N
 YHITAL
 CSCI 454/554 Computer and Network Security

Topic 4. Cryptographic Hash Functions

KK

Hash Function Properties

Desirable Properties of Hash Functions Willian

- Consider a hash function H
- Performance: Easy to compute $\mathrm{H}(m)$
. One-way property (preimage resistant): Given $\mathrm{H}(m)$ but not m, it's computationally infeasible to find m
- Weak collision resistant (2-nd preimage resistant): Given $\mathrm{H}(m)$, it's computationally infeasible to find m^{\prime} such that $\mathrm{H}(m)=\mathrm{H}(m)$.
- Strong collision resistant (collision resistant): Computationally infeasible to find m_{1}, m_{2} such that $\mathrm{H}\left(m_{1}\right)=\mathrm{H}\left(m_{2}\right)$

O Outline MELLAN

- Hash function lengths
- Hash function applications
- MD5 standard
- SHA-1 standard
- Hashed Message Authentication Code (HMAC)

Hash Function Mig mid

Message of \square A fixed-length short message

- Also known as
- Message digest
- One-way transformation
. One-way function
- Hash

Length of $H(m)$ much shorter then length of m

- Usually fixed lengths: 128 or 160 bits

Length of Hash Image
 KILIAN

- Question
- Why do we have 128 bits or 160 bits in the output of a hash function?
- If it is too long
- Unnecessary overhead
. If it is too short
- Birthday paradox
- Loss of strong collision property

R Birthday Paradox

WILLIAM

- Question
- What is the smallest group size k such that
- The probability that at least two people in the group have the same birthday is greater than 0.5 ?
- Assume 365 days a year, and all birthdays are equally likely
- $\mathrm{P}(k$ people having k different birthdays $)$: $\mathrm{Q}(365, k)=365!/(365-k)!365^{k}$
- P (at least two people have the same birthday): $\mathrm{P}(365, k)=1-\mathrm{Q}(365, k) \geq 0.5$
. k is about 23

Birthday Paradox (Cont’d)
 MULLAN

- Generalization of birthday paradox
- Given
- a random integer with uniform distribution between 1 and n, and
- a selection of k instances of the random variables,
- What is the least value of k such that
- There will be at least one duplicate
- with probability $\mathrm{P}(n, k)>0.5$,
- Generalization of birthday paradox
- $\mathrm{P}(n, k) \approx 1-\mathrm{e}^{-\mathrm{k}^{*}(k-1) / 2 n}$
- For large n and k, to have $\mathrm{P}(n, k)>0.5$ with the smallest k, we have

$$
k=\sqrt{2(\ln 2) n}=1.18 \sqrt{n} \approx \sqrt{n}
$$

- Example
- $1.18^{*}(365)^{1 / 2}=22.54$

Birthday Paradox (Cont'd) MILAN

- Implication for hash function H of length m
. With probability at least 0.5
- If we hash about $2^{\mathrm{m} / 2}$ random inputs,
- Two messages will have the same hash image
. Birthday attack
- Conclusion
. Choose $m \geq 128$

欴		WILIAM
Hash Function Applications		

Application: File Authentication WILAAM

- Want to detect if a file has been changed by someone after it was stored
- Method
- Compute a hash H(F) of file F
. Store $H(F)$ separately from F
- Can tell at any later time if F has been changed by computing $H\left(F^{\prime}\right)$ and comparing to stored $\mathrm{H}(\mathrm{F})$
- Why not just store a duplicate copy of F???

- Alice wants to authenticate herself to Bob
- assuming they already share a secret key K
- Protocol:

User Authentication... (cont'd) WILAANV

- Why not just send...
. ...K, in plaintext?
. ... $\mathrm{H}(\mathrm{K})$? , i.e., what's the purpose of R ?

