
CSCI 454/554 Computer and Network
Security

Topic 4. Cryptographic Hash Functions

Outline
■  Hash function lengths

■  Hash function applications

■  MD5 standard

■  SHA-1 standard

■  Hashed Message Authentication Code (HMAC)

2

Hash Function Properties

Hash Function

■  Also known as
■  Message digest
■  One-way transformation
■  One-way function
■  Hash

■  Length of H(m) much shorter then length of
m

■  Usually fixed lengths: 128 or 160 bits
4

Message of
arbitrary length Hash A fixed-length

short message

Desirable Properties of Hash Functions

■  Consider a hash function H
■  Performance: Easy to compute H(m)
■  One-way property (preimage resistant): Given

H(m) but not m, it’s computationally infeasible
to find m

■  Weak collision resistant (2-nd preimage
resistant): Given H(m), it’s computationally
infeasible to find m’ such that H(m’) = H(m).

■  Strong collision resistant (collision resistant):
Computationally infeasible to find m1, m2 such
that H(m1) = H(m2)

5

Length of Hash Image

■  Question
■  Why do we have 128 bits or 160 bits in

the output of a hash function?
■  If it is too long

■  Unnecessary overhead
■  If it is too short

■  Birthday paradox
■  Loss of strong collision property

6

Birthday Paradox
■  Question:

■  What is the smallest group size k such that
■  The probability that at least two people in the

group have the same birthday is greater than 0.5?
■  Assume 365 days a year, and all birthdays are

equally likely
■  P(k people having k different birthdays):

Q(365,k) = 365!/(365-k)!365k

■  P(at least two people have the same birthday):
P(365,k) = 1-Q(365,k) ≥ 0.5

■  k is about 23

7

Birthday Paradox (Cont’d)

■  Generalization of birthday paradox
■  Given

■  a random integer with uniform distribution
between 1 and n, and

■  a selection of k instances of the random
variables,

■  What is the least value of k such that
■  There will be at least one duplicate
■  with probability P(n,k) > 0.5, ?

8

Birthday Paradox (Cont’d)

■  Generalization of birthday paradox
■  P(n,k) ≈ 1 – e-k*(k-1)/2n

■  For large n and k, to have P(n,k) > 0.5
with the smallest k, we have

■  Example
■  1.18*(365)1/2 = 22.54

9

€

k = 2(ln2)n =1.18 n ≈ n

Birthday Paradox (Cont’d)

■  Implication for hash function H of length
m
■  With probability at least 0.5
■  If we hash about 2m/2 random inputs,
■  Two messages will have the same hash

image
■  Birthday attack

■  Conclusion
■  Choose m ≥ 128

10

Hash Function Applications

Application: File Authentication

■  Want to detect if a file has been changed
by someone after it was stored

■  Method
■  Compute a hash H(F) of file F
■  Store H(F) separately from F
■  Can tell at any later time if F has been

changed by computing H(F’) and comparing to
stored H(F)

■  Why not just store a duplicate copy of
F???

12

Application: User Authentication

■  Alice wants to authenticate herself to Bob
■  assuming they already share a secret key K

■  Protocol:

13

Alice Bob

tim
e !

“I’m Alice”

picks random
number R R

computes
Y=H(R|K)

Y
verifies that
Y=H(R|K)

User Authentication… (cont’d)

■  Why not just send…
■  …K, in plaintext?
■  …H(K)? , i.e., what’s the purpose of R?

14

Application: Commitment Protocols

■  Ex.: A and B wish to play the game of “odd or
even” over the network

1.  A picks a number X
2.  B picks another number Y
3.  A and B “simultaneously” exchange X and Y
4.  A wins if X+Y is odd, otherwise B wins

■  If A gets Y before deciding X, A can easily
cheat (and vice versa for B)
■  How to prevent this?

