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Topic 3.2 Secret Key Cryptography – Modes of 
Operation 

Processing with Block Ciphers 

■  Most ciphers work on blocks of fixed 
(small) size 

■  How to encrypt long messages? 
■  Modes of operation 

■  ECB (Electronic Code Book) 
■  CBC (Cipher Block Chaining) 
■  OFB (Output Feedback) 
■  CFB (Cipher Feedback) 
■  CTR (Counter) 
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Issues for Block Chaining Modes 

■  Information leakage 
■  Does it reveal info about the plaintext blocks? 

■  Ciphertext manipulation 
■  Can an attacker modify ciphertext block(s) in a 

way that will produce a predictable/desired 
change in the decrypted plaintext block(s)? 

■  Note: assume the structure of the plaintext is 
known, e.g., first block is employee #1 salary, 
second block is employee #2 salary, etc. 
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Issues… (Cont’d) 
■  Parallel/Sequential 

■  Can blocks of plaintext (ciphertext) be 
encrypted (decrypted) in parallel? 

■  Error propagation 
■  If there is an error in a plaintext 

(ciphertext) block, will there be an 
encryption (decryption) error in more 
than one ciphertext (plaintext) block?  
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Electronic Code Book (ECB) 

■  The easiest mode of operation; each block is 
independently encrypted 

5 

E E E E 
Key 

64 

M1   M2   M3   M4 

64 46 +  
padding 

64 

Plaintext ⇒  

C1            C2            C3            C4 

64 64 64 64 

Ciphertext ⇒  

ECB Decryption 

■  Each block is independently decrypted 
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ECB Properties 

■  Does information leak? 
■  Can ciphertext be manipulated profitably? 
■  Parallel processing possible? 
■  Do ciphertext errors propagate? 
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Cipher Block Chaining (CBC) 

■  Chaining dependency: each ciphertext block depends on all 
preceding plaintext blocks 
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Initialization Vectors 
■  Initialization Vector (IV)  

■  Used along with the key; not secret 
■  For a given plaintext, changing either 

the key, or the IV, will produce a 
different ciphertext 

■  Why is that useful? 
■  IV generation and sharing 

■  Random; may transmit with the 
ciphertext 

■  Incremental; predictable by receivers 
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CBC Decryption 

■  How many ciphertext blocks does each 
plaintext block depend on? 
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CBC Properties 

■  Does information leak? 
■  Identical plaintext blocks will produce 

different ciphertext blocks 
■  Can ciphertext be manipulated profitably? 

■  ??? 
■  Parallel processing possible? 

■  no (encryption), yes (decryption) 
■  Do ciphertext errors propagate? 

■  yes (encryption), a little (decryption)  
11 

Output Feedback Mode (OFB) 
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OFB Decryption 
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OFB Properties 

■  Does information leak? 
■  identical plaintext blocks produce different 

ciphertext blocks 
■  Can ciphertext be manipulated profitably? 

■  ??? 
■  Parallel processing possible? 

■  no (generating pad), yes (XORing with blocks) 
■  Do ciphertext errors propagate? 

■  ??? 
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OFB … (Cont’d) 

■  If you know one plaintext/ciphertext pair, 
can easily derive the one-time pad that 
was used 
■  i.e., should not reuse a one-time pad! 

■  Conclusion: IV must be different every 
time  
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Cipher Feedback Mode (CFB) 

■  Ciphertext block Cj depends on all preceding plaintext 
blocks 

16 

E 

C1   C2   C3   C4 

IV 

E E E 
Key 

64 

M1   M2   M3   M4 
64 64 46 + padding 64 

64 64 64 64 

64 64 64 64 

CFB Decryption 

■  No block decryption required! 
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CFB Properties 
■  Does information leak? 

■  Identical plaintext blocks produce 
different ciphertext blocks 

■  Can ciphertext be manipulated profitably? 
■  ??? 

■  Parallel processing possible? 
■  no (encryption), yes (decryption) 

■  Do ciphertext errors propagate? 
■  ??? 
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Counter Mode (CTR) 
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CTR Mode Properties 
■  Does information leak? 

