
CSCI 454/554 Computer and Network
Security

Topic 3.2 Secret Key Cryptography – Modes of
Operation

Processing with Block Ciphers

■  Most ciphers work on blocks of fixed
(small) size

■  How to encrypt long messages?
■  Modes of operation

■  ECB (Electronic Code Book)
■  CBC (Cipher Block Chaining)
■  OFB (Output Feedback)
■  CFB (Cipher Feedback)
■  CTR (Counter)

2

Issues for Block Chaining Modes

■  Information leakage
■  Does it reveal info about the plaintext blocks?

■  Ciphertext manipulation
■  Can an attacker modify ciphertext block(s) in a

way that will produce a predictable/desired
change in the decrypted plaintext block(s)?

■  Note: assume the structure of the plaintext is
known, e.g., first block is employee #1 salary,
second block is employee #2 salary, etc.

3

Issues… (Cont’d)
■  Parallel/Sequential

■  Can blocks of plaintext (ciphertext) be
encrypted (decrypted) in parallel?

■  Error propagation
■  If there is an error in a plaintext

(ciphertext) block, will there be an
encryption (decryption) error in more
than one ciphertext (plaintext) block?

4

Electronic Code Book (ECB)

■  The easiest mode of operation; each block is
independently encrypted

5

E E E E
Key

64

M1 M2 M3 M4

64 46 +
padding

64

Plaintext ⇒

C1 C2 C3 C4

64 64 64 64

Ciphertext ⇒

ECB Decryption

■  Each block is independently decrypted

6

D D D D

C1 C2 C3 C4

 M1 M2 M3 M4

Key

64 64 64 64

64 64 46 +
padding

64

ECB Properties

■  Does information leak?
■  Can ciphertext be manipulated profitably?
■  Parallel processing possible?
■  Do ciphertext errors propagate?

7

D D D D

M1 M4 M3 M2

Key

64 64 64 64

64 64 46 +
padding

64

C1 C4 C3 C2 C1 C2 C3 C4

M1 M2 M3 M4

Cipher Block Chaining (CBC)

■  Chaining dependency: each ciphertext block depends on all
preceding plaintext blocks

8

Initialization
Vector

E E E E
Key

C1 C2 C3 C4

64 64 64 64

M1 M2 M3 M4

64 64 46 +
padding

64

Initialization Vectors
■  Initialization Vector (IV)

■  Used along with the key; not secret
■  For a given plaintext, changing either

the key, or the IV, will produce a
different ciphertext

■  Why is that useful?
■  IV generation and sharing

■  Random; may transmit with the
ciphertext

■  Incremental; predictable by receivers
9

CBC Decryption

■  How many ciphertext blocks does each
plaintext block depend on?

10

D

C1 C2 C3 C4

M1 M2 M3 M4

Initialization
Vector

D D D
Key

64 64 64 64

64 64 46 +
padding

64

CBC Properties

■  Does information leak?
■  Identical plaintext blocks will produce

different ciphertext blocks
■  Can ciphertext be manipulated profitably?

■  ???
■  Parallel processing possible?

■  no (encryption), yes (decryption)
■  Do ciphertext errors propagate?

■  yes (encryption), a little (decryption)
11

Output Feedback Mode (OFB)

12

E

Initialization
Vector

E E E
Key

64

one-time pad

C1 C2 C3 C4

64 64 64 64

64 64 46 + padding 64

M1 M2 M3 M4

Pseudo-Random Number Generator

OFB Decryption

13

one-time pad

E

IV

E E E
Key

64

C1 C2 C3 C4

64 64 64 64

M1 M2 M3 M4
64 64 46 + padding 64

No block decryption required!

OFB Properties

■  Does information leak?
■  identical plaintext blocks produce different

ciphertext blocks
■  Can ciphertext be manipulated profitably?

■  ???
■  Parallel processing possible?

■  no (generating pad), yes (XORing with blocks)
■  Do ciphertext errors propagate?

■  ???

14

OFB … (Cont’d)

■  If you know one plaintext/ciphertext pair,
can easily derive the one-time pad that
was used
■  i.e., should not reuse a one-time pad!

■  Conclusion: IV must be different every
time

15

Cipher Feedback Mode (CFB)

■  Ciphertext block Cj depends on all preceding plaintext
blocks

16

E

C1 C2 C3 C4

IV

E E E
Key

64

M1 M2 M3 M4
64 64 46 + padding 64

64 64 64 64

64 64 64 64

CFB Decryption

■  No block decryption required!
17

E

C1 C2 C3 C4

M1 M2 M3 M4

IV

E E E
Key

64

64 64 64 46 + padding

64 64 64 64

64 64 64 64

CFB Properties
■  Does information leak?

■  Identical plaintext blocks produce
different ciphertext blocks

■  Can ciphertext be manipulated profitably?
■  ???

■  Parallel processing possible?
■  no (encryption), yes (decryption)

■  Do ciphertext errors propagate?
■  ???

