
CSCI 454/554 Computer and Network
Security

Topic 3.1 Secret Key Cryptography – Algorithms

Outline
■  Introductory Remarks
■  Feistel Cipher
■  DES
■  AES

2

Introduction

Secret Keys or Secret Algorithms ?

■  “Security by obscurity”
■  “hide” the details of the algorithms
■  drawback: hard to keep secret if cipher is used

widely, or implementation can be reverse
engineered

■  Alternative: publish the algorithms
■  fewer vulnerabilities will result if many smart

people try and fail to break the cipher
■  security of the cipher depends on the secrecy

of the keys, instead

4

Secrets? (Cont’d)
■  Commercial world relies upon

standardized, public algorithms, and secret
keys

■  Government tends to also rely on secret
algorithms

5

Secret Key Cryptography

■  Same key is used for both encryption and
decryption
■  this one key is shared by two parties who wish to

communicate securly

■  Also known as symmetric key cryptography, or
shared key cryptography

6

plaintext
Encryption

ciphertext
Decryption

plaintext

key

Applications of Secret Key Crypto

■  Communicating securely over an insecure
channel
■  Alice encrypts using shared key
■  Bob decrypts result using same shared

key
■  Secure storage on insecure media

■  Bob encrypts data before storage
■  Bob decrypts data on retrieval using the

same key

7

Applications… (Cont’d)
■  Message integrity

■  Alice computes a message integrity
code (MIC) from the message, then
encrypts with shared key

■  Bob decrypts the MIC on receipt, and
verifies that it agrees with message
contents

■  Authentication
–  Bob can verify Alice sent the message
■  how is that possible?

8

Generic Block Encryption

■  Converts one input plaintext block of
fixed size k bits to an output ciphertext
block also of k bits

■  Benefits of large k? of short k?

9

block 0

Encryption
key

block 1 block 2 …

block 0 block 1 block 2 …

plaintext

ciphertext

Key Sizes
■  Keys should be selected from a large potential

set, to prevent brute force attacks
■  Secret key sizes

■  40 bits were considered adequate in 70’s
■  56 bits used by DES were adequate in the 80’s
■  128 bits are adequate for now

■  If computers increase in power by 40% per year,
need roughly 5 more key bits per decade to stay
“sufficiently” hard to break

10

Notation
Notation Meaning

X ⊕ Y Bit-wise exclusive-or of X and Y

X | Y Concatenation of X and Y

K{m} Message m encrypted with secret key K

11

Two Principles for Cipher Design

■  Confusion:
■  Make the relationship between the

<plaintext, key> input and the
<ciphertext> output as complex (non-
linear) as possible

■  Diffusion:
■  Spread the influence of each input bit

across many output bits

12

Exploiting the Principles

■  Idea: use multiple, alternating permutations and
substitutions, e.g.,
■  S!P!S!P!S!…
■  P!S!P!S!P!…

■  Do they have to alternate? e.g….
■  S!S!S!P!P!P!S!S!…??

■  Confusion is mainly accomplished by
substitutions

■  Diffusion is mainly accomplished by permutations
■  Example ciphers: DES, AES

13

Secret Key… (Cont’d)
■  Basic technique used in secret key ciphers:

multiple applications of alternating
substitutions and permutations

14

plaintext S P S P S ciphertext …

key

…

Well-known examples: DES, AES

Basic Form of Modern Block Ciphers

15

Plaintext block Key

Preprocessing

Postprocessing

Ciphertext block

Rounds of
Encryption
i=1,2,…,n

Sub-Key Generation

Sub-Key #1
Sub-Key #2
Sub-Key #3

…
Sub-Key #n

Feistel Ciphers

16

Overview
■  Feistel Cipher has been a very influential

“template” for designing a block cipher
■  Major benefit: can do encryption and

decryption with the same hardware
■  Examples: DES, RC5

17

One “Round” of Feistel Encryption

1.  Break input block i
into left and right
halves Li and Ri

2.  Copy Ri to create
output half block Li+1

3.  Half block Ri and key
Ki are “scrambled” by
function f

4.  XOR result with input
half-block Li to create
output half-block Ri+1

18

Li Ri

Input block i

f
Ki

⊕

Li+1 Ri+1

Output block i+1

One “Round” of Feistel Decryption

■  Just reverse the
arrows!

