wilav
 GMARY
 CSCI 454/554 Computer and Network Security

Topic 6. Authentication

2ie

Authentication

MILIAN

- Authentication is the process of reliably verifying certain information.
- Examples
. User authentication
- Allow a user to prove his/her identity to another entity (e.g., a system, a device).
. Message authentication
- Verify that a message has not been altered without proper authorization.
- A related concept
. identification

- Password-based authentication
- Use a secret quantity (the password) that the prover states to prove he/she knows it.
. Threat: password guessing/dictionary attack

- Address-based authentication
- Assume the identity of the source can be inferred based on the network address from which packets arrive.
- Adopted early in UNIX and VMS
- Berkeley rtools (rsh, rlogin, etc)
- /etc/hosts.equiv file
- List of computers
- Per user .rhosts file
- List of <computer, account>

■ Threat

- Spoof of network address
- Not authentication of source addresses

Authentication Mechanisms (Cont'd)
WILLIAM

- Cryptographic authentication protocols
- Basic idea:
- A prover proves some information by performing a cryptographic operation on a quantity that the verifier supplies.
- Usually reduced to the knowledge of a secret value
- A symmetric key
- The private key of a public/private key pair

WILLIAM EुMARY E®MARY
 CSCI 454/554 Computer and Network Security

Topic 6.1 User Authentication

User Authentication Can Be Based On...'더ARX

1. What the user knows

- passwords, personal information, a key, a credit card number, etc.

2. What the user is

- Physical characteristics: fingerprints, voiceprint, signature dynamics, iris pattern, DNA, etc.

3. What the user has in their possession
. smart card, (physical) key, smartphone, USB token ...
4. Where the user is or can be reached

- email address, IP address, ...

5. Who the user knows?

Which of the above is best? Best in what way?

\section*{Authentication and Identity | WHIAAM |
| :---: |
| MARY |}

- What is identity?
. which characteristics uniquely identifies a person?
. do we care if identity is unique?
- Authentication: verify a user's identity
- a supplicant wishes to authenticate
- a verifier performs the authentication
- What's relationship of identity to role, or job function?

Crypto-Based Authentication MUNLUNV

- Basic idea: user performs a requested cryptographic operation on a value (a challenge) that the verifier supplies
- Usually based on knowledge of a key (secret key or private key)
- Examples: RSA, zero knowledge proofs, ...
- We'll look at such protocols in more detail next time

嘘		$\underset{\text { WILLIAM }}{\text { Cimar }}$
	Password Authentication	

Password-Based User Authentication MIMARY

- User demonstrates knowledge of a secret value to authenticate
- most common method of user authentication

- Threats to password-based authentication?

Password Storage צivilive

- Storing unencrypted passwords in a file is high risk
- compromising the file system compromises all the stored passwords
- Better idea: use the password to compute a one-way function (e.g., a hash, an encryption), and store the output of the one-way function
- When user inputs the requested password...

1. compute its one-way function
2. compare with the stored value

Example of a Study Millilivi

- In a sample of over 3000 passwords:
- 500 were easily guessed versions of dictionary words or first name / last name
. 86% of passwords were easily guessed

| - In a sample of over 3000 passwords: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - 500 were easily guessed versions of dictionary |
| words or first name / last name |
| - 86\% of passwords were easily guessed |

- A password should be easy to remember but hard to guess
. that's difficult to achieve!
- Some questions
. what makes a good password?
. where is the password stored, and in what form?
. how is knowledge of the password verified?
- Suppose passwords could be up to 9 characters long
- This would produce 10^{18} possible passwords; 320,000 years to try them all at 10 million a second!
- Unfortunately, not all passwords are equally likely to be used

- Attack 3 (offline):
- To speed up search, pre-compute F(dictionary)
- A simple look up gives the password

Pre-computed Dictionary

- Attack 2 (offline):
- Usually F is public and so is the password file
- In Unix, Fis crypt, and the password file is /etc/passwd.
- Compute F (word) for each word in the dictionary
- A match gives the password

Dictionary
Password file

Password Salt MILAM

- To make the dictionary attack a bit more difficult
- Salt is a n-bit number between 0 and 2^{n}
- Derived from, for example, the system clock and the process identifier

Password Salt (Cont'd) Mythav

- Storing the passwords

Password Salt (Cont'd) MILAMy

- Verifying the passwords

- Attack 1 ?
. Without Salt
- With Salt

Dictionary

- Attack 2?
. Without Salt
. With Salt

Does Password Salt Help? MMllavi

- Attack 3?
. Without Salt
- With Salt (or change periodically?)

Password Guidelines For Users

Initial passwords are system-generated, have to be changed by user on first login
2. User must change passwords periodically
3. Passwords vulnerable to a dictionary attack are rejected
4. User should not use same password on multiple sites
5. Be careful to choose the security problems and answers to recover your password
6. Etc.

