
CSCI 454/554 Computer and Network 
Security 

Topic 4. Cryptographic Hash Functions 

Outline 
■  Hash function lengths 

■  Hash function applications 

■  MD5 standard 

■  SHA-1 standard 

■  Hashed Message Authentication Code (HMAC) 
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Hash Function Properties 



Hash Function 

■  Also known as 
■  Message digest 
■  One-way transformation 
■  One-way function 
■  Hash 

■  Length of H(m) much shorter then length of 
m 

■  Usually fixed lengths: 128 or 160 bits 
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Message of  
arbitrary length Hash A fixed-length  

short message 

Desirable Properties of Hash Functions 

■  Consider a hash function H 
■  Performance: Easy to compute H(m)  
■  One-way property (preimage resistant): Given 

H(m) but not m, it’s computationally infeasible 
to find m 

■  Weak collision resistant (2-nd preimage 
resistant): Given H(m), it’s computationally 
infeasible to find m’ such that H(m’) = H(m). 

■  Strong collision resistant (collision resistant): 
Computationally infeasible to find m1, m2 such 
that H(m1) = H(m2) 
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Length of Hash Image 

■  Question 
■  Why do we have 128 bits or 160 bits in 

the output of a hash function? 
■  If it is too long 

■  Unnecessary overhead 
■  If it is too short 

■  Birthday paradox 
■  Loss of strong collision property 
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Birthday Paradox 
■  Question:  

■  What is the smallest group size k such that  
■  The probability that at least two people in the 

group have the same birthday is greater than 0.5?  
■  Assume 365 days a year, and all birthdays are 

equally likely 
■  P(k people having k different birthdays):  

Q(365,k) = 365!/(365-k)!365k 

■  P(at least two people have the same birthday): 
P(365,k) = 1-Q(365,k) ≥ 0.5 

■  k is about 23 
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Birthday Paradox (Cont’d) 

■  Generalization of birthday paradox 
■  Given  

■  a random integer with uniform distribution 
between 1 and n, and  

■  a selection of k instances of the random 
variables, 

■  What is the least value of k such that  
■  There will be at least one duplicate  
■  with probability P(n,k) > 0.5, ? 
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Birthday Paradox (Cont’d) 

■  Generalization of birthday paradox 
■  P(n,k) ≈ 1 – e-k*(k-1)/2n 

■  For large n and k, to have P(n,k) > 0.5 
with the smallest k, we have 

■  Example 
■  1.18*(365)1/2 = 22.54 
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€ 

k = 2(ln2)n =1.18 n ≈ n



Birthday Paradox (Cont’d) 

■  Implication for hash function H of length 
m 
■  With probability at least 0.5 
■  If we hash about 2m/2 random inputs,  
■  Two messages will have the same hash 

image 
■  Birthday attack 

■  Conclusion 
■  Choose m ≥ 128 
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Hash Function Applications 

Application: File Authentication 

■  Want to detect if a file has been changed 
by someone after it was stored 

■  Method 
■  Compute a hash H(F) of file F 
■  Store H(F) separately from F 
■  Can tell at any later time if F has been 

changed by computing H(F’) and comparing to 
stored H(F) 

■  Why not just store a duplicate copy of 
F??? 
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Application: User Authentication 

■  Alice wants to authenticate herself to Bob 
■  assuming they already share a secret key K 

■  Protocol: 
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Alice Bob 

tim
e !

  

“I’m Alice” 

picks random 
number R R 

computes 
Y=H(R|K) 

Y 
verifies that 
Y=H(R|K) 

User Authentication… (cont’d) 

■  Why not just send… 
■  …K, in plaintext? 
■  …H(K)? , i.e., what’s the purpose of R? 

