CSCI 454/554 Computer and Network
Security
Topic 3.1 Secret Key Cryptography - Algorithms

Secrets? (Cont'd) WHILAAM

- Commercial world relies upon standardized, public algorithms, and secret keys
- Government tends to also rely on secret algorithms

Outline				
- Introductory Remarks				
- Feistel Cipher				
- DES				
- AES				

Secret Keys or Secret Algorithms ? ?

- "Security by obscurity"
. "hide" the details of the algorithms
. drawback: hard to keep secret if cipher is used widely, or implementation can be reverse engineered
- Alternative: publish the algorithms
- fewer vulnerabilities will result if many smart people try and fail to break the cipher
- security of the cipher depends on the secrecy of the keys, instead

Secret Key Cryptography WILLIAN

- Same key is used for both encryption and decryption
- this one key is shared by two parties who wish to communicate securly
- Also known as symmetric key cryptography, or shared key cryptography

Applications of Secret Key Crypto WIMAANV

- Communicating securely over an insecure channel
- Alice encrypts using shared key
- Bob decrypts result using same shared key
- Secure storage on insecure media
- Bob encrypts data before storage
. Bob decrypts data on retrieval using the same key

Applications... (Cont'd) MILAAM

- Message integrity
- Alice computes a message integrity code (MIC) from the message, then encrypts with shared key
- Bob decrypts the MIC on receipt, and verifies that it agrees with message contents
- Authentication
- Bob can verify Alice sent the message
- how is that possible?

Generic Block Encryption Millik

- Converts one input plaintext block of fixed size k bits to an output ciphertext block also of k bits
- Benefits of large k ? of short k ?

Key Sizes

MHLIAM

- Keys should be selected from a large potential set, to prevent brute force attacks
- Secret key sizes
. 40 bits were considered adequate in 70's
. 56 bits used by DES were adequate in the 80 's
- 128 bits are adequate for now
- If computers increase in power by 40% per year, need roughly 5 more key bits per decade to stay "sufficiently" hard to break

8	Notation	WiLliak
Notation	Meaning	
$X \oplus Y$	Bit-wise exclusive-or of X and Y	
X\| Y	Concatenation of X and Y	
$\mathrm{K}\{m$ \}	Message m encrypted with secret key K	

Exploiting the Principles
 MIUAAN

. Idea: use multiple, alternating permutations and substitutions, e.g.,
. $S \rightarrow P \rightarrow S \rightarrow P \rightarrow S \rightarrow$
. $P \rightarrow S \rightarrow P \rightarrow S \rightarrow P \rightarrow$
. Do they have to alternate? e.g....

$$
\text { . } \mathrm{S} \rightarrow \mathrm{~S} \rightarrow \mathrm{~S} \rightarrow \mathrm{P} \rightarrow \mathrm{P} \rightarrow \mathrm{P} \rightarrow \mathrm{~S} \rightarrow \mathrm{~S} \rightarrow \ldots \text { ? }
$$

- Confusion is mainly accomplished by substitutions
- Diffusion is mainly accomplished by permutations
- Example ciphers: DES, AES

Basic Form of Modern Block Ciphers MIMIARY

Feistel Ciphers

\%	Overview	WILLAM
- Feistel Cipher has been a very influential "template" for designing a block cipher - Major benefit: can do encryption and decryption with the same hardware - Examples: DES, RC5		

One "Round" of Feistel Encryption WIMAMM

1. Break input block i into left and right halves L_{i} and R_{i}
2. Copy R_{i} to create output half block L_{i+1}
3. Half block R_{i} and key K_{i} are "scrambled" by function f
4. XOR result with input half-block L_{i} to create output half-block R_{i+1}

Parameters of a Feistel Cipher $\begin{aligned} & \text { WILLAAM }\end{aligned}$

. Block size

- Key size
- Number of rounds
- Subkey generation algorithm
- "Scrambling" function f

