], [3], [8], [9]). In this model, the same
logger computes aggregate signatures of distinct audit logs
accumulated-so-far. This model is an ideal option for secure
audit logging applications (e.g., [1]-[3], [5], [9], [21]), since
each logger is only responsible for her own audit logs.
Note that some aggregate signature schemes (e.g., [12], [13],

[19]) use the different-signer-distinct-message model (e.g., for
secure routing purposes), which is not necessary for secure
audit logging.

B. Security Model

The security of BAF is defined as the non-existence of a
capable adversary A, confined with certain games, existen-
tially forging a BAF signature even under the exposure of
the current keying material. Since BAF aims to achieve both
secure sequential signature aggregation and forward security
simultaneously, we develop our security model based on the
security model of aggregate signatures in [12], [13], [19], [20],
generic forward secure signature model in [18], and hybrid
security model of FssAgg schemes in [8], [9]. The security
model of BAF is defined below:

Definition 3 BAF is an existentially unforgeable forward se-
cure and aggregate signature scheme against adaptive chosen
message attacks in the random oracle model [16], if no
Probabilistic Polynomial Time (PPT) bounded adversary A
can win the following game with a non-negligible probability.

1) Setup. A is provided with a challenge public key pk.
and parameters L and n.

2) Queries. Beginning from j; = 0, proceeding adap-
tively, A is provided with a BAF signing oracle
O under secret key skj;. For each query, A sup-
plies a valid BAF signature op,;_; on some mes-
sages Dy € {0,1}*,...,D;_1 € {0,1}* signed un-
der skq,...,skj_1, where both messages and keys are
of her choice. A also queries an additional message
D; € {0,1}* of her choice once, which is signed by
O under sk;. A then proceeds into the next time period
and is provided with oracle O under sk; 1. The adaptive
queries continue, until A “breaks-in”.

3) Break-in. When A decides to break-in in time period t,
she is allowed to access secret key skq.

4) Forgery. Eventually, A halts and outputs an aggregate
signature og, on Dg,...,D; under skg,...,ski. A
wins the game, if (i) ¢ < T, (ii) og, is verified by
BAF.AVer successfully, and (iii) og, is non-trivial
(i.e., A did not ask a signature on D; for time period ¢
in the query phase).

III. THE PROPOSED SCHEME

In this section, we present our proposed BAF scheme. We
first give an overview of the proposed scheme and then give
the detailed description.

A. Overview

The objective of BAF is to achieve six seemingly conflicting
goals at the same time to compute and verify forward secure
and aggregate signatures for secure audit logging purposes,
including high signer computational efficiency, storage effi-
ciency, bandwidth efficiency, public verifiability, immediate
verification, and high verifier computational efficiency. To
demonstrate how BAF achieves these properties, we first



discuss the envisioned design principles, on the basis of
which BAF strategy is constructed. We then present the BAF
strategy that achieves the stated goals by following these
design principles.

Design Principles: BAF is based on the following design
principles:

e Avoid PKC operations for logging: All existing PKC-
based forward secure and aggregate schemes are directly
derived from the existing aggregate or forward secure
signature schemes. For instance, FssAgg-BLS [8] is based
on the aggregate signature scheme given in [19]. Sim-
ilarly, FssAgg-BM and FssAgg-AR in [1], [3], [9] are
based on the forward secure signatures given in [22] and
[23], respectively. Hence, existing forward secure and
aggregate schemes naturally inherit high computational
costs of these signature primitives. To achieve efficiency,
BAF restricts operations used in signature generation
to basic arithmetic operations and cryptographic hash
functions. This implies that BAF does not use any PKC
operation for logging.

o Avoid time factor and online TTP Support: BAF aims
to achieve public verifiability without using any PKC
operation at the signer side. One of the possible solutions
would be to introduce asymmetry between the signer
and the verifiers via the time factor (e.g., TESLA [24]).
However, such a scheme cannot achieve immediate ver-
ification at the verifier side. Moreover, it requires online
TTP support to achieve forward security. (If the signer
herself introduces the required asymmetry, then an active
attacker compromising the signer can eventually forge the
computed signatures). To achieve immediate verification
and scalability, BAF uses neither the time factor nor
online TTP support.