Application: Commitment Protocols Mill

- Ex.: A and B wish to play the game of "odd or even" over the network

1. A picks a number X
2. B picks another number Y
3. A and B "simultaneously" exchange X and Y
4. A wins if $X+Y$ is odd, otherwise B wins

- If A gets Y before deciding X, A can easily cheat (and vice versa for B)
. How to prevent this?

Commitment... (Cont'd)
WILAAN

- Proposal: A must commit to X before B will send Y
- Protocol:

- Can either A or B successfully cheat now?
- Why is sending $H(X)$ better than sending X ?
- Why is sending $H(X)$ good enough to prevent A from cheating?
- Why is it not necessary for B to send $H(Y)$ (instead of Y)?
- What problems are there if:

1. The set of possible values for X is small?
2. B can predict the next value X that A will pick?

Application: Message Encryption MIMLALV

- Assume A and B share a secret key K
- but don't want to just use encryption of the message with K
- A sends B the (encrypted) random number R1, B sends A the (encrypted) random number R2
- And then...

- R1|R2 is used like the IV of OFB mode, but $\mathrm{C}+\mathrm{H}$ replaces encryption; as good as encryption?

Application: Message Authentication 펀NAMV

- A wishes to authenticate (but not encrypt) a message M (and A, B share secret key K)

- Why is R needed? Why is K needed?

Verifying a signature

- Only one party (Bob) knows the private key

Is Encryption a Good Hash Function? WILIAN

- Building hash using block chaining techniques
- Encryption block size may be too short (DES=64)
- Birthday attack
- Can construct a message with a particular hash fairly easily
- Extension attacks

Hash Using Block Chaining Techniques

- Meet-in-the-middle attack
- Get the correct hash value G
- Construct any message in the form $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{\mathrm{n}-2}$
- Compute $H_{i}=E_{Q i}\left(H_{i-1}\right)$ for $1 \leq i \leq(n-2)$.
- Generate $2^{m / 2}$ random blocks; for each block X, compute $\mathrm{E}_{\mathrm{x}}\left(\mathrm{H}_{\mathrm{n}-2}\right)$.
- Generate $2^{m / 2}$ random blocks; for each block Y, compute $\mathrm{D}_{\mathrm{Y}}(\mathrm{G})$.
- With high probability there will be an X and Y such that $E_{x}\left(H_{n-2}\right)=D_{y}(G)$.
- Form the message $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{\mathrm{n}-2}, \mathrm{X}, \mathrm{Y}$. It has the hash value G .

Modern Hash Functions

WILLIAM
E'MARY

- MD5
. Previous versions (i.e., MD2, MD4) have weaknesses.
- Broken; collisions published in August 2004
- Too weak to be used for serious applications
- SHA (Secure Hash Algorithm)
- Weaknesses were found
- SHA-1
. Broken, but not yet cracked
- Collisions in 2^{69} hash operations, much less than the brute-force attack of 2^{80} operations
- Results were circulated in February 2005, and published in CRYPTO '05 in August 2005
- SHA-2 (SHA-256, SHA-384, ...)

x^{2}		MULLAN
MD5 Hash Function		

MD5: Message Digest Version 5 뻔ARV

- MD5 at a glance

MD5: A High-Level View

Called a compression function

Pa Padding MyUA

- There is always padding for MD5, and padded messages must be multiples of 512 bits
- To original message M , add padding bits "10... 0 "
- enough 0's so that resulting total length is 64 bits less than a multiple of 512 bits
- Append L (original length of M), represented in 64 bits, to the padded message
- Footnote: the bytes of each 32-bit word are stored in little-endian order (LSB to MSB)
- How many 0 's if length of $M=$
- $\quad \mathrm{n} * 512$?
- $\quad n * 512-64$?
- $\quad \mathrm{n} * 512-65$?
- The four 32-bit words of the output (the digest) are referred to as d0, d1, d2, d3
- Initial values (in little-endian order)
- d0 = 0x67452301
- d1 $=0 \times E F C D A B 89$
- d2 $=0 \times 98$ BADCFE
. d3 $=0 \times 10325476$
- The sixteen 32-bit words of each message block are referred to as m0, ..., m15 - ($16 * 32=512$ bits in each block)