19

Li Ri

Output block i+1

f
Ki

⊕

Li+1 Ri+1

Input block i

Complete Feistel Cipher: Encryption

20 Ciphertext (2w bits)

…

Ln Rn

Ln+1 Rn+1

note this
final swap!

f Round 1
K1

⊕

f

…

Round i

K2

L2 R2

⊕

f Round n
Kn

⊕

Plaintext (2w bits)
L0 R0

Feistel Cipher: Decryption

21

f

f

f

Ciphertext (2w bits)

Plaintext (2w bits)

…

…

Round 1

Round i

Round n

Kn

Kn-1

K1

L0 R0

L2 R2

Ln Rn

Ln+1 Rn+1

⊕

⊕

⊕
note this
final swap!

Parameters of a Feistel Cipher

■  Block size
■  Key size
■  Number of rounds
■  Subkey generation algorithm
■  “Scrambling” function f

22

Comments
■  Decryption is the same as encryption, only

reversing the order in which round keys
are applied
■  Reversability of Feistel cipher derives

from reversability of XOR
■  Function f can be anything

■  Hopefully something easy to compute
■  There is no need to invert f

23

DES (Data Encryption Standard)

24

DES (Data Encryption Standard)

■  Standardized in 1976 by NBS (now NIST)
■  proposed by IBM,
■  Feistel cipher

■  Criteria (official)
■  provide high level of security
■  security must reside in key, not algorithm
■  not patented
■  must be exportable
■  efficient to implement in hardware

25

DES… (Cont’d)
■  Criteria (unofficial)

■  must be slow to execute in software
■  must be breakable by NSA :-)

26

DES Basics

■  Blocks: 64 bit plaintext input,
64 bit ciphertext output

■  Rounds: 16
■  Key: 64 bits

■  every 8th bit is a parity bit, so really 56 bits long

27

DES Encryption
64 bit
plaintext
block

64 bit
ciphertext
block

56 bit key (+ 8 bits parity)

DES Top Level View

28

Swap Halves

Initial Permutation

64-bit Input

Final Permutation

64-bit Output

Round 1

Round 2

Round 16
…

Generate
round keys

48-bit K1

48-bit K2

48-bit K16

56-bit Key

Initial and Final Permutations

■  Initial permutation given below
■  input bit #58!output bit #1, input bit

#50! output bit #2, …

29

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Initial Permutation

Final Permutation

Swap Halves

Round 1

Round 2

Round 16

Generate
round keys

48-bit K1

48-bit K2

48-bit K16

64-bit Output

64-bit Input 56-bit Key

….
..

Initial… (Cont’d)

■  Final permutation is just inverse of
initial permutation, i.e.,
■  input bit #1! output bit #58
■  input bit #2! output bit #50
■  …

30

Initial Permutation

Final Permutation

Swap Halves

Round 1

Round 2

Round 16

Generate
round keys

48-bit K1

48-bit K2

48-bit K16

64-bit Output

64-bit Input 56-bit Key

….
..

Initial… (Cont’d)
■  Note #1: Initial Permutation is fully

specified (independent of key)
■  therefore, does not improve security!
■  why needed?

■  Note #2: Final Permutation is needed to
make this a Feistel cipher
■  i.e., can use same hardware for both

encryption and decryption

31

Key Generation: First Permutation

■  First step: throw out 8 parity
bits, then permute resulting 56
bits

32

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

7 columns

Initial Permutation

Final Permutation

Swap Halves

Round 1

Round 2

Round 16

Generate
round keys

48-bit K1

48-bit K2

48-bit K16

64-bit Output

64-bit Input 56-bit Key

….
..

Parity bits left out:
8,16,24,…

8
ro

w
s

KeyGen: Processing Per Round

33

Circular Left Shift Circular Left Shift

28 bits 28 bits C i-1 D i-1

28 bits 28 bits C i D i

Rounds i =
1,2,9,16:
 left circular
shift 1 bit
Other rounds:
 left circular
shift 2 bits

Permutation
with Discard

48 bit
Ki

KeyGen: Permutation with Discard

■  28 bits ! 24 bits, each half of key

34

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2

41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Left half of Ki = permutation of Ci

Right half of Ki = permutation of Di

Bits left out:
9,18,22,25

Bits left out:
35,38,43,54

One DES (Feistel) Round

35

Li Ri

Input block i

f Ki

⊕
Li+1 Ri+1

Output block i+1

Initial Permutation

Final Permutation

Swap Halves

Round 1

Round 2

Round 16

Generate
round keys

48-bit K1

48-bit K2

48-bit K16

64-bit Output

64-bit Input 56-bit Key

….
..