BAF Strategy: BAF uses a novel strategy called “Blind-
Aggregate-Forward”. Such a strategy enables signers to log a
large number of log entries with little computational, storage,
and communication costs in a publicly verifiable way. To
achieve this, BAF signature generation has three phases as
described below:

1) Individual Signature Generation: BAF computes the
individual signature of each accumulated data item using
a simple and efficient blinding operation. Blinding is
applied to the hash of data item via first a multiplication
and then an addition operation modular a large prime p
by using a pair of secret blinding keys (referred as the
blinding key pair). The result of this blinding operation
is a unique and random looking output (i.e., the individ-
ual signature), which cannot be forged without knowing
its associated secret blinding keys.

2) Key Update: BAF updates the blinding key pair via
two hash operations after each individual signature gen-
eration, and then deletes the previous key pair from
memory.

3) Signature Aggregation: BAF aggregates the individual
signature of each accumulated data item into the existing
aggregate signature with a single addition operation
modular a large prime p, similar to the additive collision-

free incremental hash techniques (e.g., [25], [26]).

In the above construction, the individual signature computa-
tion binds a given blinding key pair to the hash of signed data
item in a specific algebraic form. The signature aggregation
maintains this form incrementally and also preserves the
indistinguishability of each individual signature. Hence, the
resulting aggregate signature can be verified by a set of public
key securely. BAF enables this verification by embedding each
blinding secret key pair of signer ¢ into a public key pair
via an ECC scalar multiplication. Using the corresponding
public keys, the verifiers follow the BAF signature verifi-
cation equation by performing a scalar multiplication for
each received data item. The successful verification of the
aggregate signature guarantees that only the claimed signer,
who possessed the correct blinding secret key pairs before their
deletion, could compute such a signature (which is unforgeable
after the keys were deleted).

B. Description of BAF

Following the syntax given in Definition 1, the proposed
BAF scheme behaves as described below:

1) BAFKg(L,ID;): BAF.Kg generates L private/public
key pairs for signer ¢. The parameter L determines
the maximum number of key update operations that a
signer can execute, which should be decided according
to the application requirements. In BAF, an offline
TTP executes BAF.K g before the initialization of the
scheme, and then provides the required keys to system
entities.

a) Pick two random numbers as (ag,bp) & F,,
which are initial blinding keys of signer i. Also
pick a random index number as n & F,, which
is used to preserve the order (sequentiality) of
individual signatures. Such an order enforcement is
needed, since BAF signature aggregation operation
is commutative.

b) Generate two hash chains from the initial secret
blinding keys (ao,bo) as aj+1 = Hi(a;) and
bjt1 = Hy(bj) for j =0,...,L—1. Also generate
a public key for each element of these hash chains
as (A; =a;Gand B; = b;G) forj =0,...,L—1.

c¢) The TTP provides required keys to signer ¢ and
verifiers as follows: ID; «— {ag,bo,n} and
Verifiers«— {IDl : Ao, Bo, ‘e ,AL_l,BL_l,TL}.

2) BAF.Upd(a;,b;): BAF.Upd is the key update algorithm,
which updates the given blinding keys as a;11 = H1(a;)
and b1 = Hi(b). BAF.Upd then deletes (ay,b;)
from the memory. BAF.Upd is invoked after each
BAF.ASig operation, whose frequency is determined
according to the application requirements based on the
chosen key update model given in Definition 2 (i.e., per-
data item or per-interval key update models).

3) BAFASig(00,1-1,D;,a;,b;): Assume that signer 7 has
accumulated data items (D, ..., D;_1) and computed
the aggregate signature oq;—;. Signer ¢ computes the
aggregate signature for new data item D; via BAF.ASig
as follows:
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Log Entries
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ddete (ao, bo)

3) Signature Aggregation:

90,0 =00

— 1) Individual Signature: o, = ajH,(Dy || (L+n)) +b; mod p
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IDi transmits the signature-log entry set to the receivers :

(Do, D1,++,DL-1,00,L-1.1Dj)

J

Receivers can publicly verify the received
aggregate signature as follows:

1) Fetch public keys and index of IDi:

ID; - (A.Bo.+» AL-1,BL-1.N)
2) Verify the aggregate signature :

2L _
go,L-1G ==Y (H2(Dj [ (n+}))Aj +Bj)
i=0

If theeguation holds, BAF.AVer returns success,
Otherwiseit returnsfailure.