■  Identical plaintext block produce different ciphertext 
blocks 

■  Can ciphertext be manipulated profitably 
■  ??? 

■  Parallel processing possible 
■  Yes (both generating pad and XORing) 

■  Do ciphertext errors propagate? 
■  ??? 

■  Allow decryption the ciphertext at any location 
■  Ideal for random access to ciphertext 
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Topic 3.3 Secret Key Cryptography – Triple DES 



Stronger DES 

■  Major limitation of DES 
■  Key length is too short 

■  Can we apply DES multiple times to 
increase the strength of encryption? 
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Double Encryption with DES 

■  Encrypt the plaintext twice, using two different 
DES keys 

■  Total key material increases to 112 bits 
■  is that the same as key strength of 112 bits? 
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Encryption 

Decryption Observation:
X=EK1{P}=DK2{C}

Concerns About Double DES 

■  Wasn’t clear at the time if DES was a 
group  
(it’s not) 
■  If it were, then Ek2(Ek1(P)) ≡ Ek3(P), for 

all P 
■  Not good? 

■  Possible attack (better than brute force):  
meet-in-the-middle 
■  A known-plaintext attack 
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The Meet-in-the-Middle Attack 

1.  Choose a plaintext P and generate ciphertext C, 
using double-DES with K1+K2 

2.  Then… 
a.  encrypt P using single-DES for all possible 256 values 

K1 to generate all possible single-DES ciphertexts for 
P: X1,X2,…,X256 ;  
store these in a table indexed by ciphertex values 

b.  decrypt C using single-DES for all possible 256 values 
K2 to generate all possible single-DES plaintexts for 
C: Y1,Y2,…,Y256  ;  
for each value, check the table 
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Steps … (Cont’d) 

3.  Meet-in-the-middle:  
■  each match (Xi = Yj) reveals a candidate keypair Ki+Kj 
■  there should be approx. (2112 / 264) = 248 such pairs 

for one value of (P,C) 
■  2112 possible keys, but there are only 264 X’s 

4.  Repeat the above, for a second plaintext/
ciphertext pair (P’,C’), and find those 248 
candidate keypairs Ki’+Kj’ 
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Why 248 (another view)? 
- The table contains only 256/264 = 1/28 of all possible  64-bit values  
- there are 256 entries Xi 
- for each Xi, there is only 1/28 chance there is a matching Yi 

Steps … (Cont’d) 

5.  Look for an identical candidate keypair that 
produces collisions for both (P,C) and (P’,C’) 
■  the probability the same candidate keypair occurs for 

both plaintexts, but is not the keypair used in the 
double-DES encryption: 248 / 264 = 2-16  

■  An expensive attack (computation + storage) 
■  still, enough of a threat to discourage use of double-

DES 
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Why 2-16? 
- there are about 248 candidate keypairs Ki+Kj 
- at most one is K1+K2, the rest are imposters 
- if Ki+Kj is an imposter, the probability using Ki+Kj that E(P’) = D(C’) is 1/264 



Triple Encryption (Triple DES-EDE) 

■  Why not E-E-E?  
■  again, wasn’t clear if DES was a group  

■  Apply DES encryption/decryption three times 
■  why not 3 different keys?  
■  why not the same key 3 times? 
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Triple DES (Cont’d) 

■  Widely used 
■  equivalent strength to using a 112 bit key 
■  strength about 2110 against M-I-T-M attack 

■  However: inefficient / expensive to compute 
■  one third as fast as DES on the same platform, and 

DES is already designed to be slow in software 

■  Next question: how is block chaining used with 
triple-DES? 
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3DES-EDE: Outside Chaining Mode 

■  What basic chaining mode is this? 
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3DES-EDE: OCM Decryption 
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OCM Properties 
■  Does information leak? 

■  identical plaintext blocks produce 
different ciphertext blocks 

■  Can ciphertext be manipulated profitably? 
■  ??? 