18

Counter Mode (CTR)

19

E

IV

E E
Key

64

C1 C2 C3

64 64 64

64 64 64

M1 M2 M3

IV++ IV++

CTR Mode Properties
■  Does information leak?

■  Identical plaintext block produce different ciphertext
blocks

■  Can ciphertext be manipulated profitably
■  ???

■  Parallel processing possible
■  Yes (both generating pad and XORing)

■  Do ciphertext errors propagate?
■  ???

■  Allow decryption the ciphertext at any location
■  Ideal for random access to ciphertext

20

CSCI 454/554 Computer and Network
Security

Topic 3.3 Secret Key Cryptography – Triple DES

Stronger DES

■  Major limitation of DES
■  Key length is too short

■  Can we apply DES multiple times to
increase the strength of encryption?

22

Double Encryption with DES

■  Encrypt the plaintext twice, using two different
DES keys

■  Total key material increases to 112 bits
■  is that the same as key strength of 112 bits?

23

E E P X
C

D D P X
C

K1 K2

Encryption

Decryption Observation:
X=EK1{P}=DK2{C}

Concerns About Double DES

■  Wasn’t clear at the time if DES was a
group
(it’s not)
■  If it were, then Ek2(Ek1(P)) ≡ Ek3(P), for

all P
■  Not good?

■  Possible attack (better than brute force):
meet-in-the-middle
■  A known-plaintext attack

24

The Meet-in-the-Middle Attack

1.  Choose a plaintext P and generate ciphertext C,
using double-DES with K1+K2

2.  Then…
a.  encrypt P using single-DES for all possible 256 values

K1 to generate all possible single-DES ciphertexts for
P: X1,X2,…,X256 ;
store these in a table indexed by ciphertex values

b.  decrypt C using single-DES for all possible 256 values
K2 to generate all possible single-DES plaintexts for
C: Y1,Y2,…,Y256 ;
for each value, check the table

25

Steps … (Cont’d)

3.  Meet-in-the-middle:
■  each match (Xi = Yj) reveals a candidate keypair Ki+Kj
■  there should be approx. (2112 / 264) = 248 such pairs

for one value of (P,C)
■  2112 possible keys, but there are only 264 X’s

4.  Repeat the above, for a second plaintext/
ciphertext pair (P’,C’), and find those 248
candidate keypairs Ki’+Kj’

26

Why 248 (another view)?
- The table contains only 256/264 = 1/28 of all possible 64-bit values
- there are 256 entries Xi
- for each Xi, there is only 1/28 chance there is a matching Yi

Steps … (Cont’d)

5.  Look for an identical candidate keypair that
produces collisions for both (P,C) and (P’,C’)
■  the probability the same candidate keypair occurs for

both plaintexts, but is not the keypair used in the
double-DES encryption: 248 / 264 = 2-16

■  An expensive attack (computation + storage)
■  still, enough of a threat to discourage use of double-

DES

27

Why 2-16?
- there are about 248 candidate keypairs Ki+Kj
- at most one is K1+K2, the rest are imposters
- if Ki+Kj is an imposter, the probability using Ki+Kj that E(P’) = D(C’) is 1/264

Triple Encryption (Triple DES-EDE)

■  Why not E-E-E?
■  again, wasn’t clear if DES was a group

■  Apply DES encryption/decryption three times
■  why not 3 different keys?
■  why not the same key 3 times?

28

E D P C

D E P C

K1 K2

Encryption

Decryption

E

D

K1

Triple DES (Cont’d)

■  Widely used
■  equivalent strength to using a 112 bit key
■  strength about 2110 against M-I-T-M attack

■  However: inefficient / expensive to compute
■  one third as fast as DES on the same platform, and

DES is already designed to be slow in software

■  Next question: how is block chaining used with
triple-DES?

29

3DES-EDE: Outside Chaining Mode

■  What basic chaining mode is this?
30

E

C1 C2 C3 C4

M1 M2 M3 M4

IV

K1 64
E E E

D D D D

E E E E

K2

K1

3DES-EDE: OCM Decryption

31

D

C1 C2 C3 C4

M1 M2 M3 M4

IV

K1 64
D D D

E E E E

D D D D

K2

K1

OCM Properties
■  Does information leak?

■  identical plaintext blocks produce
different ciphertext blocks

■  Can ciphertext be manipulated profitably?
■  ???

■  Parallel processing possible?
■  no (encryption), yes (decryption)

■  Do ciphertext errors propagate?
■  ???