D
L1 2 1) Individual Signature: o, 1 =a, _qHo(D| _1 | (L-1+n))+b _; mod p
2) BAF'Upd: a1 0O ﬂﬂ - ap and bL—l O HII - bL’
ddete (a.1,bp 1)
3) Signature Aggregation: oy _1 =0y .o+0 _1mod p
Fig. 1. BAF algorithms

a) Compute the individual signature o; as o; = a; *
Hy(Dy||(n+1)) + b mod p.

b) Fold o; into 0g;—1 as 09, = 09,—1 + 07 mod p,
where | > 0 and 0g ¢ = 09 is a known value.

c) Delete 0p;—1 from the memory and invoke
BAF.Upd(al, bl)

4) BAFAVer(Dy,...,D;,00,,1D;): When the verifier re-
ceives data items and their associated aggregate signa-
ture from ID;, she first retrieves public keys (A;, B;)
for j = 0,...,1 and n of ID;. She then verifies oq;

via the BAF verification equation as follows: o ;G ==

S o(Ha(Djl|(n+j))A; + B;). If the equation holds,

BAF. AV er returns success. Otherwise it returns failure.
Figure 1 illustrates the BAF algorithms.

IV. SECURITY ANALYSIS

BAF is proven secure in the following theorem based on
the BAF security model given in Definition 3, as long as
Assumption 1 holds.

Theorem 1 Assume there exists a PPT bounded adversary A
that produces an existential forgery against BAF, based on

the BAF security model defined in Definition 3 instantiated
for L time periods. Assume that A makes at most qs signature
queries to a BAF signing oracle for this forgery, and eventually
succeeds in time T with probability e. Then we can construct
a simulator B that solves ECDLP by extracting private key
(ac,be) from the challenge public key (A. = a.G, B. = b.G)
in time 7' = 7 + O(qs) with probability ¢ > ¢/ L.

Proof: Assume that forger 4 succeeds with probability e
in time 7. Then there exists a simulator B that extracts
the target private key (a,b.) from the challenge public key
(A, = a.G, B, = b.G) by using A as a subroutine, where
subscript ¢ denotes the challenge keys. If A succeeds forging
with probability € in time 7, B succeeds solving ECDLP with
a lower bound at ¢/L within in time ~ 7. We consider the
following game, in which B is given access to a BAF signing
oracle O and interacts with A as follows:

1) Setup. First, simulator 5 is given the challenge public
key (A, B:) and n bl F,. B then randomly chooses a
forgery time period t,,, for which A is supposed to out-
put her forgery, where 0 < w < L. B sets public key of
t,, to the challenge public key as (A, = A., B, = B.)
hoping that 4 produces a successful forgery for this



time period that enables B to solve the ECDLP for
(A, B.). B is also allowed to access O, which signs
a given message D under secret key pair (ac, b.) (only
known by oracle O) and returns o, to B. After setting
the challenge public key and forgery time period, B
computes the remaining private/public keys as follows:

a) B first generates w independent BAF public key
pairs as (A; = a;G,B; = b;G), where each
(a;,b;) & F, for j=0,...,w— 1.

b) B then generates the initial blinding keys for
tws+1 8 (Qwt1,bws1) & F,, and computes the
remaining (L — w) public keys using hash chains
Ajy1 = Hl(aj) and bj+1 = Hl(bj) as Aj = ajG
and B; = b;G for j = w+1,...,L -1
(as in BAF.Kg algorithm). B provides A with
(A(), B(), ey AL,1, BL,1, L, n)

Note that even though the secret keys generated by B
are not chained with the target secret keys a. and b,
through Hy, A will not be able to distinguish them, since
otherwise, .4 would be able to distinguish the outputs of
H, from the random uniform distribution (this implies
H; is broken).