	${ }^{2}$	Notation	MU14AN

- $\sim X=$ bit-wise complement of x
- $x \wedge y, x \vee y, x \oplus y=$ bit-wise AND, OR, XOR of x and y
- $x \ll y=$ left circular shift of x by y bits
- $x+y=$ arithmetic sum of x and y (discarding carry-out from the msb)
- $\lfloor x\rfloor=$ largest integer less than or equal to x

R Processing a Block-Overview

- Every message block Yi contains 16 32-bit words:
- $\mathrm{m}_{0} \mathrm{~m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{15}$
- A block is processed in 4 consecutive passes, each modifying the MD5 buffer $\mathrm{d}_{0}, \ldots, \mathrm{~d}_{3}$.
- Called $\mathcal{F}, \mathcal{G}, \mathcal{H}, I$
- Each pass uses one-fourth of a 64-element table of constants, T[1...64]
- $\mathrm{T}[\mathrm{i}]=\left\lfloor 2^{32 *}\right.$ abs $\left.(\sin (1))\right\rfloor$, represented in 32 bits
- Output digest $=$ input digest + output of 4th pass

Logic of Each Step (Cont'd) willial

- Within each pass, each of the 16 words of m_{i} is used exactly once
- Round $1, m_{i}$ are used in the order of i

Round 2 , in the order of $\rho 2(i)$, where $\rho 2(i)=(1+5 i) \bmod 16$

- Round 3 , in the order or $\rho 3(\mathrm{i})$, where $\rho 3(\mathrm{i})=(5+3 \mathrm{i}) \bmod 16$

Round 4, in the order or $\rho 4(i)$, where $\rho 4(i)=7 i \bmod 16$

- Each word of $T[i]$ is used exactly once throughout al passes
- Number of bits s to rotate to get d

Round 1, $s\left(d_{0}\right)=7, s\left(d_{1}\right)=22, s\left(d_{2}\right)=17, s\left(d_{3}\right)=12$

- Round $2, \mathrm{~s}\left(\mathrm{~d}_{0}\right)=5, \mathrm{~s}\left(\mathrm{~d}_{1}\right)=20, \mathrm{~s}\left(\mathrm{~d}_{2}\right)=14, \mathrm{~s}\left(\mathrm{~d}_{3}\right)=9$
- Round 3, $s\left(d_{0}\right)=4, s\left(d_{1}\right)=23, s\left(d_{2}\right)=16, s\left(d_{3}\right)=11$
- Round $4, s\left(d_{0}\right)=6, s\left(d_{1}\right)=21, s\left(d_{2}\right)=15, s\left(d_{3}\right)=10$
- $G(x, y, z) \stackrel{\text { def }}{=}(x \wedge z) \vee(y \wedge \sim z)$
- Form of processing (16 steps):
$\mathbf{d}_{\boldsymbol{i}}=\mathbf{d}_{\boldsymbol{j}}+\left(\mathbf{d}_{\boldsymbol{k}}+G\left(\mathbf{d}_{\boldsymbol{\prime}}, \mathbf{d}_{\boldsymbol{m}}, \mathbf{d}_{\boldsymbol{n}}\right)+\mathbf{m}_{\boldsymbol{o}}+\mathrm{T}_{p}\right)$
<<S

- $I(x, y, z) \stackrel{\text { def }}{=} y \oplus(x v \sim z)$
- Form of processing (16 steps):
$\mathbf{d}_{i}=\mathbf{d}_{j}+\left(\mathbf{d}_{k}+I\left(\mathbf{d}_{l} \mathbf{d}_{\boldsymbol{m}} \mathbf{d}_{\boldsymbol{n}}\right)+\mathbf{m}_{o}+\mathrm{T}_{p}\right) \ll$
s