14 

Application: Commitment Protocols 

■  Ex.: A and B wish to play the game of “odd or 
even” over the network 

1.  A picks a number X 
2.  B picks another number Y 
3.  A and B “simultaneously” exchange X and Y 
4.  A wins if X+Y is odd, otherwise B wins 

■  If A gets Y before deciding X, A can easily 
cheat (and vice versa for B) 
■  How to prevent this? 
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Commitment… (Cont’d) 

■  Can either A or B successfully cheat now? 
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A B 
Z = H(X) 

Picks Y 
Y 

X 
verifies that 
H(X) = Z 

A picks X and 
computes Z=H(X) 

•  Proposal: A must commit to X before B will send Y 
•  Protocol: 

Commitment… (Cont’d) 
■  Why is sending H(X) better than sending X? 
■  Why is sending H(X) good enough to prevent A 

from cheating? 
■  Why is it not necessary for B to send H(Y) 

(instead of Y)? 
■  What problems are there if: 

1.  The set of possible values for X is small? 
2.  B can predict the next value X that A will pick? 
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Application: Message Encryption 

■  Assume A and B share a secret key K 
■  but don’t want to just use encryption of 

the message with K 
■  A sends B the (encrypted) random 

number R1,  
B sends A the (encrypted) random 
number R2 

■  And then… 
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■  R1 | R2 is used like the IV of OFB mode, but C+H 
replaces encryption; as good as encryption? 
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one-time pad 

E 

C1   C2   C3   C4 

M1   M2   M3   M4 

Initialization 
Vector 

E E E 
Key 

64 

64 64 64 64 

64 64 46 + padding 64 

one-time pad 

C1   C2   C3   C4 

M1   M2   M3   M4 

R1 | R2 

Key 
64 

64 64 64 64 

64 64 46 + padding 64 

= Concatenate, then Hash 

C+H C+H C+H C+H 

C+H 

Application: Message Authentication 

■  A wishes to authenticate (but not encrypt) a 
message M (and A, B share secret key K) 
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A B 

M, R, Y 

verifies that 
Y = H(M|K|R) 

1.  picks random  
number R 

2.  computes  
Y = H(M|K|R) 

•  Why is R needed?  Why is K needed? 

Application: Digital Signatures 

■  Only one party (Bob) knows the private key 
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Message m Hash 
H(m) 

Sign 

Bob’s Private key 

Signature 
(encrypted 
hash) 

Generating a signature 

Message m 
Hash H(m) 

Verify 

Bob’s Public key 
Signature 

Valid / 
Not Valid 

Verifying a signature 



Is Encryption a Good Hash Function? 

■  Building hash using block chaining techniques 
■  Encryption block size may be too short (DES=64) 

■  Birthday attack 

■  Can construct a message with a particular hash fairly 
easily 

■  Extension attacks 
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E 

constant 

M1 

64 

Hash 

E 
M2 

E 
M3 

E 
M4 

Hash Using Block Chaining Techniques 

■  Meet-in-the-middle attack 
■  Get the correct hash value G 
■  Construct any message in the form Q1, Q2, …, Qn-2 

■  Compute Hi=EQi(Hi-1) for 1 ≤i ≤(n-2). 
■  Generate 2m/2 random blocks; for each block X, 

compute EX(Hn-2). 
■  Generate 2m/2 random blocks; for each block Y, 

compute DY(G). 
■  With high probability there will be an X and Y such 

that EX(Hn-2)= DY(G). 
■  Form the message Q1, Q2, …, Qn-2, X, Y. It has the 

hash value G. 
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Modern Hash Functions 
■  MD5 

■  Previous versions (i.e., MD2, MD4) have weaknesses. 
■  Broken; collisions published in August 2004 
■  Too weak to be used for serious applications 

■  SHA (Secure Hash Algorithm) 
■  Weaknesses were found 

■  SHA-1 
■  Broken, but not yet cracked  
■  Collisions in 269 hash operations, much less than the brute-force 

attack of 280 operations 
■  Results were circulated in February 2005, and published in 

CRYPTO ’05 in August 2005 

■  SHA-2 (SHA-256, SHA-384, …) 

24 



MD5 Hash Function 

MD5: Message Digest Version 5 
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Message of  
arbitrary length 

MD5 
(multiple 

passes) 

128-bit 
message digest 

•  MD5 at a glance 

Processing of A Single Block  

27 

128-bit input message 
digest (four 32-bit words) 

512-bit message block  
(sixteen 32-bit words) 

MD5 

128-bit output message 
digest (four 32-bit words) 

Called a compression function 



MD5: A High-Level View 
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Message 100…0 

K bits 
Message Length 

(K mod 264) 
Padding 

(1 to 512 bits) 