2) Queries. A can query any BAF signature for any time
period t; of her choice with the condition that after .4
queries for t;, she cannot later query for any t;; < ¢;.
Beginning from j = 0, proceeding adaptively, A re-
quests a BAF signature from B once ? on a message D
of her choice, which will be signed under (a;,b;). For
each query, A also supplies o j_1 on (Dy,...,D;j_1)
under the distinct (A = apG, By = byG, ..., Aj_| =
aj_1G,Bj_; =b};_,G), where both messages and keys
are of her choice. 53 then handles query of A as follows:

a) B first checks whether (A, By, ..., A}y, B} ;)
are valid, then verifies o ;_; under these public
keys via BAF.AVer algorithm. If any of these
controls fail, B aborts. Otherwise, B continues to
the next step.

b) If j # w, B computes o; = a; Hy(Dj||(n + j)) +
b; mod p (since B knows (a;,b;)). Otherwise, B
goes to O and requests o, under (a.,b,) (note
that only O knows (a.,, = ac, by, = ac)).

B computes 0q ; = 00, j—1 + 0; mod p and returns it to
A. B also maintains a list L =< D;, 05,00 ; > for each
computed message-signature pair.

3) Break-in. When A chooses to break-in t7, she requests
secret key of tp from B. If tp < t,, B aborts.
Otherwise, B provides A with (ar, br).

4) Forgery. Eventually, A halts and outputs a forgery oy
on (D§,...,Dj;) under distinct public keys (Af, B
..., Af, BY). Forgery of A is valid if 044 1s non-
trivial and valid. That is,

a) (' =w)A (D}, # L.Dy,)N(A}, = Ac, B}, = B.);
and

b) BAF.AVer(Dg,..., D}, 04 ,1Da) = success.

2Note that BAF.ASig never uses the same blinding key pair to sign two
distinct messages, since BAF.Upd immediately updates and then deletes the
blind key pair after each signature operation.

If both of the above conditions are satisfied, B proceeds
to solve the ECDLP for the challenge public key (A., B.)
as follows: B first isolates oy, from oj,, = 07, as oy, =
Opw— Z;”;Ol(aj) mod p (B either knows the required secret
key, or maintains the queried aj in £). Since conditions (a)
and (b) are satisfied, 0,G = Ha(D})||(n+w)) A+ B, holds.
B then fetches o, = 0. from £ and finds (a., b.) by solving
the following modular linear equations:

oy = acHy(Dyll(n+w) +bomodp ()
0 = acHa(Dyl|(n 4+ w)) + b. mod p 2)

If (a. =0V b, =0), B aborts. Otherwise, B returns (a, b.).

In the above game, simulator 5 makes as many queries as
A makes. The running time of simulator 5 is that of A plus
the overhead due to handling .4’s BAF signature queries.

If A succeeds with probability € in forging, then simulator
B succeeds with probability ~ (e/L). The argument is sum-
marized as follows: (i) The view of A that B produces the
signatures is computationally indistinguishable from the view
of A interacting with a real BAF signing oracle. That is, if
there exists a distinguisher for these two views of .4, there
exists a distinguisher for H;. (ii) Conditioned on simulator
B choosing target forgery time period t,, as the period for
which A is supposed to output a valid forgery, the probability
that B solves the ECDLP is the same as the probability
that A succeeds in forgery (i.e., with probability €). Since
choosing the “correct” target forgery time period t,, occurs
with probability 1/L, the approximate lower bound on the
forging probability of B is ~ (¢/L). O

Theorem 1 proves that BAF achieves all the required secu-
rity objectives that a forward secure and aggregate signature
scheme must satisfy [1], [8], [9]: Forward security, unforge-
ability, integrity, authentication, and signature aggregation.

Apart from the above security properties, another security
concern in audit logging is truncation and delayed detection
attacks identified in [1], [3]. Truncation attack is a special
type of deletion attack, in which A deletes a continuous subset
of tail-end log entries. This attack can be prevented via “all-
or-nothing” property [8]: A either should remain previously
accumulated data intact, or should not use them at all (A
cannot selectively delete/modify any subset of this data [1]).
Delayed detection attack targets the audit logging mechanisms
requiring online TTP support to enable the log verification. In
these mechanisms, the verifiers cannot detect whether the log
entries are modified before the TTP provides required keying
information. Due to the lack of immediate verification, these
mechanisms cannot fulfill the requirement of applications in
which the log entries should to be processed in real-time. Ma
et al. [1] showed that many existing schemes are vulnerable
to these attacks (e.g., [4], [10], [2], [5D).