- Output of this pass added to input MD
- $\mathcal{H}(x, y, z) \stackrel{\text { def }}{=}(x \oplus y \oplus z)$
- Form of processing (16 steps):
$\mathbf{d}_{\boldsymbol{i}}=\mathbf{d}_{\boldsymbol{j}}+\left(\mathbf{d}_{\boldsymbol{k}}+\mathcal{H}\left(\mathbf{d}_{\boldsymbol{l}}, \mathbf{d}_{\boldsymbol{m}}, \mathbf{d}_{\boldsymbol{n}}\right)+\mathbf{m}_{\boldsymbol{o}}+\mathrm{T}_{p}\right)$ < $<S$

:
TK

SHA-1 Hash Function

Secure Hash Algorithm (SHA) WMUANV

- Developed by NIST, specified in the

Secure Hash Standard, 1993

- SHA is specified as the hash algorithm in the Digital Signature Standard (DSS)
- SHA-1: revised (1995) version of SHA

SHA-1 Parameters

WILLIAM © ${ }^{\circ}$ MARY

- Input message must be $<2^{64}$ bits
- Input message is processed in 512-bit blocks, with the same padding as MD5
- Message digest output is 160 bits long
- Referred to as five 32 -bit words $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$
- IV: $\mathbf{A}=0 \times 67452301, \mathbf{B}=0 \times E F C D A B 89, \mathbf{C}=$ 0x98BADCFE, $\mathbf{D}=0 \times 10325476, \mathbf{E}=0 \times C 3 D 2 E 1 F 0$
- Footnote: bytes of words are stored in bigendian order

Big Endian vs. Little Endian $\begin{aligned} & \text { WINAA } \\ & \text { © MAR }\end{aligned}$

- A 32-bit word can be saved in 4 bytes
. For instance, 90AB12CD 16
- Big Endian
- Little Endian

Address	Value
1000	90
1001	AB
1002	12
1003	CD

Address	Value
1000	CD
1001	12
1002	AB
1003	90

K Preprocessing of a Block MIMAN

- Let 512-bit block be denoted as sixteen 32-bit words $\mathbf{W}_{\mathbf{0}} . \mathbf{W}_{\mathbf{1 5}}$
- Preprocess $\mathbf{W}_{\mathbf{0}} . \mathbf{W}_{\mathbf{1 5}}$ to derive an additional sixty-four 32-bit words $\mathbf{W}_{\mathbf{1 6}} . \mathbf{W}_{\mathbf{7 9}}$, as follows:
for $16 \leq t \leq 79$
$\mathbf{W}_{t}=\left(\mathbf{W}_{t-16} \oplus \mathbf{W}_{t-14} \oplus \mathbf{W}_{t-8} \oplus \mathbf{W}_{t-3}\right)$
<< 1

- Consists of 80 steps! (vs. 64 for MD5)
- Inputs for each step $0 \leq t \leq 79$:
- \mathbf{W}_{t}
- K_{t} - a constant
- A,B,C,D,E: current values to this point - Outputs for each step:
- A,B,C,D,E : new values
- Output of last step is added to input of first step to produce 160-bit Message Digest

Constants K_{t}

- Only 4 values (represented in 32 bits), derived from $2^{30} * j^{1 / 2}$, for $i=2,3,5,10$
. for $0 \leq t \leq 19: \mathrm{K}_{t}=0 \times 5 A 827999(\mathrm{i}=2)$
- for $20 \leq t \leq 39: \mathrm{K}_{t}=0 \times 6 E D 9 E B A 1(\mathrm{i}=3)$
- for $40 \leq t \leq 59: \mathrm{K}_{t}=0 \times 8$ F1BBCDC $(\mathrm{i}=5)$
- for $60 \leq t \leq 79: \mathrm{K}_{t}=0 \times C A 62 C 1 D 6(\mathrm{i}=10)$