DES (Data Encryption Standard) Wivilivi

- Standardized in 1976 by NBS (now NIST)
- proposed by IBM,
- Feistel cipher
- Criteria (official)
- provide high level of security
. security must reside in key, not algorithm
- not patented
. must be exportable
. efficient to implement in hardware
. Blocks: 64 bit plaintext input, 64 bit ciphertext output
- Rounds: 16
- Key: 64 bits
. every $8^{\text {th }}$ bit is a parity bit, so really $\underline{56}$ bits long

Initial and Final Permutations $\begin{gathered}\text { WILIANV } \\ \mathrm{E} \text { MRX }\end{gathered}$

- Initial permutation given below
- input bit \#58 \rightarrow output bit \#1, input bit \#50 \rightarrow output bit \#2, ..

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

- Criteria (unofficial)	
- must be slow to execute in software	
- must be breakable by NSA :-)	

Key Generation: First Permutation MIMAAN

- First step: throw out 8 parity bits, then permute resulting 56
bits 7 columns

	57	49	41	33	25	17	9
	1	58	50	42	34	26	18
	10	2	59	51	43	35	27
	19	11	3	60	52	44	36
$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	63	55	47	39	31	23	15
	7	62	54	46	38	30	22
	14	6	61	53	45	37	29
	21	13	5	28	20	12	4

Parity bits left out: 8,16,24, ...

One DES (Feistel) Round

DES Round: f (Mangler) Function $\begin{gathered}\text { WLULAMM } \\ M A R Y\end{gathered}$

20	f. Expansion Function						WILLIAM
- 32 bits $\rightarrow 48$ bits							
\square these bits are repeated \square							
	32	1	2	3	4	5	
	4	5	6	7	8	9	
	8		10	11	12	13	
	12		14	15		17	
	16		18	19		21	
	20		22	23		25	
	24		26	27		29	
	28		30	31		1	
							37

f. S-Box (Substitute, Shrink) Mylusiciv

- 48 bits $\rightarrow 32$ bits
- 48 bit is broken into eight 6-bit chunks.
. 6 bits are used to select a 4-bit substitution
- i.e., for every output, there are four inputs that map to it

2	f. Permutation				
- 32bits \rightarrow 32bits					
	16	7	20	21	
	29	12	28	17	
		15	23	26	
	5	18	31	10	
	2	8	24	14	
		27	3	9	
	19	13	30	6	
	22	11	4	25	
					40

2	Good Desig	Mutis

. "We don't know if
. the particular details were well-chosen for strength,

- whether someone flipped coins to construct the S-boxes,
- or whether the details were chosen to have a weakness that could be exploited by the designers."

Principles for S-Box Design Wivillive

. S-box is the only non-linear part of DES

- Each row in the S-Box table should be a permutation of the possible output values
- Output of one S-box should affect other Sboxes in the following round

DES Avalanche Effect: Example MmIAAM

. 2 plaintexts with 1 bit difference:
$0 x 0000000000000000$ and 0x8000000000000000 encrypted using the same key: 0x016B24621C181C32

- Resulting ciphertexts differ in 34 bits (out of 64)
- Similar results when keys differ by 1 bit
- Number of rounds should be large enough to make advanced attacks as expensive as exhaustive search for the key
- Roughly: a small change in either the plaintext or the key should produce a big change in the ciphertext
- Better: any output bit should be inverted

Better: any output bit should be inverted
(flipped) with probability 0.5 if any input bit is changed

- f function
- must be difficult to un-scramble
. should achieve avalanche effect
- output bits should be uncorrelated

Desirable Property: Avalanche Effect $\begin{gathered}\text { NIILAAM } \\ \text { MARY }\end{gathered}$

2 Example (cont'd) MINAMV

- An experiment: number of rounds vs. number of bits difference

DES: Keys to Avoid Using
 MULAAV

. "Weak keys": 4 keys with property

$$
\mathrm{K}\{\mathrm{~K}\{m\}\}=m
$$

. What's bad about that?