Y0 

512 bits 

Y1 

512 bits 

… YL-1 

512 bits 

MD5 MD5 
IV 

128 bits 

CV1 

MD5 
CVL-1 

128-bit 
digest 

128 bits 128 bits 128 bits 

stage 1 stage 2 stage L 

… 

Padding 

■  There is always padding for MD5, and padded 
messages must be multiples of 512 bits 

■  To original message M, add padding bits “10…
0”  
■  enough 0’s so that resulting total length is 64 bits 

less than a multiple of 512 bits 
■  Append L (original length of M), represented in 

64 bits, to the padded message 

■  Footnote: the bytes of each 32-bit word are 
stored in little-endian order (LSB to MSB) 
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Padding… (cont’d) 

■  How many 0’s if length of M = 
■   n * 512? 
■   n * 512 – 64? 
■   n * 512 – 65? 
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Preliminaries 

■  The four 32-bit words of the output (the 
digest) are referred to as d0, d1, d2, d3 

■  Initial values (in little-endian order)  
■  d0 = 0x67452301 
■  d1 = 0xEFCDAB89 
■  d2 = 0x98BADCFE 
■  d3 = 0x10325476 

■  The sixteen 32-bit words of each message 
block are referred to as m0, …, m15 
■  (16*32 = 512 bits in each block) 
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Notation 

■  ~x = bit-wise complement of x 
■  x∧y, x∨y, x⊕y = bit-wise AND, OR, XOR of  

x and y 
■  x<<y = left circular shift of x by y bits  
■  x+y = arithmetic sum of x and y 

(discarding carry-out from the msb) 
■  ⎣x⎦ = largest integer less than or equal to 

x 

32 

Processing a Block-Overview 
■  Every message block Yi contains 16 32-bit 

words: 
■  m0 m1 m2 … m15 

■  A block is processed in 4 consecutive passes, 
each modifying the MD5 buffer d0, …, d3. 
■  Called F, G, H, I 

■  Each pass uses one-fourth of a 64-element table 
of constants, T[1…64] 
■  T[i] = ⎣232*abs(sin(i))⎦ , represented in 32 bits 

■  Output digest = input digest + output of 4th 
pass 
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Overview (Cont’d) 
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Input Digest CVi 
128 bits 

F, T[1..16], Yi 

G, T[17..32], Yi 

H, T[33..48], Yi 

I, T[49..64], Yi 

Message Block 
Yi 

+ + + + 

d0 d1 d2 d3 
512 bits 

32 32 32 32 

Output Digest CVi+1 
128 bits 

1st pass 

2nd pass 

3rd pass 

4th pass 

1st Pass of MD5  
■  F(x,y,z)     (x∧y)∨(~x∧z) 
■  16 processing steps, producing d0..d3 

output: 
di = dj + (dk + F(dl,dm,dn) + mo + Tp) 
<< s 
■  values of subscripts, in this order 
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i j k l m n o p s 

0 1 0 1 2 3 0 1 7 

3 0 3 0 1 2 1 2 12 

2 3 2 3 0 1 2 3 17 

1 2 1 2 3 0 3 4 22 

0 1 0 1 2 3 4 5 7 

def 
= 

…
 

Logic of Each Step 
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d0 d1 d2 d3 

d0 d1 d2 d3 

g + 

+ 

+ 

+ 

<<s 

mk 

T[i] 

g: F, G, H, or I 



Logic of Each Step (Cont’d) 

■  Within each pass, each of the 16 words of mi is used 
exactly once 
■  Round 1, mi are used in the order of i 
■  Round 2, in the order of ρ2(i), where ρ2(i)=(1+5i) mod 16 
■  Round 3, in the order or ρ3(i), where ρ3(i)=(5+3i) mod 16 
■  Round 4, in the order or ρ4(i), where ρ4(i)=7i mod 16 

■  Each word of T[i] is used exactly once throughout all 
passes 

■  Number of bits s to rotate to get di 
■  Round 1, s(d0)=7, s(d1)=22, s(d2)=17, s(d3)=12 
■  Round 2, s(d0)=5, s(d1)=20, s(d2)=14, s(d3)=9  
■  Round 3, s(d0)=4, s(d1)=23, s(d2)=16, s(d3)=11 
■  Round 4, s(d0)=6, s(d1)=21, s(d2)=15, s(d3)=10 
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2nd Pass of MD5   

