

Primes and Factors MyNAN

- a is prime if it has no non-trivial factors
. examples: $2,3,5,7,11,13,17,19,31, \ldots$
- Theorem: there are infinitely many primes
- Any integer $a>1$ can be factored in a unique way as $p_{1}{ }^{a_{1}} \bullet p_{2}{ }^{a_{2}} \bullet \ldots p_{t}{ }^{a_{t}}$
- where all $p_{1}>p_{2}>\ldots>p_{t}$ are prime numbers and where each $a_{i}>0$

Examples

$91=13^{1} \times 7^{1}$
$11011=13^{1} \times 11^{2} \times 7^{1}$

OKC Outline MILAM

- GCD and Euclid's Algorithm
- Modulo Arithmetic
- Modular Exponentiation
- Discrete Logarithms
. Set of all integers is $Z=\{\ldots,-2,-1,0,1,2$, ...\}
- b divides a (or b is a divisor of a) if $a=$ $m b$ for some m
- denoted $b \mid a$
- any $b \neq 0$ divides 0
- For any $a, 1$ and a are trivial divisors of a - all other divisors of a are called factors of a

2K Common Divisors Multuvi

A number d that is a divisor of both a and b is a common divisor of a and b

Example: common divisors of 30 and 24 are 1, 2, 3, 6

- If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$ and $d \mid(a-b)$ Example: Since $3 \mid 30$ and $3|24,3|(30+24)$ and $3 \mid(30-24)$
- If $d \mid a$ and $d \mid b$, then $d \|(a x+b y)$ for any integers x and y

Example: $3 \mid 30$ and $3|24 \rightarrow 3|(2 * 30+6 * 24)$

Greatest Common Divisor (GCD) WiLAAN

- $\operatorname{gcd}(a, b)=\max \{k|k| a$ and $k \mid b\}$

Example: $\operatorname{gcd}(60,24)=12, \quad \operatorname{gcd}(a, 0)=\mathrm{a}$

- Observations
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$
- $\operatorname{gcd}(a, b) \leq \min (|a|,|b|)$
- if $0 \leq n$, then $\operatorname{gcd}(a n, b n)=n^{*} \operatorname{gcd}(a, b)$
- For all positive integers d, a, and b...
...if $d \mid a b$
...and $\operatorname{gcd}(a, d)=1$
...then $d \mid b$

GCD (Cont'd) MILAN

- Computing GCD by hand:
if $a=p_{1}^{a 1} p_{2}^{a 2} \ldots p_{r}^{a r}$ and
$b=p_{1}^{b 1} p_{2}^{b 2} \ldots p_{r}^{b r}$,
\ldots where $p_{1}<p_{2}<\ldots<p_{r}$ are prime,
...and a_{i} and b_{i} are nonnegative,
...then $\operatorname{gcd}(a, b)=$

$$
p_{1}^{\min (a 1, b 1)} p_{2}^{\min (a 2, b 2)} \ldots p_{r}^{\min (a r, b r)}
$$

\Rightarrow Slow way to find the GCD
requires factoring a and b first (which can be slow)

Euclid's Algorithm for GCD צilliky

. Insight:
$\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$

- Procedure euclid(x, y):

- Let $\mathcal{L} C(x, y)=\{u x+v y: x, y \in Z\}$ be the set of linear combinations of x and y
- Theorem: if x and y are any integers >0, then $\operatorname{gcd}(x, y)$ is the smallest positive element of $\mathcal{L} C(x, y)$
- Euclid's algorithm can be extended to compute u and v, as well as $\operatorname{gcd}(x, y)$
- Procedure exteuclid (x, y) : (next page...)

Extended Euclid's Algorithm Mivllive

\qquad

Extended Euclid's Example $\begin{aligned} & \text { Willian } \\ & \text { MARV }\end{aligned}$

Remainders and Congruency

- For any integer a and any positive integer n, there are two unique integers q and r, such that $0 \leq r<n$ and $a=q n+r$
- r is the remainder of division by n, written $r=a \bmod n$
Example: $12=2 * 5+2 \rightarrow 2=12 \bmod 5$
- a and b are congruent modulo n, written $a \equiv b \bmod n$, if $a \bmod n=b \bmod n$ Example: $7 \bmod 5=12 \bmod 5 \rightarrow 7 \equiv 12 \bmod 5$
. In modular arithmetic, ...a negative number a is usually replaced by the congruent number $b \bmod n$, ...where b is the smallest non-negative number
...such that $b=a+m^{*} n$
Example: $-3 \equiv 4 \bmod 7$