Based on Theorem 1, it is straightforward to show that BAF
is secure against both truncation and delayed detection attacks.
The argument is outlined as follows: (i) Theorem 1 guarantees
that any data item (or any subset of the accumulated data
items), signed and aggregated before the break-in of A4, is for-
ward secure and aggregate unforgeable. This implies that BAF



TABLE 1
NOTATION FOR PERFORMANCE ANALYSIS AND COMPARISON

Muln: Modular multiplication mod n = pq’, where p” and ¢ are large primes

PR: ECC pairing operation

Mulp: Modular multiplication mod p

FExp: Modular exponentiation mod p

H: Hash operation

EMul: ECC scalar multiplication over F},

MtP: ECC map-to-point operation

L: max. # of key updates

Sqr: Modular squaring mod n

[: # of data item to be processed

x: # of bits in FssAgg keys

G Sig: Generic signature generation

GVer: Generic signature verification

R: # of verifiers

TABLE 11
COMPUTATION INVOLVED IN BAF AND PREVIOUS SCHEMES

[ PKC-based Symmetric

[ BAF [ FssAgg-BLS [8] [ FssAgg-BM [1], [9] ]| FssAgg-AR [1], [9] [ Logerypt [T1] || [21, [4], [5], [8]
Sig H MtP + Exp + Mulp (1+ 3)Muln x - Sqr+ (2 + 3)Muln GSig H
Upd 2H H (z + 1)Sqr (22)Sqr - H

L-Sqr+ 1+ z(L + 1)Sqr +

Ver (I+1)- EMul l-(Mulp + PR) Le) Muln 20(1 + £)Muln 1-GVer 1-H

achieves “all-or-nothing” property. Thus, it is secure against
any attack modifying (or deleting) the data accumulated before
the break-in. (ii) In BAF, the verifiers are provided with all the
required public keys before deployment. Hence, BAF achieves
the immediate verification property, and therefore is secure
against delayed detection attack.

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we present the performance analysis of our
scheme. We also compare BAF with the previous schemes
using the following criteria: (i) The computational overhead
of signature generation/verification operations; (ii) storage and
communication overheads depending on the size of signing
key and the size of signature; (iii) scalability properties such
as public verifiability and offline/online TTP, and (iv) security
properties such as immediate verification and being resilient to
the truncation and delayed detection attacks. Computational,
storage and communication overheads are critical to justify
the practicality of these schemes for task intensive and/or
resource-constrained environments. Scalability and security
properties are critical to justify the applicability of these
schemes in large distributed systems.

We list the notation used in our performance analysis and
comparison in Table 1. Based on this notation, for each of
the above category, we first provide the analysis of BAF, and
then present its comparison with the previous schemes both
analytically and numerically. Note that we accept the per-data
item key update model as the comparison basis in our analysis.

A. Computational Overhead

We first analyze the computational overhead of BAF for
signing a single log entry. Individual signature generation
requires one H, one addition and one multiplication modular
p. Key update requires 2H, and the signature aggregation re-
quires one addition modular p. Since the overhead of addition
and multiplication operations is negligible, the total cost of
signing a single log entry is only 3H.

We now analyze the signature verification overhead of
BAF. By following the BAF signature verification equation,
verifying a single log entry requires one EMul, one H and
one ECC addition. Note that it is possible to avoid the ECC

addition by using an optimization: In the key generation phase,
we can compute and release Bj = Y37 B; = (3], b;)G
instead of B; = b;G for j = 0,...,L — 1 to speed
up the signature verification. In this way, the verifiers can
perform the signature verification with only one ECC addition

(negligible cost) regardless of the value of [ as 0 ;1 *G ==
S (Ha(Dyl|(n+5))%A;)+Bj_,. The cost of H is negligi-
ble in this case, since the total computational cost is dominated
by EMul. Hence, the aggregate signature verification cost of
BAF for [ received log entries is (I + 1) - EMul.