■  G(x,y,z)      (x∧z)∨(y∧~z) 
■  Form of processing (16 steps): 

di = dj + (dk + G(dl,dm,dn) + mo + Tp) 
<< s 

38 

i j k l m n o p s 

0 1 0 1 2 3 1 17 5 

3 0 3 0 1 2 6 18 9 

2 3 2 3 0 1 11 19 14 

1 2 1 2 3 0 0 20 20 

0 1 0 1 2 3 5 21 5 …
 

def 
= 

3rd Pass of MD5  

■  H(x,y,z)     (x ⊕ y ⊕ z) 
■  Form of processing (16 steps): 

di = dj + (dk + H(dl,dm,dn) + mo + Tp) 
<< s 
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i j k l m n o p s 
0 1 0 1 2 3 5 33 4 
3 0 3 0 1 2 8 34 11 
2 3 2 3 0 1 11 35 16 
1 2 1 2 3 0 14 36 23 
0 1 0 1 2 3 1 37 4 …

 

def 
= 



4th Pass of MD5  

■  I(x,y,z)     y ⊕ (x∨~z) 
■  Form of processing (16 steps): 

di = dj + (dk + I(dl,dm,dn) + mo + Tp) << 
s 
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i j k l m n o p s 
0 1 0 1 2 3 0 49 6 
3 0 3 0 1 2 7 50 10 
2 3 2 3 0 1 14 51 15 
1 2 1 2 3 0 5 52 21 
0 1 0 1 2 3 12 53 6 …

 

def 
= 

•  Output of this pass added to input MD 

(In)security of MD5 
■  A few recently discovered methods can 

find collisions in a few hours 
■  A few collisions were published in 2004 
■  Can find many collisions for 1024-bit 

messages 
■  More discoveries afterwards 
■  In 2005, two X.509 certificates with different 

public keys and the same MD5 hash were 
constructed 
■  This method is based on differential analysis 
■  8 hours on a 1.6GHz computer 
■  Much faster than birthday attack  
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SHA-1 Hash Function 



Secure Hash Algorithm (SHA) 

■  Developed by NIST, specified in the 
Secure Hash Standard, 1993 

■  SHA is specified as the hash algorithm in 
the Digital Signature Standard (DSS) 

■  SHA-1: revised (1995) version of SHA 
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SHA-1 Parameters 

■  Input message must be < 264 bits 
■  Input message is processed in 512-bit blocks, 

with the same padding as MD5 
■  Message digest output is 160 bits long 

■  Referred to as five 32-bit words A, B, C, D, E 
■  IV: A = 0x67452301, B = 0xEFCDAB89, C = 

0x98BADCFE, D = 0x10325476, E = 0xC3D2E1F0 

■  Footnote: bytes of words are stored in big-
endian order 
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Big Endian vs. Little Endian 

■  Big Endian 

■  A 32-bit word can be saved in 4 bytes 
■  For instance, 90AB12CD16 

■  Little Endian 
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Preprocessing of a Block 

■  Let 512-bit block be denoted as sixteen 
32-bit words W0..W15 

■  Preprocess W0..W15 to derive an 
additional sixty-four 32-bit words 
W16..W79, as follows: 

for 16 ≤ t ≤ 79 
    Wt = (Wt-16 ⊕ Wt-14 ⊕ Wt-8 ⊕ Wt-3) 
<< 1 
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Block Processing 

■  Consists of 80 steps! (vs. 64 for MD5) 
■  Inputs for each step 0 ≤ t ≤ 79:  

■  Wt 
■  Kt – a constant 
■  A,B,C,D,E: current values to this point 

■  Outputs for each step: 
■  A,B,C,D,E : new values 

■  Output of last step is added to input of 
first step to produce 160-bit Message 
Digest 
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Constants Kt 

■  Only 4 values (represented in 32 bits), 
derived from 230 * i1/2, for i = 2, 3, 5, 10 
■  for 0 ≤ t ≤ 19: Kt = 0x5A827999 (i=2) 
■  for 20 ≤ t ≤ 39: Kt = 0x6ED9EBA1 (i=3) 
■  for 40 ≤ t ≤ 59: Kt = 0x8F1BBCDC (i=5) 
■  for 60 ≤ t ≤ 79: Kt = 0xCA62C1D6 (i=10) 
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Function f(t,B,C,D) 