- For any positive integer n, the integers can be divided into n equivalence classes according to their remainders modulo n - denote the set as Z_{n}
- i.e., the $(\bmod n)$ operator maps all integers into the set of integers $Z_{n}=\{0,1$, $2, \ldots,(n-1)\}$

Modular Arithmetic Mictian

- Modular addition
- $[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$

Example: $[16 \bmod 12+8 \bmod 12] \bmod 12=(16+8) \bmod 12=0$

- Modular subtraction
- $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$

Example: $[22 \bmod 12-8 \bmod 12] \bmod 12=(22-8) \bmod 12=2$

- Modular multiplication
- $[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n$

Example: $[22 \bmod 12 \times 8 \bmod 12] \bmod 12=(22 \times 8) \bmod 12=8$

Properties of Modular Arithmetic $\begin{gathered}\text { WIILAAV } \\ \text { MARV }\end{gathered}$

. Commutative laws

- $(w+x) \bmod n=(x+w) \bmod n$
- $(w \times x) \bmod n=(x \times w) \bmod n$
- Associative laws
- $[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$
- $[(w \times x) \times y] \bmod \mathrm{n}=[w \times(x \times y)] \bmod n$
- Distributive law
- ${ }_{n}[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod$

240
 Properties (Cont'd)
 KIULAM

- Idempotent elements
- $(0+m) \bmod n=m \bmod n$
- $(1 \times m) \bmod n=m \bmod n$
- Additive inverse ($-w$)
- for each $m \in Z_{n}$, there exists z such that $(m+z) \bmod n=0$
- alternatively, $z=(n-m) \bmod n$

Example: 3 are 4 are additive inverses $\bmod 7$, since $(3+4) \bmod 7=0$

- Multiplicative inverse
- for each positive $m \in Z_{n}$, is there a z s.t. $m * z=1 \bmod n$?

Finding the Multiplicative Inverse $\begin{gathered}\text { WIILAAM } \\ \mathrm{E} A R X\end{gathered}$

- Given m and n, how do you find m^{1} mod n ?
- Extended Euclid's Algorithm
exteuclid (m, n):
$m^{1} \bmod n=\mathrm{v}_{\mathrm{n}-1}$
- if $\operatorname{gcd}(m, n) \neq 1$ there is no multiplicative inverse $m^{-1} \bmod n$

- If p is prime
...and a is a positive integer not divisible by p,
...then $a^{p-1} \equiv 1(\bmod p)$
Example: 11 is prime, 3 not divisible by 11 ,
so $3^{11-1}=59049 \equiv 1(\bmod 11)$

Example: 37 is prime, 51 not divisible by 37 , so $51^{37-1} \equiv 1(\bmod 37)$

Useful?

Fermat's "Little" Theorem williay		
If p is prime .and a is a positive integer not divisible by p, . .then $a^{p-1} \equiv 1(\bmod p)$		
Example: 11 is prime, 3 not divisible by 11, so $3^{11-1}=59049 \equiv 1(\bmod 11)$		
Example: 37 is prime, 51 not divisible by 37 , so $51^{37-1} \equiv 1(\bmod 37)$		
Useful?		
		${ }_{35}$

If the inverse of b mod n exists, then $(a \bmod n) /(b \bmod n)=\left(a * b^{-1}\right) \bmod n$

$$
\begin{aligned}
& \text { Example: }(13 \bmod 11) /(4 \bmod 11)=\left(13 * 4^{-1} \bmod 11\right)= \\
& (13 * 3) \bmod 11=6
\end{aligned}
$$

Example: $(8 \bmod 10) /(4 \bmod 10)$ not defined since 4 does not have a multiplicative inverse $\bmod 10$

Modular Powers MITAM

Example: show the powers of $3 \bmod 7$

i	0	1	2	3	4	5	6	7	8
3^{i}	1	3	9	27	81	243	729	2187	6561
$3^{i} \bmod 7$	1	3	2	6	4	5	1	3	2

And the powers of $2 \bmod 7$

i	0	1	2	3	4	5	6	7	8	9
2^{i}	1	2	4	8	16	32	64	128	256	512
$2^{i} \bmod 7$	1	2	4	1	2	4	1	2	4	1