- These are keys which, after the first key permutation, are:
- 28 0's followed by 28 0's
- 28 0's followed by 28 1's
. 28 1's followed by 28 0's
. 28 1's followed by 28 1's
- 56 bits is currently too small to resist brute force attacks using readily-available hardware
- Ten years ago it took $\$ 250,000$ to build a machine that could crack DES in a few hours
. Now?

x^{2} More Keys to Avoid!

. "Semi-weak keys": pairs of keys with the property

$$
\mathrm{K}_{1}\left\{\mathrm{~K}_{2}\{m\}\right\}=m
$$

. What's bad about that?

- These are keys which, after the first key permutation, are:

1. 28 0's followed by alternating 0's and 1's
2. 280 's followed by alternating 1 's and 0 's
3. alternating 1 's and 0 's followed by alternating 1 's and 0's

4 Cryptanalysis of DES MILNM

- Differential cryptanalysis exploits differences between encryptions of two different plaintext blocks
- provides insight into possible key values
. DES well designed to defeat differential analysis
- Linear cryptanalysis requires known plaintext / ciphertext pairs, analyzes relationships to discover key value
- for DES, requires analyzing $\mathrm{O}\left(2^{47}\right)$ pairs
- No attacks on DES so far are significantly better than brute force attacks, for comparable cost

- Each plaintext block of 16 bytes is arranged as 4 columns of 4 bytes each

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}

a_{0}	a_{4}	a_{8}	a_{12}
a_{1}	a_{5}	a_{9}	a_{13}
a_{2}	a_{6}	a_{10}	a_{14}
a_{3}	a_{7}	a_{11}	a_{15}

(Padding necessary for messages not a multiple of 16 bytes)

AES Encryption/Decryption Mivitiv

Round Step 2. Rotate (Example) WIMAAM

Before Shift Rows
After Shift Rows

53	$C A$	70	$0 C$
$D 0$	$B 7$	$D 6$	$D C$
51	04	$F 8$	32
63	$B A$	68	79
$B 7$	$D 6$	$D C$	$D 0$
$F 8$	32	51	04
79	63	$B A$	68

Key Expansion Rationale Mulliviv

- Designed to resist known attacks
- Design criteria include
- knowing part of the key doesn't make it easy to find entire key
- key expansion must be invertible, but enough non-linearity to hinder analysis
- should be fast to compute, simple to describe and analyze
- key bits should be diffused into the round keys

AES-128 Decryption (Conceptual) ${ }^{\text {WHMLAAN }}$

- Run cipher in reverse, with inverse of each operation replacing the encryption operations
- Inverse operations:
. XOR is its own inverse
- inverse of S-box is just the inverse table (next slide)
. inverse of rotation in one direction is rotation in other direction
- inverse of MixColumn is just the inverse table (next slide +1)

Round Keys... (Cont'd) MHLAAM

68

73
\qquad

AES Decryption (Actual)
 MIUAAM

- Run cipher in forward direction, except...
- use inverse operations
- apply round keys in reverse order
- apply InvMixColumn to round keys K1..K9
- Decryption takes more memory and cycles encryption
. can only partially reuse hardware for encryption

AES Assessment Milt

- Speed: about 16 clock cycles/byte on modern 32-bit CPUs
- 200 MByte/s on a PC, no special hardware!
. No known successful attacks on full AES
. best attacks work on 7-9 rounds (out of 10-14 rounds)
- Clean design
- For brute force attacks, AES-128 will take $4^{*} 10^{21} \mathrm{X}\left(=2^{72}\right)$ more effort than DES

Se Summary Mill Mavy

- Secret key crypto is (a) good quality, (b) faster to compute than public key crypto, and (c) the most widely used crypto
- DES strong enough for non-critical applications, but triple-DES is better
- AES even better (stronger and much faster), has versions with 128-, 192-, and 256-bit keys
- Secret key crypto requires "out-of-band", bilateral key negotiation/agreement