Example: Unix Passwords wHillivi

- Keyed password hashes are stored, with two-character (16 bit) salt prepended . password file is publicly readable
- Users with identical passwords but different salt values will have different hash values

Other Password Attacks MILAMy

- Technical
- eavesdropping on traffic that may contain unencrypted passwords (especially keystroke logging)
. "Trojan horse" password entry programs
. man-in-the-middle network attack
- "Social"
. careless password handling or sharing
- phishing

W		WHLAAM
	The S/Key Protocol	

S/Key Password Generation Milllav

1. Alice selects a password \mathbf{x}
2. Alice specifies n, the number of passwords to generate
3. Alice's computer then generates a sequence of passwords

- $x_{1}=H(\mathbf{x})$
- $x_{2}=H\left(x_{1}\right)$
. ...
- $x_{n}=H\left(x_{n-1}\right)$
 33

Using "Disposable" Passwords WHULAAN

- Simple idea: generate a long list of passwords, use each only one time
- attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password
- Disadvantages
. storage overhead
- users would have to memorize lots of passwords!
- Alternative: the S/Key protocol
- based on use of one-way (e.g. hash) function

Generation... (cont'd) M\|HLAN

4. Alice communicates (securely) to a server the last value in the sequence: x_{n}

- Key feature: no one knowing x_{i} can easily find an x_{i-1} such that $\mathrm{H}\left(\mathrm{x}_{i-1}\right)=\mathrm{x}_{i}$
- only Alice possesses that information

Authentication Using S/Key wivuluv

- Assuming server is in possession of $x_{i} \ldots$

[^0]
Limitations

- Value of n limits number of passwords
- need to periodically regenerate a new chain of passwords
- Does not authenticate server! Example attack:

1. real server sends i to fake server, which is masquerading as Alice
2. fake server sends i to Alice, who responds with x_{i-1}
3. fake server then presents x_{i-1} to real server

Assessment Mink

- Convenient for users (e.g., you always have your fingerprints, never have to remember them), but...
- potentially troubling sacrifice of private information
- new wounds on your fingers
- no technique yet has all the desired properties

Example Biometric Technologies WILIAM

- Signature / penmanship / typing style
- Fingerprints
- Palm geometry
- Retina scan
- Iris scan
- Face recognition
- Voice recognition
- Relies upon physical characteristics of people to authenticate them
- Desired qualities

1. uniquely identifying
2. very difficult to forge / mimic
3. highly accurate, does not vary
4. easy to scan or collect
5. fast to measure / compare
6. inexpensive to implement

Which of these are concerns for passwords?
\qquad

P Multifactor Authentication Mullivx

- If one characteristic is pretty good, two or more characteristics should be better?
- Suppose true positive rate was AND of the two, and false positive rate was OR of the two...
. TP = TP1 * TP2
- $\mathrm{FP}=1$ - $(1-\mathrm{FP} 1) *(1-\mathrm{FP} 2)$
- Alternative: combine a biometric technique with passwords

2		MULAAM
Authentication Hardware (Tokens)		

Design Issues for Tokens MITHAN

- Cost
- Size
- Capabilities
- Robustness
- Resistance to tampering
- Usefulness if stolen / lost

20	Tokens	WILLIAM
	A token is a physical device that can be interfaced to the computer, and carries identifying information Types - passive tokens just store information - active tokens have processors and can perform cryptographic operations Examples - cards with magnetic strips . smart cards - USB storage devices - RFID tags	

20
An Example: Time Synchronized Tokens

WILLAAM

- The token contains:
- internal clock
- display
. a secret key
- Token computes a one-way function of current time+key, and displays that
- this value changes about once per minute
- User reads this value and types it in to authenticate to the server
- requires that server and token time stays synchronized

One-time Password on Smartphone

WHILAM

- Integrate physical tokens into smartphone
- Requirements:
- Security
- Malicious mobile OS cannot compromise the keying material in the one-time password (OTP) generator
- It cannot read the OTP
- Reliability
. OTP works even if mobile OS crashes
- Trusted inputs (e.g., clock time) for the OTP generator
- Trusted display

- ARM TrustZone Technology

- Two isolated execution environments
. Mobile OS cannot access the disk, memory, CPU states of the OTP generator.
. A secure clock for OTP generator
. A self-contained display and touchscreen.

1. Summary	SumPasswords are by far the most widely used form of authentication, despite numerous problems
2.Biometrics hold promise but are expensive, inconvenient, and compromise privacy	
3.Two factor authentication is commonly used for higher security	
4.One-time passwords (S/Key) are attractive, especially if combined with hardware	

[^0]: Is dictionary attack still possible?