2
 The Totient Function WILLIAM EुMARY

- $\phi(n)=\left|Z_{n}^{*}\right|=$ the number of integers less than n and relatively prime to n
a) if n is prime, then $\phi(n)=n-1$

Example: $\phi(7)=6$
b) if $n=p^{\alpha}$, where p is prime and $\alpha>0$, then $\phi(n)=(p-1)^{*} p^{\alpha-1}$
Example: $\phi(25)=\phi\left(5^{2}\right)=4 * 5^{1}=20$
c) if $n=p^{*} q$, and p, q are relatively prime, then $\phi(n)=\phi(p)^{*} \phi(q)$
Example: $\phi(15)=\phi(5 * 3)=\phi(5) * \phi(3)=4 * 2=8$
. For every a and n that are relatively prime, $a^{\varnothing(n)} \equiv 1 \bmod n$

Example: For $\mathrm{a}=3, \mathrm{n}=10$, which relatively prime:

$$
\phi(10)=4
$$

$$
3^{\phi(10)}=3^{4}=81 \equiv 1 \bmod 10
$$

Example: For $\mathrm{a}=2, \mathrm{n}=11$, which are relatively prime:

$$
\phi(11)=10
$$

$2 \phi(11)=2^{10}=1024 \equiv 1 \bmod 11$

26 Modular Exponentiation

- $X^{y} \bmod n \equiv X^{y} \bmod \phi(n) \bmod n$

$$
\begin{aligned}
& \text { Example: } x=5, y=7, n=6, \phi(6)=2 \\
& 5^{7} \bmod 6=5^{7 \bmod 2} \bmod 6=5 \bmod 6
\end{aligned}
$$

- by this, if $y \equiv 1 \bmod \phi(n)$, then $x^{y} \bmod \mathrm{n} \equiv x \bmod$ n

Example:
$\mathrm{x}=2, \mathrm{y}=101, \mathrm{n}=33, \phi(33)=20,101 \bmod 20=1$
$2^{101} \bmod 33=2 \bmod 33$

- Consider the expression $a^{m} \equiv 1 \bmod n$
- If a and n are relatively prime, then there is at least one integer m that satisfies the above equation
. Ex: for $a=3$ and $n=7$, what is m ?

\boldsymbol{i}	1	2	3	4	5	6	7	8	9
$\mathbf{3}^{\boldsymbol{i}} \boldsymbol{\operatorname { m o d }} \mathbf{7}$	3	2	6	4	5	1	3	2	6

The Power (Cont'd) MILAMV

- The least positive exponent m for which the above equation holds is referred to as...
- the order of a (mod n), or
- the length of the period generated by a

Understanding Order of $a(\bmod n)$
KHULAN

- Powers of some integers a modulo 19

- The length of each period divides $18=$ $\phi(19)$
- i.e., the lengths are $1,2,3,6,9,18$
- Some of the sequences are of length 18
- e.g., the base 2 generates (via powers) all members of $Z_{n}{ }^{*}$
- The base is called the primitive root
- The base is also called the generator when n is prime

Computing Modular Powers Efficiently WIMLAMV

- The repeated squaring algorithm for computing $a^{b}(\bmod n)$
- Let b_{i} represent the $f^{\text {th }}$ bit of b (total of k bits)

Computing (Cont'd)
MILIAv

Algorithm modexp ($\mathrm{a}, \mathrm{b}, \mathrm{n}$)

Requires time $\propto k=$ logarithmic in b

Q: Can some other result be used to compute this particular example more easily? (Note: $561=3 * 11^{*} 17$.)

Square Roots

MULLAN

- x is a non-trivial square root of $1 \bmod n$ if it satisfies the equation $x^{2} \equiv 1 \bmod n$, but x is neither 1 nor $-1 \bmod n$
Ex: 6 is a square root of $1 \bmod 35$ since $6^{2} \equiv 1 \bmod 35$
- Theorem: if there exists a non-trivial square root of $1 \bmod n$, then n is not a prime
- i.e., prime numbers will not have nontrivial square roots