Function $f(t, B, C, D)$ MIULN

- 3 different functions are used in SHA-1 processing

Round	Function $\mathbf{f (t , B , C , D})$	Compare with MD-5
$0 \leq t \leq 19$	$(\mathrm{~B} \wedge \mathrm{C}) \vee(\sim \mathrm{B} \wedge \mathrm{D})$	$\mathcal{F}=(x \wedge y) \vee(\sim x \wedge z)$
$20 \leq t \leq 39$	$\mathrm{~B} \oplus \mathrm{C} \oplus \mathrm{D}$	$\mathcal{H}=x \oplus y \oplus z$
$40 \leq t \leq 59$	$(\mathrm{~B} \wedge \mathrm{C}) \vee(\mathrm{B} \wedge \mathrm{D}) \vee(\mathrm{C} \wedge \mathrm{D})$	
$60 \leq t \leq 79$	$\mathrm{~B} \oplus \mathrm{C} \oplus \mathrm{D}$	$\mathcal{H}=x \oplus y \oplus z$

No use of MD5's $\mathcal{G}((x \wedge z) \vee(y \wedge \sim z))$ or $I(y \oplus(x \vee \sim z))$

Comparison: SHA-1 vs. MD5

- SHA-1 is a stronger algorithm
- brute-force attacks require on the order of 2^{80} operations vs. 2^{64} for MD5
- SHA-1 is about twice as expensive to compute
- Both MD-5 and SHA-1 are much faster to compute than DES
- Everything to right of " $=$ " is input value to this step

```
for t = 0 upto 79
```

for t = 0 upto 79
A = E + (A << 5) + W W + K K + f(t,B,C,D)
A = E + (A << 5) + W W + K K + f(t,B,C,D)
B = A
B = A
C= B<< 30
C= B<< 30
D = C
D = C
E = D
E = D
endfor

```
endfor
```


Processing Per Step $\begin{gathered}\text { williav } \\ \text { emarz }\end{gathered}$

Pecurity of SHA-1 KHIMM

- SHA-1
. output 160 bits
. "Broken", but not yet cracked
- Collisions in 2^{69} hash operations, much less than the brute-force attack of 2^{80} operations
Results were circulated in February 2005, and published in CRYPTO '05 in August 2005
- Considered insecure for collision resistance
. One-way property still holds
- SHA-2(SHA-224, SHA-256, SHA-384, SHA-512...)

Extension Attacks

 KILLANV- Given M1, and secret key K, can easily concatenate and compute the hash: H(K|M1|padding)
- Given M1, M2, and $\mathrm{H}(\mathrm{K}|\mathrm{M} 1|$ padding $)$ easy to compute $\mathrm{H}(\mathrm{K} \mid \mathrm{M} 1$ |padding $|\mathrm{M} 2|$ newpadding) for some new message M2
- Simply use $\mathrm{H}(\mathrm{K} \mid \mathrm{M} 1$ |padding) as the IV for computing the hash of $\mathrm{M} 2 \mid$ newpadding
- does not require knowing the value of the secret key K

Extension Attacks (Cont'd) willikiv

- Many proposed solutions to the extension attack, but HMAC is the standard
- Essence: digest-inside-a-digest, with the secret used at both levels
- The particular hash function used determines the length of the message digest $=$ length of HMAC output

2	Security of HMAC	

At high level, $\mathrm{HMAC}_{\mathrm{K}}[\mathbf{M}]=\mathbf{H}(\mathrm{K} \| \mathbf{H}(\mathrm{K} \| \mathrm{M}))$

- If used with a secure hash functions (e.g., SHA-256) and according to the specification (key size, and use correct output), no known practical attacks against HMAC
- Hashing is fast to compute
- Has many applications (some making use of a secret key)
- Hash images must be at least 128 bits long
- but longer is better
- Hash function details are tedious $*$
- HMAC protects message digests from extension attacks

