CSCI 454/554 Computer and Network Security

Topic 3.2 Secret Key Cryptography - Modes of
Operation

Processing with Block Ciphers $\begin{gathered}\text { WILILAM } \\ \mathbb{E N A L R Y}\end{gathered}$

- Most ciphers work on blocks of fixed (small) size
- How to encrypt long messages?
- Modes of operation
. ECB (Electronic Code Book)
- CBC (Cipher Block Chaining)
- OFB (Output Feedback)
- CFB (Cipher Feedback)
- CTR (Counter)

Issues for Block Chaining Modes $\begin{gathered}\text { KILLAAM } \\ \text { MARY }\end{gathered}$

- Information leakage
- Does it reveal info about the plaintext blocks?
- Ciphertext manipulation
- Can an attacker modify ciphertext block(s) in a way that will produce a predictable/desired change in the decrypted plaintext block(s)?
. Note: assume the structure of the plaintext is known, e.g., first block is employee \#1 salary, second block is employee \#2 salary, etc.

Issues... (Cont'd)

- Parallel/Sequential
- Can blocks of plaintext (ciphertext) be encrypted (decrypted) in parallel?
- Error propagation
- If there is an error in a plaintext (ciphertext) block, will there be an encryption (decryption) error in more than one ciphertext (plaintext) block?

Electronic Code Book (ECB) willivy

- The easiest mode of operation; each block is independently encrypted

ECB Decryption

- Each block is independently decrypted

ECB Properties

- Does information leak?
- Can ciphertext be manipulated profitably?
- Parallel processing possible?
- Do ciphertext errors propagate?

Cipher Block Chaining (CBC) MyHAMV

- Chaining dependency: each ciphertext block depends on all preceding plaintext blocks

Initialization Vectors

- Initialization Vector (IV)
- Used along with the key; not secret
- For a given plaintext, changing either the key, or the IV, will produce a different ciphertext
- Why is that useful?
- IV generation and sharing
- Random; may transmit with the ciphertext
. Incremental; predictable by receivers

CBC Decryption

- How many ciphertext blocks does each plaintext block depend on?

CBC Properties

- Does information leak?
- Identical plaintext blocks will produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
- ???
- Parallel processing possible?
- no (encryption), yes (decryption)
- Do ciphertext errors propagate?
- yes (encryption), a little (decryption)

Output Feedback Mode (OFB) $\begin{gathered}\text { whellavy }\end{gathered}$

Initialization

OFB Decryption

No block decryption required!

OFB Properties

- Does information leak?
- identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
- ???
- Parallel processing possible?
- no (generating pad), yes (XORing with blocks)
- Do ciphertext errors propagate?
- ???

OFB ... (Cont'd)

- If you know one plaintext/ciphertext pair, can easily derive the one-time pad that was used
. i.e., should not reuse a one-time pad!
- Conclusion: IV must be different every time

Cipher Feedback Mode (CFB) wHikive

- Ciphertext block C_{j} depends on all preceding plaintext blocks

CFB Decryption

- No block decryption required!

CFB Properties

- Does information leak?
- Identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
- ???
- Parallel processing possible?
- no (encryption), yes (decryption)
- Do ciphertext errors propagate?
. ???

CTR Mode Properties

- Does information leak?
- Identical plaintext block produce different ciphertext blocks
- Can ciphertext be manipulated profitably
- ???
- Parallel processing possible
- Yes (both generating pad and XORing)
- Do ciphertext errors propagate?
- ???
- Allow decryption the ciphertext at any location
- Ideal for random access to ciphertext

CSCI 454/554 Computer and Network Security

Topic 3.3 Secret Key Cryptography - Triple DES

Stronger DES

- Major limitation of DES
- Key length is too short
- Can we apply DES multiple times to increase the strength of encryption?

\section*{Double Encryption with DES | WIGLANM |
| :---: |
| MARY |}

- Encrypt the plaintext twice, using two different DES keys
- Total key material increases to 112 bits
. is that the same as key strength of 112 bits?