䞨		WILLIAM
	Discrete Logarithms	

Primitive Roots Mill

- Reminder: the highest possible order of $a(\bmod n)$ is $\phi(n)$
- If the order of $a(\bmod n)$ is $\phi(n)$, then a is referred to as a primitive root of n
- for a prime number p, if a is a primitive root of p, then $a, a^{2}, \ldots, a^{p-1}$ are all distinct numbers $\bmod p$
- No simple general formula to compute primitive roots modulo n
- there are methods to locate a primitive root faster than trying out all candidates

2 Primitive Roots (Cont'd)

- Theorem: the only integers with primitive roots are of the form $2,4, p^{\alpha}$, and $2 p^{\alpha}$, where
- p is any prime >2
- α is a positive integer

Example: for $\mathrm{n}=4, \phi(\mathrm{n})=2$, primitive roots $=\{3\}$
Example: for $\mathrm{n}=3^{2}=9, \phi(\mathrm{n})=6$, primitive roots $=\{2,5\}$

Example: for $\mathrm{n}=19, \phi(\mathrm{n})=18$, primitive roots $=$
\{2,3,10,13,14,15\}

Discrete Logarithms צisulikv

- For a primitive root a of a number p, where
$a^{i} \equiv b \bmod p$, for some $0 \leq i \leq p-1$
- the exponent i is referred to as the index of b for the base $a(\bmod p)$, denoted as ind ${ }_{a, p}(b)$
- i is also referred to as the discrete logarithm of b to the base $a, \bmod p$

8 Logarithms (Cont'd) MIMLAN

- Example: 2 is a primitive root of 19 . The powers of $2 \bmod 19=$

Given a, i, and p, computing $\mathrm{b}=\mathrm{a}^{i} \bmod p$ is straightforward

Computing Discrete Logarithmi(ulusv

- However, given a, b, and p, computing $\mathrm{i}=$ ind $_{a, p}(b)$ is difficult
- Used as the basis of some public key cryptosystems

Computing (Cont'd) צu\#likv

- Some properties of discrete logarithms
- ind $_{a, p}(1)=0$ because $a^{0} \bmod p=1$ warning: $\phi(p)$, not $p!$
- $\operatorname{ind}_{a, p}(a)=1$ because $a^{1} \bmod p=a$
- $\operatorname{ind}_{a, p}(y z)=\left(\operatorname{ind}_{a, p}(y)+\operatorname{ind}_{a, p}(z)\right) \bmod \phi(p)$

Example: $\operatorname{ind}_{2,19}(5 * 3)=\left(\operatorname{ind}_{2,19}(5)+\operatorname{ind}_{2,19}(3)\right)=11 \bmod 18$

- $\operatorname{ind}_{a, p}\left(y^{r}\right)=\left(r \operatorname{ind}_{a, p}(y)\right) \bmod \phi(p)$

Example: $\operatorname{ind}_{2,19}\left(3^{3}\right)=\left(3 * \operatorname{ind}_{2,19}(3)\right)=3 \bmod 18$

- Consider:
$X \equiv a^{\text {ind }} a_{a} p(x) \bmod p, \quad$ Ex: $3=2^{13} \bmod 19$
$y \equiv a^{\text {ind }_{a}, p(y)} \bmod p$, and Ex: $5=2^{16} \bmod 19$
$x y \equiv a^{\text {ind }}{ }_{a}, p(x y) \bmod p$ Ex: $3^{* 5=2^{11} \bmod 19}$
$a^{\text {ind }} a_{a}(x y) \bmod p \equiv\left(a^{\text {ind }} a_{a, p}(x) \bmod p\right)\left(a^{\text {ind }} a_{a, p}(y) \bmod p\right)$
Ex: $15=3 * 5$
$a^{\text {ind }} a_{, p}(x y) \bmod p \equiv\left(a^{\text {ind }} a_{, p}(x)+\right.$ ind $\left._{a}, p(y)\right) \bmod p$
Ex: $15=2^{13+16} \bmod 19$
by Euler's theorem: $a^{z} \equiv a^{q} \bmod p$ iff $z \equiv q \bmod \phi(p)$ Ex: $15=2^{11} \bmod 19=2^{29} \bmod 19 \Leftrightarrow 11 \equiv 29 \bmod 18$

1. Number theory is the basis of public key cryptography
2. Euclid's algorithm is used to find GCD and multiplicative inverse
3. Computing a ${ }^{\mathrm{b}}(\bmod \mathrm{n})$ is accomplished by repeated squaring
4. Only primes have discrete logarithms, and they are expensive to compute