DES Round: f (Mangler) Function

36

Li Ri

Input block i

f Ki

⊕
Li+1 Ri+1

Output block i+1

Expansion

S-Box
(substitution)

Permutation

Ki

function f = “Mangler”
32-bit half block

48 bits

32-bit half block

f: Expansion Function

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

37

•  32 bits " 48 bits
these bits are repeated

f: S-Box (Substitute, Shrink)
■  48 bits " 32 bits

■  48 bit is broken into eight 6-bit chunks.
■  6 bits are used to select a 4-bit substitution
■  i.e., for every output, there are four inputs that map to it

38

2 bits
row

S i

for i = 1,…,8

I1
I2
I3
I4
I5
I6

O1
O2
O3
O4

4 bits
column

an integer between
0 and 15

f: S1 (Substitution)

39

Each row and column contain different numbers

for S2..S8 (and rest of S1), see the textbook

0 1 2 3 4 5 6 … F

0 E 4 D 1 2 F B

1 0 F 7 4 E 2 D

2 4 1 E 8 D 6 2

3 F C 8 2 4 9 1

Example: input= 100110, output= 1000

8

I1/I6 !

I2/I3/I4/I5 !

f: Permutation
■  32bits " 32bits

40

 16 7 20 21
29 12 28 17

 1 15 23 26
5 18 31 10

 2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

DES Implementation

■  That’s it!
■  Operations

■  Permutation
■  Swapping halves
■  Substitution (S-box, table lookup)
■  Bit discard
■  Bit replication
■  Circular shift
■  XOR

■  Hard to implement? HW: No, SW: Yes
41

DES Analysis

42

Good Design?
■  “We don’t know if

■  the particular details were well-chosen
for strength,

■  whether someone flipped coins to
construct the S-boxes,

■  or whether the details were chosen to
have a weakness that could be exploited
by the designers.”

43

Issues for Block Ciphers
■  Number of rounds should be large enough

to make advanced attacks as expensive as
exhaustive search for the key

44

Principles for S-Box Design
■  S-box is the only non-linear part of DES
■  Each row in the S-Box table should be a

permutation of the possible output values
■  Output of one S-box should affect other S-

boxes in the following round

45

Desirable Property: Avalanche Effect

■  Roughly: a small change in either the
plaintext or the key should produce a big
change in the ciphertext

■  Better: any output bit should be inverted
(flipped) with probability 0.5 if any input
bit is changed

■  f function
■  must be difficult to un-scramble
■  should achieve avalanche effect
■  output bits should be uncorrelated

46

DES Avalanche Effect: Example

■  2 plaintexts with 1 bit difference:
 0x0000000000000000 and
 0x8000000000000000
encrypted using the same key:
 0x016B24621C181C32

■  Resulting ciphertexts differ in 34 bits
(out of 64)

■  Similar results when keys differ by 1 bit

47

Example (cont’d)
■  An experiment: number of rounds vs.

number of bits difference

48

Round # 0 1 2 3 4 5 6 7 8

Bits
changed

1 6 21 35 39 34 32 31 29

9 10 11 12 13 14 15 16

42 44 32 30 30 26 29 34

DES: Keys to Avoid Using

■  “Weak keys”: 4 keys with property
 K{K{m}} = m

■  What’s bad about that?
■  These are keys which, after the first key

permutation, are:
■  28 0’s followed by 28 0’s
■  28 0’s followed by 28 1’s
■  28 1’s followed by 28 0’s
■  28 1’s followed by 28 1’s

49

More Keys to Avoid!

■  “Semi-weak keys”: pairs of keys with the
property
 K1{K2{m}} = m

■  What’s bad about that?
■  These are keys which, after the first key

permutation, are:
1.  28 0’s followed by alternating 0’s and 1’s
2.  28 0’s followed by alternating 1’s and 0’s
…
12.  alternating 1’s and 0’s followed by alternating 1’s and

0’s

50

DES Key Size
■  56 bits is currently too small to resist brute

force attacks using readily-available
hardware

■  Ten years ago it took $250,000 to build a
machine that could crack DES in a few
hours

■  Now?