■  Parallel processing possible? 
■  no (encryption), yes (decryption) 

■  Do ciphertext errors propagate? 
■  ??? 
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3DES-EDE: Inside Chaining Mode 
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3DES-EDE: ICM Decryption 
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3DES-EEE: Inside Chaining Mode 
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3-DES EEE:  ICM Decryption 
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Topic 3.4 Secret Key Cryptography – MAC with 
Secret Key Ciphers 

Message Authentication 

■  Encryption easily provides confidentiality 
of messages 
■  only the party sharing the key (the “key 

partner”) can decrypt the ciphertext 
■  How to use encryption to authenticate 

messages? That is,  
■  prove the message was created by the 

key partner 
■  prove the message wasn’t modified by 

someone other than the key partner 
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Approach #1 

■  The quick and dirty approach 
■  If the decrypted plaintext “looks 

plausible”, then conclude ciphertext was 
produced by the key partner 
■  i.e., illegally modified ciphertext, or 

ciphertext encrypted with the wrong 
key, will probably decrypt to random-
looking data 

■  But, is it easy to verify data is “plausible-
looking”?  What if all data is plausible? 
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Approach #2: Plaintext+Ciphertext 

■  Send plaintext and ciphertext 
■  receiver encrypts plaintext, and 

compares result with received ciphertext 
■  forgeries / modifications easily detected  
■  any problems / drawbacks? 
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Approach #3: Use Residue 
■  Encrypt plaintext using DES CBC mode, with IV 

set to zero 
■  the last (final) ciphertext output block is called the 

residue 
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Approach #3… (Cont’d) 

■  Transmit the plaintext and this residue 
■  receiver computes same residue, 

compares to the received residue 
■  forgeries / modifications highly likely to 

be detected 
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Message Authentication Codes 

■  MAC: a small fixed-size block (i.e., 
independent of message size) generated 
from a message using secret key 
cryptography 
■  also known as cryptographic checksum 
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Requirements for MAC 

1.  Given M and MAC(M), it should be 
computationally infeasible (expensive) to 
construct (or find) another message M’ 
such that MAC(M’) = MAC(M) 

2.  MAC(M) should be uniformly distributed 
in terms of M 
■  for randomly chosen messages M and 

M’,  
P( MAC(M)=MAC(M’) ) = 2-k, where k is 
the number of bits in the MAC 
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Requirements … (cont’d) 

3.  Knowing MAC(M1), MAC(M2), . . . of 
some (known or chosen) messages M1, 
M2, . . ., it should be computationally 
infeasible for an attacker to find the MAC 
of some other message M’ 
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Crypto for Confidentiality AND Authenticity? 

■  So far we’ve got  
■  confidentiality (encryption),  
or…  
■  authenticity (MACs) 

■  Can we get both at the same time with one 
cryptographic operation? 
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Attempt #1 

1.  Sender computes an error-correcting code or 
Frame-Check Sequence (FCS) F(P) of the 
plaintext P 

2.  Sender concatenates P and F(P) and encrypts 
•  i.e., C = EK( P | F(P) ) 

3.  Receiver decrypts received ciphertext C’ using 
K, to get P’|F’ 

4.  Receiver computes F(P’) and compares to F’ to 
authenticate received message P’ = P 

■  How does this authenticate P? 
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Attempt #1… (Cont’d) 

■  The order (1) FCS, then (2) encryption is critical 
■  why not (2), then (1)? 

■  “Subtle weaknesses” known in this approach, so 
not preferred 
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Attempt #2 
1.  Compute residue (MAC) using key K1 
2.  Encrypt plaintext message M using key K2 

to produce C 
3.  Transmit MAC | C to receiver 
4.  Receiver decrypts received C’ with K2 to  

get P’ 
5.  Receiver computes MAC(P’) using K1, 

compares to received MAC’ 
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Attempt #2… (cont’d) 

■  Good (cryptographic) quality, but… 
■  Expensive! Two separate, full encryptions 

with different keys are required 
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Summary 
1.  ECB mode is not secure 

■  CBC most commonly used mode of 
operation 

2.  Triple-DES (with 2 keys) is much stronger than 
DES 

■  usually uses EDE in Outer Chaining Mode 
3.  MACs use crypto to authenticate messages at 

a small cost of additional storage / bandwidth 
■  but at a high computational cost 
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