15

Commitment… (Cont’d)

■  Can either A or B successfully cheat now?
16

A B
Z = H(X)

Picks Y
Y

X
verifies that
H(X) = Z

A picks X and
computes Z=H(X)

•  Proposal: A must commit to X before B will send Y
•  Protocol:

Commitment… (Cont’d)
■  Why is sending H(X) better than sending X?
■  Why is sending H(X) good enough to prevent A

from cheating?
■  Why is it not necessary for B to send H(Y)

(instead of Y)?
■  What problems are there if:

1.  The set of possible values for X is small?
2.  B can predict the next value X that A will pick?

17

Application: Message Encryption

■  Assume A and B share a secret key K
■  but don’t want to just use encryption of

the message with K
■  A sends B the (encrypted) random

number R1,
B sends A the (encrypted) random
number R2

■  And then…

18

■  R1 | R2 is used like the IV of OFB mode, but C+H
replaces encryption; as good as encryption?

19

one-time pad

E

C1 C2 C3 C4

M1 M2 M3 M4

Initialization
Vector

E E E
Key

64

64 64 64 64

64 64 46 + padding 64

one-time pad

C1 C2 C3 C4

M1 M2 M3 M4

R1 | R2

Key
64

64 64 64 64

64 64 46 + padding 64

= Concatenate, then Hash

C+H C+H C+H C+H

C+H

Application: Message Authentication

■  A wishes to authenticate (but not encrypt) a
message M (and A, B share secret key K)

20

A B

M, R, Y

verifies that
Y = H(M|K|R)

1.  picks random
number R

2.  computes
Y = H(M|K|R)

•  Why is R needed? Why is K needed?

Application: Digital Signatures

■  Only one party (Bob) knows the private key
21

Message m Hash
H(m)

Sign

Bob’s Private key

Signature
(encrypted
hash)

Generating a signature

Message m
Hash H(m)

Verify

Bob’s Public key
Signature

Valid /
Not Valid

Verifying a signature

Is Encryption a Good Hash Function?

■  Building hash using block chaining techniques
■  Encryption block size may be too short (DES=64)

■  Birthday attack

■  Can construct a message with a particular hash fairly
easily

■  Extension attacks
22

E

constant

M1

64

Hash

E
M2

E
M3

E
M4

Hash Using Block Chaining Techniques

■  Meet-in-the-middle attack
■  Get the correct hash value G
■  Construct any message in the form Q1, Q2, …, Qn-2

■  Compute Hi=EQi(Hi-1) for 1 ≤i ≤(n-2).
■  Generate 2m/2 random blocks; for each block X,

compute EX(Hn-2).
■  Generate 2m/2 random blocks; for each block Y,

compute DY(G).
■  With high probability there will be an X and Y such

that EX(Hn-2)= DY(G).
■  Form the message Q1, Q2, …, Qn-2, X, Y. It has the

hash value G.

23

Modern Hash Functions
■  MD5

■  Previous versions (i.e., MD2, MD4) have weaknesses.
■  Broken; collisions published in August 2004
■  Too weak to be used for serious applications

■  SHA (Secure Hash Algorithm)
■  Weaknesses were found

■  SHA-1
■  Broken, but not yet cracked
■  Collisions in 269 hash operations, much less than the brute-force

attack of 280 operations
■  Results were circulated in February 2005, and published in

CRYPTO ’05 in August 2005

■  SHA-2 (SHA-256, SHA-384, …)

24

MD5 Hash Function

MD5: Message Digest Version 5

26

Message of
arbitrary length

MD5
(multiple

passes)

128-bit
message digest

•  MD5 at a glance

Processing of A Single Block

27

128-bit input message
digest (four 32-bit words)

512-bit message block
(sixteen 32-bit words)

MD5

128-bit output message
digest (four 32-bit words)

Called a compression function

MD5: A High-Level View

28

Message 100…0

K bits
Message Length

(K mod 264)
Padding

(1 to 512 bits)

Y0

512 bits

Y1

512 bits

… YL-1

512 bits

MD5 MD5
IV

128 bits

CV1

MD5
CVL-1

128-bit
digest

128 bits 128 bits 128 bits

stage 1 stage 2 stage L

…

Padding

■  There is always padding for MD5, and padded
messages must be multiples of 512 bits