Concerns About Double DES 뻰AMV

- Wasn't clear at the time if DES was a group
(it's not)
. If it were, then $E_{k 2}\left(E_{k 1}(P)\right) \equiv E_{k 3}(P)$, for all P
. Not good?
- Possible attack (better than brute force): meet-in-the-middle
. A known-plaintext attack

The Meet-in-the-Middle Attack $\begin{gathered}\text { WILIAMM } \\ \text { URTX }\end{gathered}$

1. Choose a plaintext P and generate ciphertext C, using double-DES with $\mathcal{K} 1+\mathcal{K} 2$
2. Then...
a. encrypt P using single-DES for all possible 2^{56} values K_{1} to generate all possible single-DES ciphertexts for P: $X_{1}, X_{2}, \ldots, X_{2} 56$;
store these in a table indexed by ciphertex values
b. decrypt C using single-DES for all possible 2^{56} values K_{2} to generate all possible single-DES plaintexts for C: $Y_{1}, Y_{2}, \ldots, Y_{2} 56$;
for each value, check the table
3. Meet-in-the-middle:

- each match $\left(X_{i}=Y_{j}\right)$ reveals a candidate keypair $K_{i}+K_{j}$
- there should be approx. $\left(2^{112} / 2^{64}\right)=2^{48}$ such pairs for one value of (P, C)
- $\quad 2^{112}$ possible keys, but there are only $2^{64} \mathrm{X}$'s

4. Repeat the above, for a second plaintext/ ciphertext pair ($\mathrm{P}^{\prime}, \mathrm{C}^{\prime}$), and find those 2^{48} candidate keypairs $\mathrm{K}_{\mathrm{i}}^{\prime}+\mathrm{K}_{\mathrm{i}}^{\prime}$
Why 2^{48} (another view)?
-The table contains only $2^{56} / 2^{64}=1 / 2^{8}$ of all possible 64 -bit values
-there are 2^{56} entries X_{i}
-for each X_{i}, there is only $1 / 2^{8}$ chance there is a matching Y_{i}

Steps ... (Cont'd)

5. Look for an identical candidate keypair that produces collisions for both (P, C) and ($\mathrm{P}^{\prime}, \mathrm{C}^{\prime}$)

- the probability the same candidate keypair occurs for both plaintexts, but is not the keypair used in the double-DES encryption: $2^{48} / 2^{64}=2^{-16}$
- An expensive attack (computation + storage)
- still, enough of a threat to discourage use of doubleDES

```
Why 2-16?
    -there are about 248 candidate keypairs }\mp@subsup{\textrm{K}}{\textrm{i}}{+}+\mp@subsup{\textrm{K}}{\textrm{j}}{
    -at most one is }\mathcal{K}1+\mathcal{K}2\mathrm{ , the rest are imposters
    -if K}\mp@subsup{K}{i}{}+\mp@subsup{K}{j}{}\mathrm{ is an imposter, the probability using }\mp@subsup{K}{i}{}+\mp@subsup{K}{j}{}\mathrm{ that }E(\mp@subsup{P}{}{\prime})=D(\mp@subsup{C}{}{\prime})\mathrm{ is 1/264
```


Triple Encryption (Triple DES-EDE

Encryption

Decryption

- Why not E-E-E?
- again, wasn't clear if DES was a group
- Apply DES encryption/decryption three times
- why not 3 different keys?
- why not the same key 3 times?

Triple DES (Cont'd)

- Widely used
- equivalent strength to using a 112 bit key
- strength about 2^{110} against M-I-T-M attack
- However: inefficient / expensive to compute
- one third as fast as DES on the same platform, and DES is already designed to be slow in software
- Next question: how is block chaining used with triple-DES?

3DES-EDE: Outside Chaining Modeviliav

- What basic chaining mode is this?

3DES-EDE: OCM Decryption

OCM Properties

- Does information leak?
- identical plaintext blocks produce different ciphertext blocks
- Can ciphertext be manipulated profitably?
. ???
- Parallel processing possible?
- no (encryption), yes (decryption)
- Do ciphertext errors propagate?
- ???