■  3 different functions are used in SHA-1 
processing 
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Round Function f(t,B,C,D) 

0 ≤ t ≤ 19 (B∧C) ∨ (~B∧D) 

20 ≤ t ≤ 39 B ⊕ C ⊕ D 

40 ≤ t ≤ 59 (B∧C) ∨ (B∧D) ∨ (C∧D) 

60 ≤ t ≤ 79 B ⊕ C ⊕ D 

Compare with MD-5 

F = (x∧y) ∨ (~x∧z) 

H = x ⊕ y ⊕ z 

H = x ⊕ y ⊕ z 

•  No use of MD5’s G ((x∧z)∨(y∧~z)) or I (y ⊕ (x∨~z)) 

Processing Per Step 

■  Everything to right of “=” is input value to 
this step 
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for t = 0 upto 79 

    A = E + (A << 5) + Wt + Kt + f(t,B,C,D)  

    B = A 

    C = B << 30 

    D = C 

    E = D 

endfor 

Comparison: SHA-1 vs. MD5 

■  SHA-1 is a stronger algorithm 
■  brute-force attacks require on the order 

of 280 operations vs. 264 for MD5 
■  SHA-1 is about twice as expensive to 

compute 
■  Both MD-5 and SHA-1 are much faster to 

compute than DES 
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Security of SHA-1 
■  SHA-1 

■  output 160 bits 
■  “Broken”, but not yet cracked  

■  Collisions in 269 hash operations, much less than the 
brute-force attack of 280 operations 

■  Results were circulated in February 2005, and 
published in CRYPTO ’05 in August 2005 

■  Considered insecure for collision resistance 
■  One-way property still holds 

■  SHA-2(SHA-224, SHA-256, SHA-384, SHA-512…) 
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SHA-3 is coming 
■  NIST is having an ongoing competition for SHA-3, the next generation 

of standard hash algorithms 
■  2007: Request for submissions of new hash functions 
■  2008: Submissions deadline.  Received 64 entries. Announced first-

round selections of 51 candidates. 
■  2009: After First SHA-3 candidate conference in Feb, announced 14 

Second Round Candidates in July. 
■  2010: After one year public review of the algorithms, hold second 

SHA-3 candidate conference in Aug.  Announced 5 Third-round 
candidates in Dec.   

■  2011: Public comment for final round 
■  2012: Held Final hash candidate conference on March 22-23.  Draft 

standard, wait for comments, and submit recommendation. 
■  The winning algorithm, Keccak, was created by Guido Bertoni, Joan 

Daemen and Gilles Van Assche of STMicroelectronics and Michaël 
Peeters of NXP Semiconductors.  
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Hashed Message Authentication Code 
(HMAC) 



Extension Attacks 

■  Given M1, and secret key K, can easily 
concatenate and compute the hash: 
H(K|M1|padding) 

■  Given M1, M2, and H(K|M1|padding) easy to 
compute H(K|M1|padding|M2|newpadding) for 
some new message M2 

■  Simply use H(K|M1|padding) as the IV for 
computing the hash of M2|newpadding 
■  does not require knowing the value of the secret key K 
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Extension Attacks (Cont’d) 
■  Many proposed solutions to the extension 

attack, but HMAC is the standard 
■  Essence: digest-inside-a-digest, with the 

secret used at both levels 
■  The particular hash function used 

determines the length of the message 
digest = length of HMAC output 

56 

HMAC Processing 
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Key K 

0x363636…36 

compute 
message digest 

⊕ 

pad on right with 0’s to  
512 bits in length 

concatenate 

Message M 

0x5c5c5c…5c 

HMAC(key,message) 

⊕ 

compute 
message digest 

concatenate 



Security of HMAC 

■  If used with a secure hash functions (e.g., 
SHA-256) and according to the 
specification (key size, and use correct 
output), no known practical attacks against 
HMAC 
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At high level, HMACK[M] = H(K || H(K || M)) 

Summary 
■  Hashing is fast to compute 
■  Has many applications (some making use 

of a secret key) 
■  Hash images must be at least 128 bits 

long 
■  but longer is better 

■  Hash function details are tedious " 
■  HMAC protects message digests from 

extension attacks 