■  To original message M, add padding bits “10…
0”
■  enough 0’s so that resulting total length is 64 bits

less than a multiple of 512 bits
■  Append L (original length of M), represented in

64 bits, to the padded message

■  Footnote: the bytes of each 32-bit word are
stored in little-endian order (LSB to MSB)

29

Padding… (cont’d)

■  How many 0’s if length of M =
■  n * 512?
■  n * 512 – 64?
■  n * 512 – 65?

30

Preliminaries

■  The four 32-bit words of the output (the
digest) are referred to as d0, d1, d2, d3

■  Initial values (in little-endian order)
■  d0 = 0x67452301
■  d1 = 0xEFCDAB89
■  d2 = 0x98BADCFE
■  d3 = 0x10325476

■  The sixteen 32-bit words of each message
block are referred to as m0, …, m15
■  (16*32 = 512 bits in each block)

31

Notation

■  ~x = bit-wise complement of x
■  x∧y, x∨y, x⊕y = bit-wise AND, OR, XOR of

x and y
■  x<<y = left circular shift of x by y bits
■  x+y = arithmetic sum of x and y

(discarding carry-out from the msb)
■  ⎣x⎦ = largest integer less than or equal to

x

32

Processing a Block-Overview
■  Every message block Yi contains 16 32-bit

words:
■  m0 m1 m2 … m15

■  A block is processed in 4 consecutive passes,
each modifying the MD5 buffer d0, …, d3.
■  Called F, G, H, I

■  Each pass uses one-fourth of a 64-element table
of constants, T[1…64]
■  T[i] = ⎣232*abs(sin(i))⎦ , represented in 32 bits

■  Output digest = input digest + output of 4th
pass

33

Overview (Cont’d)

34

Input Digest CVi
128 bits

F, T[1..16], Yi

G, T[17..32], Yi

H, T[33..48], Yi

I, T[49..64], Yi

Message Block
Yi

+ + + +

d0 d1 d2 d3
512 bits

32 32 32 32

Output Digest CVi+1
128 bits

1st pass

2nd pass

3rd pass

4th pass

1st Pass of MD5
■  F(x,y,z) (x∧y)∨(~x∧z)
■  16 processing steps, producing d0..d3

output:
di = dj + (dk + F(dl,dm,dn) + mo + Tp)
<< s
■  values of subscripts, in this order

35

i j k l m n o p s

0 1 0 1 2 3 0 1 7

3 0 3 0 1 2 1 2 12

2 3 2 3 0 1 2 3 17

1 2 1 2 3 0 3 4 22

0 1 0 1 2 3 4 5 7

def
=

…

Logic of Each Step

36

d0 d1 d2 d3

d0 d1 d2 d3

g +

+

+

+

<<s

mk

T[i]

g: F, G, H, or I

Logic of Each Step (Cont’d)

■  Within each pass, each of the 16 words of mi is used
exactly once
■  Round 1, mi are used in the order of i
■  Round 2, in the order of ρ2(i), where ρ2(i)=(1+5i) mod 16
■  Round 3, in the order or ρ3(i), where ρ3(i)=(5+3i) mod 16
■  Round 4, in the order or ρ4(i), where ρ4(i)=7i mod 16

■  Each word of T[i] is used exactly once throughout all
passes

■  Number of bits s to rotate to get di
■  Round 1, s(d0)=7, s(d1)=22, s(d2)=17, s(d3)=12
■  Round 2, s(d0)=5, s(d1)=20, s(d2)=14, s(d3)=9
■  Round 3, s(d0)=4, s(d1)=23, s(d2)=16, s(d3)=11
■  Round 4, s(d0)=6, s(d1)=21, s(d2)=15, s(d3)=10

