

CSCI 454/554 Computer and Network Security

Topic 2. Introduction to Cryptography

Outline

- Basic Crypto Concepts and Definitions
- Some Early (Breakable) Cryptosystems
- "Key" Issues

Basic Concepts and Definitions

Cryptography

- Cryptography: the art of secret writing
- Converts data into unintelligible (randomlooking) form
 - Must be reversible (can recover original data without loss or modification)
- Not the same as compression
 - n bits in, n bits out
 - Can be combined with compression
 - What's the right order?

Cryptography vs. Steganography WILLIAN

- Cryptography conceals the contents of communication between two parties
- Anonymous communication conceals who is communicating
- Kerckhoffs's principle
 - A cryptosystem should be secure even if everything about the system, except the key, is public knowledge

- Steganography (hiding in plain sight) conceals the very existence of communication
 - Examples?
 - Watermark
 - Info leakage
- Security through obscurity
 - Defense in depth
 - Open source software?

Encryption/Decryption

- Plaintext: a message in its original form
- Ciphertext: a message in the transformed, unrecognized form
- Encryption: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- Key: the value used to control encryption/decryption.

Cryptanalysis

- "code breaking", "attacking the cipher"
- Difficulty depends on
 - sophistication of the cipher
 - amount of information available to the code breaker
- Any cipher can be broken by exhaustive trials, but rarely practical
 - When can you recognize if you have succeeded?

Ciphertext Only Attacks

- Ex.: attacker can intercept encrypted communications, nothing else
 - when is this realistic?
- Breaking the cipher: analyze patterns in the ciphertext
 - provides clues about the encryption method/key

Known Plaintext Attacks

- Ex.: attacker intercepts encrypted text, but also has access to some of the corresponding plaintext (definite advantage)
 - When is this realistic?
- Requires plaintext-ciphertext pairs to recover the key, but the attacker cannot choose which particular pairs to access.
 - Makes some codes (e.g., monoalphabetic ciphers) very easy to break

Chosen Plaintext Attacks

- Ex.: attacker can choose any plaintext desired, and intercept the corresponding ciphertext
 - When is this realistic?

 Choose exactly the messages that will reveal the most about the cipher

Chosen Ciphertext Attacks WILLIAM GMARY

- Ex.: attacker can present any ciphertext desired to the cipher, and get the corresponding plaintext
 - When is this realistic?
- Isn't this the goal of cryptanalysis???

The "Weakest Link" in Security

- Cryptography is rarely the weakest link
- Weaker links
 - Implementation of cipher
 - Distribution or protection of keys

Perfectly Secure Ciphers

- Ciphertext does not reveal any information about which plaintexts are more likely to have produced it
 - i.e., the cipher is robust against chosen ciphertext attacks

and

- 2. Plaintext does not reveal any information about which ciphertexts are more likely to be produced
 - i.e, the cipher is robust against chosen plaintext attacks

Computationally Secure Ciphers

1. The cost of breaking the cipher quickly exceeds the value of the encrypted information

and/or

- The time required to break the cipher exceeds the useful lifetime of the information
- Under the assumption there is not a faster / cheaper way to break the cipher, waiting to be discovered

Secret Keys vs. Secret Algorithms

Security by obscurity

- We can achieve better security if we keep the algorithms secret
- Hard to keep secret if used widely
- Reverse engineering, social engineering

Publish the algorithms

- Security of the algorithms depends on the secrecy of the keys
- Less unknown vulnerability if all the smart (good) people in the world are examine the algorithms

Secret Keys vs. Secret Algorithms

- Commercial world
 - Published
 - Wide review, trust
- Military
 - Keep algorithms secret
 - Avoid giving enemy good ideas
 - Military has access to the public domain knowledge anyway.

Some Early Ciphers

Caesar Cipher

- Replace each letter with the one 3 letters later in the alphabet
 - ex.: plaintext CAT → ciphertext FDW

Trivial to break

"Captain Midnight Secret Decoder" Ring

- Replace each letter by one that is δ positions later, where δ is selectable (i.e., δ is the key)
 - example: IBM \rightarrow HAL (for δ =25)
- Also trivial to break with modern computers (only 26 possibilities)

plaintext alphabet

ciphertext alphabet

Mono-Alphabetic Ciphers

- Generalized substitution cipher: an arbitrary (but fixed) mapping of one letter to another
 - 26! ($\approx 4.0*10^{26} \approx 2^{88}$) possibilities
- The key must specify which permutation; how many bits does that take?