To get an intuitive feeling about the computational overhead,
we measured the execution times of basic BAF operations on
a laptop with a 1.60GHz Pentium D processor and 512MB
RAM running Windows XP. We used MIRACL library [27]
compiled with Visual C++ 2005 for necessary cryptographic
operations. A single £ Mwul operation over 160 bit random EC
takes 2.05 ms, while a single H operation (i.e, SHA-1) takes
0.02 ms. Hence, the execution times of signing and verifying
a single log entry for BAF can be estimated as 0.06 ms and
(2.05+0.06)=2.11 ms, respectively.

Comparison: The closest counter parts of our scheme
are FssAgg schemes [1], [3], [8], [9]. The signature gen-
eration of FssAgg-BLS [8] is expensive due to Exp and
MtP, while its signature verification is highly expensive due
to pairing operations. Different from FssAgg-BLS, FssAgg-
BM and FssAgg-AR [9] rely on efficient PKC operations
such as Sqr and Muln. However, these schemes are also
computationally costly, since they require heavy use of such
PKC operations. For instance, FssAgg-BM [9] requires (x +
1)Sqr + (1 + z/2)Muln (i.e., x2160 [9]) for the signature
generation (key update plus the signing cost), and it requires
L-Sqr+ (I +x-1/2)Muln for the signature verification.
Similarly, FssAgg-AR requires (3z)Sqr + (2 + z/2)Muln
for the signature generation, and it requires (L + {)Sqr +
2[(1 + §)Mulin for the signature verification. Logcrypt uses
a digital signature scheme (e.g., ECDSA) to sign and verify
each log entry separately without signature aggregation [11],
and thus has standard signature costs. The symmetric schemes
[2], [4], [5], [8] are in general efficient, since they only need
symmetric cryptographic operations. Table II summarizes the
computational costs of all the compared schemes.

Table III shows the estimated execution time of BAF and



TABLE III
ESTIMATED EXECUTION TIME (IN MS) OF BAF AND PREVIOUS SCHEMES FOR A SINGLE LOG ENTRY

PKC-based Symmetric
BAF | FssAgg-BLS [8] | FssAgg-BM [1], [9] | FssAgg-AR [1], [9] | Logerypt [11] || [2], [4], [5], [8]
Sig 0.06 30.0 5.55 11.66 2.11 0.06
Ver || 2.11 33.0 2.2 8.1 12.09 0.06
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m —_
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Fig. 2. Signing time comparison (in ms) Fig. 3. Verification time comparison (in ms)

previous schemes. The execution times of BAF, Logcrypt, and
the symmetric schemes [2], [4], [5], [8] were obtained using
the MIRACL library [27] on a laptop with a 1.60GHz Pentium
D processor and 512MB RAM, while the results for all FssAgg
schemes are taken from [1], [9], which used a laptop with a
1.73GHz Intel dual-core with 1GB RAM. Thus, our numerical
comparison of BAF and the FssAgg schemes is conservative
for BAF.

When compared with PKC-based FssAgg-BLS, FssAgg-
BM, FssAgg-AR and Logcrypt, BAF is 500, 92, 194, and 35
times faster for loggers, respectively. This efficiency makes
BAF the best alternative among all existing schemes for
secure logging with public verifiability in task intensive and/or
resource-constrained applications. Similarly, BAF signature
verification is also more efficient than the previous schemes.
When compared with FssAgg-BLS, FssAgg-AR and Logcrypt,
BAF is 15.6, 3.8 and 5.7 times faster, respectively. BAF is
also slightly more efficient than FssAgg-BM. Figure 2 and
Figure 3 further show the comparison of BAF and the previous
schemes that allow public verification in terms of signature
generation and verification time as the number of log entries
increases. These figures clearly show that BAF is the most
computationally efficient one among all these choices.

When compared with the previous symmetric logging
schemes (e.g., [2], [4], [5], [8], [10]), BAF signature generation
is equally efficient even though it is a PKC-based scheme.
However, signature verification of the symmetric logging
schemes is more efficient than all the existing PKC-based
schemes, including BAF. Note that these symmetric schemes
sacrifice storage/communication efficiency, public verifiability,
and certain security properties (e.g., truncation and delayed
detection attacks) to achieve this verifier efficiency. Overall,
the advantages of BAF over the symmetric logging schemes
include its public verifiability, high storage and communication
efficiency, and scalability.