37

2nd Pass of MD5

■  G(x,y,z) (x∧z)∨(y∧~z)
■  Form of processing (16 steps):

di = dj + (dk + G(dl,dm,dn) + mo + Tp)
<< s

38

i j k l m n o p s

0 1 0 1 2 3 1 17 5

3 0 3 0 1 2 6 18 9

2 3 2 3 0 1 11 19 14

1 2 1 2 3 0 0 20 20

0 1 0 1 2 3 5 21 5 …

def
=

3rd Pass of MD5

■  H(x,y,z) (x ⊕ y ⊕ z)
■  Form of processing (16 steps):

di = dj + (dk + H(dl,dm,dn) + mo + Tp)
<< s

39

i j k l m n o p s
0 1 0 1 2 3 5 33 4
3 0 3 0 1 2 8 34 11
2 3 2 3 0 1 11 35 16
1 2 1 2 3 0 14 36 23
0 1 0 1 2 3 1 37 4 …

def
=

4th Pass of MD5

■  I(x,y,z) y ⊕ (x∨~z)
■  Form of processing (16 steps):

di = dj + (dk + I(dl,dm,dn) + mo + Tp) <<
s

40

i j k l m n o p s
0 1 0 1 2 3 0 49 6
3 0 3 0 1 2 7 50 10
2 3 2 3 0 1 14 51 15
1 2 1 2 3 0 5 52 21
0 1 0 1 2 3 12 53 6 …

def
=

•  Output of this pass added to input MD

(In)security of MD5
■  A few recently discovered methods can

find collisions in a few hours
■  A few collisions were published in 2004
■  Can find many collisions for 1024-bit

messages
■  More discoveries afterwards
■  In 2005, two X.509 certificates with different

public keys and the same MD5 hash were
constructed
■  This method is based on differential analysis
■  8 hours on a 1.6GHz computer
■  Much faster than birthday attack

41

SHA-1 Hash Function

Secure Hash Algorithm (SHA)

■  Developed by NIST, specified in the
Secure Hash Standard, 1993

■  SHA is specified as the hash algorithm in
the Digital Signature Standard (DSS)

■  SHA-1: revised (1995) version of SHA

43

SHA-1 Parameters

■  Input message must be < 264 bits
■  Input message is processed in 512-bit blocks,

with the same padding as MD5
■  Message digest output is 160 bits long

■  Referred to as five 32-bit words A, B, C, D, E
■  IV: A = 0x67452301, B = 0xEFCDAB89, C =

0x98BADCFE, D = 0x10325476, E = 0xC3D2E1F0

■  Footnote: bytes of words are stored in big-
endian order

44

Big Endian vs. Little Endian

■  Big Endian

■  A 32-bit word can be saved in 4 bytes
■  For instance, 90AB12CD16

■  Little Endian

45

Preprocessing of a Block

■  Let 512-bit block be denoted as sixteen
32-bit words W0..W15

■  Preprocess W0..W15 to derive an
additional sixty-four 32-bit words
W16..W79, as follows:

for 16 ≤ t ≤ 79
 Wt = (Wt-16 ⊕ Wt-14 ⊕ Wt-8 ⊕ Wt-3)
<< 1

46

Block Processing

■  Consists of 80 steps! (vs. 64 for MD5)
■  Inputs for each step 0 ≤ t ≤ 79:

■  Wt
■  Kt – a constant
■  A,B,C,D,E: current values to this point

■  Outputs for each step:
■  A,B,C,D,E : new values

■  Output of last step is added to input of
first step to produce 160-bit Message
Digest

47

Constants Kt

■  Only 4 values (represented in 32 bits),
derived from 230 * i1/2, for i = 2, 3, 5, 10
■  for 0 ≤ t ≤ 19: Kt = 0x5A827999 (i=2)
■  for 20 ≤ t ≤ 39: Kt = 0x6ED9EBA1 (i=3)
■  for 40 ≤ t ≤ 59: Kt = 0x8F1BBCDC (i=5)
■  for 60 ≤ t ≤ 79: Kt = 0xCA62C1D6 (i=10)