plaintext alphabet

ciphertext <u>alphabet</u>

Attacking Mono-Alphabetic Ciphers

- Broken by statistical analysis of letter, word, and phrase frequencies of the language
- Frequency of single letters in English language, taken from a large corpus of text:

A ≈ 8.2%	H ≈ 6.1%	O ≈ 7.5%	V ≈ 1.0%
B ≈ 1.5%	I ≈ 7.0%	P ≈ 1.9%	W ≈ 2.4%
C ≈ 2.8%	J ≈ 0.2%	$Q \approx 0.1\%$	X ≈ 0.2%
D ≈ 4.3%	K ≈ 0.8%	R ≈ 6.0%	Y ≈ 2.0%
E ≈ 12.7%	L ≈ 4.0%	S ≈ 6.3%	Z ≈ 0.1%
F ≈ 2.2%	M ≈ 2.4%	T ≈ 9.1%	
G ≈ 2.0%	N ≈ 6.7%	U ≈ 2.8%	

Attacking... (Cont'd)

- If all words equally likely, probability of any one word would be quite low
 - how many words are there in the English language?
- Actual frequencies of some words in English language:

the ≈ 6.4%	a ≈ 2.1%	i ≈ 0.9%
of ≈ 4.0%	in ≈ 1.8%	it ≈ 0.9%
and ≈ 3.2%	that $\approx 1.2\%$	for ≈ 0.8%
to ≈ 2.4%	is ≈ 1.0%	as ≈ 0.8%

(Tip: Counting Letter Frequencies)

- Program letter, written by TJ O'Connor
- Output for Declaration of Independence:

Vigenere Cipher

- A set of mono-alphabetic substitution rules (shift amounts) is used
 - the key determines what the sequence of rules is
 - also called a poly-alphabetic cipher
- Ex.: key = (3 1 5)
 - i.e., substitute first letter in plaintext by letter+3, second letter by letter+1, third letter by letter+5
 - then repeat this cycle for each 3 letters

Vigenere... (Cont'd)

• Ex.: plaintext = "BANDBAD"

plaintext message

B A N D B A D

shift amount

3 1 5 3 1 5 3

ciphertext message

E B S G C F G

Breaking the cipher: look for repeated patterns in the ciphertext

Hill Ciphers

- Encrypts m letters of plaintext at each step
 - i.e., plaintext is processed in blocks of size *m*
- Encryption of plaintext p to produce ciphertext c is accomplished by: c = Kp
 - the $m \times m$ matrix K is the key
 - **K**'s determinant must be relatively prime to size of alphabet (26 for our example)
 - decryption is multiplication by inverse: $p = K^{-1}c$
 - remember: all arithmetic mod 26

Hill Cipher Example

• For
$$m = 2$$
, let $K = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$, $K^{-1} = \begin{bmatrix} 21 & 2 \\ 3 & 25 \end{bmatrix}$

Plaintext
$$p =$$

Α	В	X	У	D	G
0	1	23	24	3	6

(21*15+2*13) mod 26

$$\frac{(1*0+2*1) \bmod 26}{\text{Ciphertext } c = \begin{cases} 2 & 5 & 19 & 7 & 15 & 13 \\ \hline C & F & T & H & P & N \end{cases}$$

Hill... (Cont'd)

- Fairly strong for large m
- But, vulnerable to chosen plaintext attack
 - choose *m* plaintexts, generate corresponding ciphertexts
 - form a m x m matrix X from the plaintexts, and m x m matrix Y from the ciphertexts (details omitted)
 - can solve directly for K (i.e., $K = Y X^{-1}$)

Permutation Ciphers

- The previous codes are all based on substituting one symbol in the alphabet for another symbol in the alphabet
- Permutation cipher: permute (rearrange, transpose) the letters in the message
 - the permutation can be fixed, or can change over the length of the message

Permutation... (Cont'd)

- Permutation cipher ex. #1:
 - Permute each successive block of 5 letters in the message according to position offset <+1,+3,-2,0,-2>

plaintext message

ciphertext message

Permutation... (Cont'd) WILLIAM CONT'D

- Permutation cipher ex. #2:
- arrange plaintext in blocks of n columns and m rows
- then permute columns in a block according to a key K

ciphertext sequence (by plaintext position) for one block

3 7 11 4 8 12 2 6 10 1 5 9

Permutation... (Cont'd) WILLIAM CONT'D

 A longer example: plaintext = "ATTACK POSTPONED UNTIL TWO AM"

ciphertext

TTNA APTM TSUO AODW COIX PETZ KNLY

A Perfectly Secure Cipher: One-Time Pads

- WILLIAM &MARY
- According to a theorem by Shannon, a perfectly secure cipher requires:
 - a key length at least as long as the message to be encrypted
 - the key can only be used once (i.e., for each message we need a new key)
- Very limited use due to need to negotiate and distribute long, random keys for every message

OTP... (Cont'd)

Idea

- generate a random bit string (the key) as long as the plaintext, and share with the other communicating party
- encryption: XOR this key with plaintext to get ciphertext

OTP... (Cont'd)

Why can't the key be reused?