51

Cryptanalysis of DES

■  Differential cryptanalysis exploits differences
between encryptions of two different plaintext
blocks
■  provides insight into possible key values
■  DES well designed to defeat differential analysis

■  Linear cryptanalysis requires known plaintext /
ciphertext pairs, analyzes relationships to
discover key value
■  for DES, requires analyzing O(247) pairs

■  No attacks on DES so far are significantly better
than brute force attacks, for comparable cost

52

AES (Advanced Encryption
Standard)

53

Overview
■  Selected from an open competition, organized by NSA

■  winner: Rijndael algorithm, standardized as AES
■  A short history:

http://www.moserware.com/2009/09/stick-figure-
guide-to-advanced.html

■  Some similarities to DES (rounds, round keys, alternate
permutation+substitution)
■  but not a Feistel cipher

■  Block size = 128 bits
■  Key sizes = 128, 192, or 256
■  Main criteria: secure, well justified, fast

54

AES-128 Overview

■  Q1: What
happens in
each round?

■  Q2: How are
round keys
generated?

55

128-bit Input

128-bit Output

Round 1

Round 10

…

Generate
round keys

128-bit K0

128-bit K1

128-bit K10

128-bit key

⊕

⊕

⊕

AES-128 State

■  Each plaintext block of 16 bytes is arranged as 4
columns of 4 bytes each

56

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

(Padding necessary for messages not a multiple
of 16 bytes)

One AES-128 Round

1.  Apply S-box function to each byte of the state
(i.e., 16 substitutions)

2.  Rotate…
■  (row 0 of state is unchanged)
■  row 1 of the state shifts left 1 column
■  row 2 of the state shifts left 2 columns
■  row 3 of the state shifts left 3 columns

3.  Apply MixColumn function to each column of
state
■  last round omits this step

57

AES Encryption/Decryption

58

Round Step 1. AES S-Box
■  Each byte of state is replaced by a value from following table

■  eg. byte with value 0x95 is replaced by byte in
row 9 column 5, which has value 0x2A

59

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 1 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 4 c7 23 c3 18 96 5 9a 7 12 80 e2 eb 27 b2 75
4 9 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 0 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 2 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 6 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 8
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 3 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Y

X

S-Box (Cont’d)

60

The S-Box is what makes AES a non-linear
cipher

For every value of b there is a unique value for b’
-  It is faster to use a substitution table (and easier).

x = b-1 in GF(28), i.e., x is the inverse of byte b

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

1
1
0
0
0
1
1
0

x0
x1
x2
x3
x4
x5
x6
x7

+ =

b'0
b'1
b'2
b'3
b'4
b'5
b'6
b'7

S-Box Example
■  The S-Box is what makes AES a non-linear cipher

61

50 10 D0 81
60 20 4A 93
70 30 E1 A1
00 C0 F7 AF

Sbox(50) Sbox(10) Sbox(D0) Sbox(81)
Sbox(60) Sbox(20) Sbox(4A) Sbox(93)
Sbox(70) Sbox(30) Sbox(E1) Sbox(A1)
Sbox(00) Sbox(C0) Sbox(F7) Sbox(AF)

53 CA 70 0C
D0 B7 D6 DC
51 04 F8 32
63 BA 68 79

State

After SubBytes

Round Step 2. Rotate (Example)

62

Before Shift Rows After Shift Rows

53 CA 70 0C

D0 B7 D6 DC

51 04 F8 32

63 BA 68 79

53 CA 70 0C

B7 D6 DC D0

F8 32 51 04

79 63 BA 68

Round Step 3. MixColumn Function

■  Applied to each column of the state
■  For each column, each byte ai…ai+3 of the

column is used to look up four 4-byte
intermediate columns ti…ti+3 from a table
(next slide)

■  The intermediate columns ti…ti+3 are then
combined (next slide + 1):
■  rotate vertically so top octet of ti is in

the same row as input octet (ai)
■  XOR the four rotated columns together

63

MixColumn… (Cont’d)
■  Part of the MixColumn table:

64

right (low-order) nibble (4 bits)
le

ft
(h

ig
h-

or
de

r)
 n

ib
bl

e
(4

 b
its

)

MixColumn… (Cont’d)
■  Example

65

Generating Round Keys in AES-128

66

The key (16 bytes) is arranged in 4 columns of 4 rows, as
for the input (plaintext) block)

Deriving the round keys
makes use of a table
of constants:

Removes symmetry and
linearity from
key expansion

Round i Constant ci
1 0x01

2 0x02

3 0x04

4 0x08

5 0x10

6 0x20

7 0x40

8 0x80

9 0x1b

10 0x36

Round Keys… (Cont’d)

For ith round of keys, i = 1..10

67

for column index j = 0
 temp = column 3 of
 (i-1)th (previous) round
 rotate temp upward one byte
 S-Box transform each byte
 of temp
 XOR first byte of temp with ci

for column index j = 1..3
 temp = column j-1 of ith (this) round

0 1 2 3 0 1 2 3

S

!

ci

result = temp XOR jth column of key round i-1

Round Keys… (Cont’d)

68

Key Expansion Rationale

■  Designed to resist known attacks
■  Design criteria include

■  knowing part of the key doesn’t make it
easy to find entire key

■  key expansion must be invertible, but
enough non-linearity to hinder analysis

■  should be fast to compute, simple to
describe and analyze

■  key bits should be diffused into the
round keys

69

Mathematics

70

AES Operates on the binary field GF(28)
-  this can be represented as a polynomial b(x) with

binary coefficients b {0,1}:

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0

Multiplication in GF(28) consists of multiplying
two polynomials modulo an irreducible
polynomial of degree 8
-  AES uses the following irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1

€

∈

AES-128 Decryption (Conceptual)

■  Run cipher in reverse, with inverse of each
operation replacing the encryption operations

■  Inverse operations:
■  XOR is its own inverse
■  inverse of S-box is just the inverse table

(next slide)
■  inverse of rotation in one direction is rotation

in other direction
■  inverse of MixColumn is just the inverse table

(next slide + 1)

71

Inverse S-Box

72

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 52 9 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 8 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 0 8c bc d3 0a f7 e4 58 5 b8 b3 45 6
7 d0 2c 1e 8f ca 3f 0f 2 c1 af bd 3 1 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 7 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 4 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

X

Y

InvMixColumn

73

right (low-order) nibble (4 bits)

le
ft

(h
ig

h-
or

de
r)

 n
ib

bl
e

(4
 b

its
)

AES Decryption (Actual)
■  Run cipher in forward direction, except…

■  use inverse operations
■  apply round keys in reverse order
■  apply InvMixColumn to round keys

K1..K9
■  Decryption takes more memory and cycles

encryption
■  can only partially reuse hardware for

encryption

74

AES Assessment
■  Speed: about 16 clock cycles/byte on

modern 32-bit CPUs
■  200 MByte/s on a PC, no special

hardware!
■  No known successful attacks on full AES

■  best attacks work on 7-9 rounds (out of
10-14 rounds)

■  Clean design
■  For brute force attacks, AES-128 will take

 4*1021 X (= 272) more effort than DES
75

Attacks on AES

76

Differential Cryptanalysis: based on how
differences in inputs correlate with
differences in outputs
-  greatly reduced due to high number of rounds

Linear Cryptanalysis: based on correlations
between input and output
-  S-Box & MixColumns are designed to frustrate

Linear Analysis

Side Channel Attacks: based on peculiarities of
the implementation of the cipher

Side Channel Attacks

77

Timing Attacks: measure the time it takes to
do operations
-  some operations, with some operands, are much

faster than other operations, with other operand
values
-  provides clues about what internal operations are

being performed, and what internal data values
are being produced

Power Attacks: measures power to do
operations
-  changing one bit requires considerably less power

than changing many bits in a byte

Summary
■  Secret key crypto is (a) good quality, (b) faster

to compute than public key crypto, and (c) the
most widely used crypto

■  DES strong enough for non-critical applications,
but triple-DES is better

■  AES even better (stronger and much faster), has
versions with 128-, 192-, and 256-bit keys

■  Secret key crypto requires “out-of-band”,
bilateral key negotiation/agreement

78