3DES-EDE: Inside Chaining Mode $\frac{\text { Willan }}{\text { WIMARY }}$

3DES-EDE: ICM Decryption

3DES-EEE: Inside Chaining Mode WHUAM

3-DES EEE: ICM Decryption
WILLIAM E®MARY

CSCI 454/554 Computer and Network Security

Topic 3.4 Secret Key Cryptography - MAC with Secret Key Ciphers

Message Authentication

- Encryption easily provides confidentiality of messages
- only the party sharing the key (the "key partner") can decrypt the ciphertext
- How to use encryption to authenticate messages? That is,
- prove the message was created by the key partner
- prove the message wasn't modified by someone other than the key partner

Approach \#1

- The quick and dirty approach
- If the decrypted plaintext "looks plausible", then conclude ciphertext was produced by the key partner
- i.e., illegally modified ciphertext, or ciphertext encrypted with the wrong key, will probably decrypt to randomlooking data
. But, is it easy to verify data is "plausiblelooking"? What if all data is plausible?

Approach \#2: Plaintext+Ciphertext

- Send plaintext and ciphertext
- receiver encrypts plaintext, and compares result with received ciphertext
- forgeries / modifications easily detected
. any problems / drawbacks?

- Encrypt plaintext using DES CBC mode, with IV set to zero
. the last (final) ciphertext output block is called the residue

Approach \#3... (Cont'd)

- Transmit the plaintext and this residue
. receiver computes same residue, compares to the received residue
- forgeries / modifications highly likely to be detected

Message Authentication Codesewllaty

- MAC: a small fixed-size block (i.e., independent of message size) generated from a message using secret key cryptography
- also known as cryptographic checksum

Requirements for MAC

1. Given M and $M A C(M)$, it should be computationally infeasible (expensive) to construct (or find) another message M^{\prime} such that MAC(M') = MAC(M)
2. $\operatorname{MAC}(M)$ should be uniformly distributed in terms of M

- for randomly chosen messages M and M^{\prime}, $\mathrm{P}\left(\mathrm{MAC}(\mathrm{M})=\mathrm{MAC}\left(\mathrm{M}^{\prime}\right)\right)=2^{-k}$, where k is the number of bits in the MAC

Requirements ... (cont'd) ${ }^{\text {MILIAMM }}$

3. Knowing MAC(M1), MAC(M2), . . . of some (known or chosen) messages M1, M2, . . ., it should be computationally infeasible for an attacker to find the MAC of some other message M^{\prime}

Crypto for Confidentiality AND Authenticity? WIMLAMM

- So far we've got
. confidentiality (encryption), or...
. authenticity (MACs)
. Can we get both at the same time with one cryptographic operation?

Attempt \#1

1. Sender computes an error-correcting code or Frame-Check Sequence (FCS) F(P) of the plaintext P
2. Sender concatenates P and $F(P)$ and encrypts

- i.e., $C=E_{K}(P \mid F(P))$

3. Receiver decrypts received ciphertext C^{\prime} using K, to get $P^{\prime} \mid F^{\prime}$
4. Receiver computes $F\left(P^{\prime}\right)$ and compares to F^{\prime} to authenticate received message $\mathrm{P}^{\prime}=\mathrm{P}$

- How does this authenticate P?

Attempt \#1... (Cont'd)

- The order (1) FCS, then (2) encryption is critical - why not (2), then (1)?
- "Subtle weaknesses" known in this approach, so not preferred

Attempt \#2

1. Compute residue (MAC) using key K1
2. Encrypt plaintext message M using key K2 to produce C
3. Transmit MAC | C to receiver
4. Receiver decrypts received C^{\prime} with K 2 to get P^{\prime}
5. Receiver computes $\mathrm{MAC}\left(\mathrm{P}^{\prime}\right)$ using K 1 , compares to received MAC'

Attempt \#2... (cont’d)

- Good (cryptographic) quality, but...
- Expensive! Two separate, full encryptions with different keys are required

Summary

1. ECB mode is not secure

- CBC most commonly used mode of operation

2. Triple-DES (with 2 keys) is much stronger than DES

- usually uses EDE in Outer Chaining Mode

MACs use crypto to authenticate messages at a small cost of additional storage / bandwidth

- but at a high computational cost