Some "Key" Issues

Types of Cryptography

- Number of keys
 - Hash functions: no key
 - Secret key cryptography: one key
 - Public key cryptography: two keys public, private
- The way in which the plaintext is processed
 - Stream cipher: encrypt input message one symbol at a time
 - Block cipher: divide input message into blocks of symbols, and processes the blocks in sequence
 - May require padding

Secret Key Cryptography

- Same key is used for encryption and decryption
- Also known as
 - Symmetric cryptography
 - Conventional cryptography

Secret Key Cryptography (Cont'd) WILLIAM GENERAL CONT'S CO

- Basic technique
 - Product cipher:
 - Multiple applications of interleaved substitutions and permutations

Secret Key Cryptography (Cont'd) WILLIAM GENERAL CONT'S CO

- Ciphertext approximately the same length as plaintext
- Examples
 - Stream Cipher: RC4
 - Block Cipher: DES, IDEA, AES

Applications of Secret Key Cryptography

- Transmitting over an insecure channel
 - Challenge: How to share the key?
- Secure Storage on insecure media
- Authentication
 - Challenge-response
 - To prove the other party knows the secret key
 - Must be secure against chosen plaintext attack
- Integrity check
 - Message Integrity Code (MIC)
 - a.k.a. Message Authentication Code (MAC)

Public Key Cryptography (PKC)

- Invented/published in 1975
- A public/private key pair is used
 - Public key can be publicly known
 - Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Also known as
 - Asymmetric cryptography

Public Key Cryptography (Cont'd) WILLIAM (Cont'd)

- Another mode: digital signature
 - Only the party with the private key can create a digital signature.
 - The digital signature is verifiable by anyone who knows the public key.
 - The signer cannot deny that he/she has done so.
 - The signature is created on a hash value of the message.

Data transmission:

• Alice encrypts m_a using Bob's public key e_B , Bob decrypts m_a using his private key d_B .

Storage:

Can create a safety copy: using public key of trusted person.

• Authentication:

- No need to store secrets, only need public keys.
- Secret key cryptography: need to share secret key for every person to communicate with.

Applications of PKC (Cont'd)

- Digital signatures
 - Sign hash H(m) with the private key
 - Authorship
 - Integrity
 - Non-repudiation: can't do with secret key cryptography
- Key exchange
 - Establish a common session key between two parties
 - Particularly for encrypting long messages

Hash Algorithms

- Also known as
 - Message digests
 - One-way transformations
 - One-way functions
 - Hash functions
- Length of H(m) much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

Hash Algorithms (Cont'd)

- Desirable properties of hash functions
 - Performance: Easy to compute H(m)
 - One-way property (Preimage resistance):
 Given H(m) but not m, it's difficult to find m.
 - Weak collision free (Second preimage resistance): Given m_1 , it's difficult to find m_2 such that $H(m_1) = H(m_2)$.
 - Strong collision free (Collision Resistance): Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

Applications of Hash Functions WILLIAM Functions

- Primary application
 - Generate/verify digital signatures

- Password hashing
 - Doesn't need to know password to verify it
 - Store H(password+salt) and salt, and compare it with the user-entered password
 - Salt makes dictionary attack more difficult
- Message integrity
 - Agree on a secrete key k
 - Compute H(m|k) and send with m
 - Doesn't require encryption algorithm, so the technology is exportable

- Message fingerprinting
 - Verify whether some large data structures (e.g., a program) has been modified
 - Keep a copy of the hash
 - At verification time, recompute the hash and compare
 - Hashing program and the hash values must be protected separately from the large data structures

Summary

- Cryptography is a fundamental, and most carefully studied, component of security
 - not usually the "weak link"
- "Perfectly secure" ciphers are possible, but too expensive in practice
- Early ciphers aren't nearly strong enough
- Key distribution and management is a challenge for any cipher