B. Storage and Communication Overheads

In BAF, the size of signing key is 2|p| (e.g., |p|=512 bit), and
the size of authentication tag is |p|. Since BAF allows signature
aggregation, independent from the number of data items to
be signed, the size of resulting authentication tag is always
constant, which is equal to |p|. Furthermore, BAF derives the
current signing key from the previous one, and then deletes
the previous signing key from the memory. Hence, the size of
signing key is also constant, which is equal to 2|p|. Based
on these parameters, both the storage and communication
overheads of BAF are small and constant (i.e., 3|p| and |p|,
respectively).

Comparison: We use the storage and communication over-
heads of loggers as the comparison basis. The storage and
communication overheads are measured according to the size
of a single signing key, the size of a single authentication
tag, and the growth rate of these two parameters with respect
to the number of data items to be processed, that is, whether
they grow linear, or remain constant for the increasing number
of data items to be processed. Table IV summarizes the
comparison.

Bellare-Yee scheme I [10] and scheme II [4] (denoted BY
I and BY II, respectively), Schneier-Kelsey scheme I [5] and
scheme II [2] (denoted SK I and SK II, respectively), and
FssAgg-MAC [8] all use a MAC function to compute an
authentication tag for each log entry with a different key,
where the sizes of key and resulting tag are both |H| (e.g.,
160 bit). Logcrypt [11] extended the idea given in [4], [5]
by replacing MAC with a digital signature such as ECDSA,
where the size of signing key is |g| (e.g., 160 bit) and the size
of resulting signature is 2|q|, respectively. All these schemes
incur high storage and communication overheads to the logger.
They cannot achieve signature aggregation, and therefore they
require storing/transmitting an authentication tag for each log




TABLE IV
STORAGE AND COMMUNICATION OVERHEADS OF BAF AND PREVIOUS SCHEMES

FssAgg Schemes [1], [3], [8], [9]

BYI[i0], | SKI[5],

Criteria BAF —prs— T BM T AR [ mac | FoeewPt U | gy gy | sk
Key Size 2|p| q (x4 1)|n| | 2|n| H lq] H H
Signature Size | |p| D [n]| [n| H 2|q| H H
Storage Cost | 3p| | Ip|+ g | (x+2)[n] | 3|n|] | O(R) * [H] O(L)  [q] O(L)*[H| | O(L) = [H
Comm. Cost Ip| Ip| [n]| [n| [H| O(L)«2[q] | O(L)«[H| | O(L)*|H
TABLE V
SCALABILITY AND SECURITY PROPERTIES OF BAF AND PREVIOUS SCHEMES
o FssAgg Schemes (11, 3], (81, 9] BY 110}, | SK 1[5,
Criteria BAF | BISTBM AR | MAC Logerypt [H1 | "py 11 (a1 | SK 11 [2]
Public Verifiability Y Y Y Y N Y N N
Offline TTP Y Y Y Y Y Y N N
Immediate Verification Y Y Y Y Y Y N N
Reszllent. to Delayed v v v v v v N N
Detection Attack
Resilient to Truncation
(Deletion) Attack Y Y Y Y Y N N N

entry. Hence, the storage and communication overheads of
these symmetric schemes [2], [4], [5], [10] and Logcrypt [11]
are all linear as O(L) % |H| and O(L) * |q|, respectively.
Different from these schemes, FssAgg-MAC achieves sig-
nature aggregation, and its communication overhead is only
|H|. However, since FssAgg-MAC requires symmetric key
distribution, its storage overhead is also linear (i.e., O(R)|H]).

The PKC-based FssAgg-BLS [8], FssAgg-BM and FssAgg-
AR [9] achieve signature aggregation in a publicly verifiable
way, and therefore their storage and communication overheads
are constant. Table IV shows that they are efficient in terms
of both the storage and communication overheads, with the
exception of FssAgg-BM, which is slightly more costly (i.e.,
(x4 2)|n)).