32

3DES-EDE: Inside Chaining Mode

33
C1 C2 C3 C4

M1 M2 M3 M4

IV

K1 64
E

D

E

E

D

E

E

D

E

E

D

E

K2

K1

00…00

3DES-EDE: ICM Decryption

34
C1 C2 C3 C4

M1 M2 M3 M4

IV

K1 64
D

E

D

D

E

D

D

E

D

D

E

D

K2

K1

00…00

3DES-EEE: Inside Chaining Mode

35

C1 C2 C3 C4

M1 M2 M3 M4

K2

IV

K1 64
E E E E

E

E

E

E

E

E

E

E K1

00…00

00…00

3-DES EEE: ICM Decryption

36

C1 C2 C3 C4

M1 M2 M3 M4

K2

IV

K1 64
D D D D

D

D

D

D

D

D

D

D K1

00…00

00…00

CSCI 454/554 Computer and Network
Security

Topic 3.4 Secret Key Cryptography – MAC with
Secret Key Ciphers

Message Authentication

■  Encryption easily provides confidentiality
of messages
■  only the party sharing the key (the “key

partner”) can decrypt the ciphertext
■  How to use encryption to authenticate

messages? That is,
■  prove the message was created by the

key partner
■  prove the message wasn’t modified by

someone other than the key partner
38

Approach #1

■  The quick and dirty approach
■  If the decrypted plaintext “looks

plausible”, then conclude ciphertext was
produced by the key partner
■  i.e., illegally modified ciphertext, or

ciphertext encrypted with the wrong
key, will probably decrypt to random-
looking data

■  But, is it easy to verify data is “plausible-
looking”? What if all data is plausible?

39

Approach #2: Plaintext+Ciphertext

■  Send plaintext and ciphertext
■  receiver encrypts plaintext, and

compares result with received ciphertext
■  forgeries / modifications easily detected
■  any problems / drawbacks?

40

C

E

K

Sender

K
Compare

Receiver

E P

C

P

C Accept
/Reject

Approach #3: Use Residue
■  Encrypt plaintext using DES CBC mode, with IV

set to zero
■  the last (final) ciphertext output block is called the

residue

41

E

C1 C2 C3

M1 M2 M3 M4

IV = 00…0

E E E Key

64 64 padding 64

64 64 64 64
RESIDUE

Approach #3… (Cont’d)

■  Transmit the plaintext and this residue
■  receiver computes same residue,

compares to the received residue
■  forgeries / modifications highly likely to

be detected
42

E

K

Sender

K
Compare

Receiver

E P

Residue
only

Residue
only

P

Message Authentication Codes

■  MAC: a small fixed-size block (i.e.,
independent of message size) generated
from a message using secret key
cryptography
■  also known as cryptographic checksum

43

Requirements for MAC

1.  Given M and MAC(M), it should be
computationally infeasible (expensive) to
construct (or find) another message M’
such that MAC(M’) = MAC(M)

2.  MAC(M) should be uniformly distributed
in terms of M
■  for randomly chosen messages M and

M’,
P(MAC(M)=MAC(M’)) = 2-k, where k is
the number of bits in the MAC

44

Requirements … (cont’d)

3.  Knowing MAC(M1), MAC(M2), . . . of
some (known or chosen) messages M1,
M2, . . ., it should be computationally
infeasible for an attacker to find the MAC
of some other message M’

45

Crypto for Confidentiality AND Authenticity?

■  So far we’ve got
■  confidentiality (encryption),
or…
■  authenticity (MACs)

■  Can we get both at the same time with one
cryptographic operation?

46

Attempt #1

1.  Sender computes an error-correcting code or
Frame-Check Sequence (FCS) F(P) of the
plaintext P

2.  Sender concatenates P and F(P) and encrypts
•  i.e., C = EK(P | F(P))

3.  Receiver decrypts received ciphertext C’ using
K, to get P’|F’

4.  Receiver computes F(P’) and compares to F’ to
authenticate received message P’ = P

■  How does this authenticate P?

47

Attempt #1… (Cont’d)

■  The order (1) FCS, then (2) encryption is critical
■  why not (2), then (1)?

■  “Subtle weaknesses” known in this approach, so
not preferred

48

K Sender

K
Compare

Receiver

D P K{P|F(P)} E

FCS

F(P)

P|F(P)
FCS

F(P’)

P’

F’
Concatenate

Attempt #2
1.  Compute residue (MAC) using key K1
2.  Encrypt plaintext message M using key K2

to produce C
3.  Transmit MAC | C to receiver
4.  Receiver decrypts received C’ with K2 to

get P’
5.  Receiver computes MAC(P’) using K1,

compares to received MAC’

49

Attempt #2… (cont’d)

■  Good (cryptographic) quality, but…
■  Expensive! Two separate, full encryptions

with different keys are required
50

K2 Sender K2

Compare

Receiver

D P E

E Residue
only

C
E

Residue
only

P’

K1

K1

MAC’

Summary
1.  ECB mode is not secure

■  CBC most commonly used mode of
operation

2.  Triple-DES (with 2 keys) is much stronger than
DES

■  usually uses EDE in Outer Chaining Mode
3.  MACs use crypto to authenticate messages at

a small cost of additional storage / bandwidth
■  but at a high computational cost

51