48

Function f(t,B,C,D)

■  3 different functions are used in SHA-1
processing

49

Round Function f(t,B,C,D)

0 ≤ t ≤ 19 (B∧C) ∨ (~B∧D)

20 ≤ t ≤ 39 B ⊕ C ⊕ D

40 ≤ t ≤ 59 (B∧C) ∨ (B∧D) ∨ (C∧D)

60 ≤ t ≤ 79 B ⊕ C ⊕ D

Compare with MD-5

F = (x∧y) ∨ (~x∧z)

H = x ⊕ y ⊕ z

H = x ⊕ y ⊕ z

•  No use of MD5’s G ((x∧z)∨(y∧~z)) or I (y ⊕ (x∨~z))

Processing Per Step

■  Everything to right of “=” is input value to
this step

50

for t = 0 upto 79

 A = E + (A << 5) + Wt + Kt + f(t,B,C,D)

 B = A

 C = B << 30

 D = C

 E = D

endfor

Comparison: SHA-1 vs. MD5

■  SHA-1 is a stronger algorithm
■  brute-force attacks require on the order

of 280 operations vs. 264 for MD5
■  SHA-1 is about twice as expensive to

compute
■  Both MD-5 and SHA-1 are much faster to

compute than DES

51

Security of SHA-1
■  SHA-1

■  output 160 bits
■  “Broken”, but not yet cracked

■  Collisions in 269 hash operations, much less than the
brute-force attack of 280 operations

■  Results were circulated in February 2005, and
published in CRYPTO ’05 in August 2005

■  Considered insecure for collision resistance
■  One-way property still holds

■  SHA-2(SHA-224, SHA-256, SHA-384, SHA-512…)
52

SHA-3 is coming
■  NIST is having an ongoing competition for SHA-3, the next generation

of standard hash algorithms
■  2007: Request for submissions of new hash functions
■  2008: Submissions deadline. Received 64 entries. Announced first-

round selections of 51 candidates.
■  2009: After First SHA-3 candidate conference in Feb, announced 14

Second Round Candidates in July.
■  2010: After one year public review of the algorithms, hold second

SHA-3 candidate conference in Aug. Announced 5 Third-round
candidates in Dec.

■  2011: Public comment for final round
■  2012: Held Final hash candidate conference on March 22-23. Draft

standard, wait for comments, and submit recommendation.
■  The winning algorithm, Keccak, was created by Guido Bertoni, Joan

Daemen and Gilles Van Assche of STMicroelectronics and Michaël
Peeters of NXP Semiconductors.

53

Hashed Message Authentication Code
(HMAC)

Extension Attacks

■  Given M1, and secret key K, can easily
concatenate and compute the hash:
H(K|M1|padding)

■  Given M1, M2, and H(K|M1|padding) easy to
compute H(K|M1|padding|M2|newpadding) for
some new message M2

■  Simply use H(K|M1|padding) as the IV for
computing the hash of M2|newpadding
■  does not require knowing the value of the secret key K

55

Extension Attacks (Cont’d)
■  Many proposed solutions to the extension

attack, but HMAC is the standard
■  Essence: digest-inside-a-digest, with the

secret used at both levels
■  The particular hash function used

determines the length of the message
digest = length of HMAC output

56

HMAC Processing

57

Key K

0x363636…36

compute
message digest

⊕

pad on right with 0’s to
512 bits in length

concatenate

Message M

0x5c5c5c…5c

HMAC(key,message)

⊕

compute
message digest

concatenate

Security of HMAC

■  If used with a secure hash functions (e.g.,
SHA-256) and according to the
specification (key size, and use correct
output), no known practical attacks against
HMAC

58

At high level, HMACK[M] = H(K || H(K || M))

Summary
■  Hashing is fast to compute
■  Has many applications (some making use

of a secret key)
■  Hash images must be at least 128 bits

long
■  but longer is better

■  Hash function details are tedious "
■  HMAC protects message digests from

extension attacks