BAF has constant and small storage and communication
overheads, and is significantly more efficient than all the
schemes that incur linear storage and communication over-
heads (e.g., [2], [4], [5], [8], [10], [11]). BAF is also more
efficient than FssAgg-AR/BM [9] and as efficient as FssAgg-
BLS [8], as shown in Table IV.

C. Scalability and Security

BAF can produce forward secure and aggregate signatures
that are publicly verifiable via the signers’ corresponding
public key sets. Also, BAF does not need online TTP support
for the signature verification, since the verifiers can store all
the required keying material without facing a key exposure
risk. (Note that in the symmetric schemes such as [2], [4], [5],
[10], the verifiers cannot store the verification keys on their
own memory, since A compromising a verifier can obtain all
the secret keys of all signers.) Furthermore, BAF does not
use the time factor to be publicly verifiable, and therefore
achieves immediate verification. Finally, BAF is proven to be
secure against the truncation and delayed detection attacks (see
Section IV). Hence, BAF achieves all the desirable scalability
and security properties simultaneously.

Comparison: Table V shows the comparison of BAF with
the previous schemes in terms of their scalability and security
properties. The symmetric schemes BY I, BY II [4], [10], SK I,
and SK II [2], [5] cannot achieve public verifiability. Moreover,
they require online TTP support to enable log verification.
The lack of public verifiability and the requirement for online
TTP significantly limit their applicability to large distributed
systems. Furthermore, they are vulnerable to both truncation
and delayed detection attacks [1], [3]. FssAgg-MAC [8] does
not need online TTP and is secure against the aforementioned
attacks. However, FssAgg-MAC is also a symmetric scheme,
which is not publicly verifiable. Hence, none of the previous
symmetric schemes can fulfill the requirements of large dis-
tributed systems.

PKC-based FssAgg schemes [1], [3], [8], [9] and
Logcrypt [11] are publicly verifiable. They do not need online
TTP support, and can achieve immediate verification. These
schemes are also secure against the truncation and delayed
detection attacks, with the exception of Logcrypt in [11].

BAF, achieving all the required scalability and security
properties, is also much more computational and storage
efficient than FssAgg schemes [1], [3], [8], [9]. Hence, BAF
is the most efficient scheme among the existing alternatives
that can achieve all the desirable secure auditing properties
simultaneously.

VI. RELATED WORK

The pioneering studies addressing the forward secure stream
integrity for audit logging were presented in [4], [10]. The
main focus of these schemes is to formally define and analyze
forward-secure MACs and PRNGs. Based on their forward-
secure MAC construction, they also presented a secure logging
scheme, in which log entries are tagged and indexed according
to the evolving time periods. Schneier et al. [2], [S] proposed
secure logging schemes that use one-way hash chains together
with forward-secure MACs to avoid using tags and indexes.
Logcrypt [11] extended the idea given in [4], [5] to PKC



domain by replacing MACs with digital signatures and ID-
based cryptography. Finally, Ma et al. proposed a set of
comprehensive secure audit logging schemes in [1], [3] based
on their forward secure and aggregate signature schemes given
in [8], [9]. The detailed analysis and comparison of all these
schemes with ours were given in Section V.

Apart from the above schemes, Chong et al. extended
the scheme in [5] by strengthening it via tamper-resistant
hardware [28]. Moreover, Waters et al. proposed an audit
log scheme that enables encrypted search on audit logs via
Identity-Based Encryption (IBE) [21]. These works are com-
plementary to ours.

VII. CONCLUSION

In this paper, we developed a new forward secure and
aggregate audit logging scheme for large distributed systems,
which we refer to as Blind-Aggregate-Forward (BAF) logging
scheme. BAF simultaneously achieves six seemingly conflict-
ing goals for secure audit logging, including very low logger
computational overhead, near-zero storage and communication
overheads, public verifiability (without online TTP support),
immediate log verification, and high verifier efficiency. Our
comparison with the previous alternative approaches demon-
strate that BAF is the best choice for secure audit logging
in large distributed systems, even for task intensive and/or
resource constrained environments.

In our future work, we will investigate the integration of
BAF in distributed systems such as virtual computing clouds.
We would like to examine and identify system level issues
involved in secure audit logging on untrusted platforms.
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