

Authentication with Shared Secret WHIMAN

Alice	I'm Alice	Bob
	A challenge R	
	$f\left(K_{\text {Alice-Bob }}, R\right)$	

- Weaknesses
- Authentication is not mutual; Trudy can convince Alice that she is Bob
- Trudy can hijack the conversation after the initial exchange
. If the shared key is derived from a password, Trudy can mount an off-line password guessing attack
- Trudy may compromise Bob's database and later impersonate Alice

Authentication Handshakes Mullikv

- Secure communication almost always includes an initial authentication handshake.
. Authenticate each other
. Establish session keys
- This process is not trivial; flaws in this process undermine secure communication

Authentication with Shared Secret (Cont'd) WIMLAAM

- A variation
- Requires reversible cryptography
- Other variations are possible
- Weaknesses
- All the previous weaknesses remain

Trudy doesn't have to see R to mount off-line password quessing if R has certain patterns (e.g., concatenated with a timestamp)

- Trudy sends a message to Bob, pretending to be Alice

Authentication with Public Key

- Bob's database is less risky
- Weaknesses
- Authentication is not mutual; Trudy can convince Alice that she is Bob
- Trudy can hijack the conversation after the initial exchange
- Trudy can trick Alice into signing something
- Use different private key for authentication

A variation

Mutual Authentication (Cont'd) | WIMIARY |
| :--- |
| MARY |

- Reflection attack

- Lesson: Don't have Alice and Bob do exactly the same thing
- Different keys
- Totally different keys
- $\mathrm{K}_{\text {Alice-Bob }}=\mathrm{K}_{\text {Bob-Alice }}+1$
- Different Challenges
- The initiator should be the first to prove its identity
- Assumption: initiator is more likely to be the bad guy

Mutual Authentication (Cont'd) | WILALANX |
| :---: |

- Password guessing

10

- Mutual authentication with timestamps
- Require synchronized clocks
- Alice and Bob have to encrypt different
timestamps

- Public keys
- Authentication of public keys is a critical issue

- Communication after mutual authentication should be cryptographically protected as well
- Require a session key established during mutual authentication

Establishment of Session Keys

- Secret key based authentication
- Assume the following authentication happened.
- Can we use $K_{\text {Alice-Bob }}\{R\}$ as the session key?
- Can we use $K_{\text {Alice-Bob }}\{R+1\}$ as the session key?
- In general, modify $K_{\text {Alice-Bob }}$ and encrypt R. Use the result as the session key.

Establishment of Session Keys (Cont'd) MIMIANY

- Two-way public key based authentication
- Alice chooses a random number R, encrypts it with Bob's public key
- Trudy may hijack the conversation
- Alice encrypts and signs R
- Trudy may save all the traffic, and decrypt all the encrypted traffic when she is able to compromise Bob
- Less severe threat

Two-Way Public Key Based Authentication (Cont'd) $\begin{array}{r}\text { WILLIAM } \\ \text { E'MARY }\end{array}$

- A better approach
- Alice chooses and encrypts R_{1} with Bob's public key
- Bob chooses and encrypts R_{2} with Alice's public key
- Session key is $R_{1} \oplus R_{2}$
- Trudy will have to compromise both Alice and Bob
- An even better approach
- Alice and Bob estatlish the session key with DiffieHellman key exchange
- Alice and Bob signs the quantity they send
- Trudy can't learn anything about the session key even if she compromises both Alice and Bob

Establishment of Session Keys (Cont'd) $\begin{gathered}\text { WILLIASY } \\ \text { MARY }\end{gathered}$

- One-way public key based authentication
. It's only necessary to authenticate the server
- Example: SSL
. Encrypt R with Bob's public key
- Diffie-Hellman key exchange
- Bob signs the D-H public key

Mediated Authentication (With KDC) WMILAAM

KDC operation (in principle)

- Some concerns
- Trudy may claim to be Alice and talk to KDC
- Trudy cannot get anything useful
- Messages encrypted by Alice may get to Bob before KDC's message
- It may be difficult for KDC to connect to Bob

Mediated Authentication (With KDC) WMULAMV

- Must be followed by a mutual authentication exchange
- To confirm that Alice and Bob have the same key

Needham-Schroeder Protocol

- Classic protocol for authentication with KDC
- Many others have been modeled after it (e.g., Kerberos)
- Nonce: A number that is used only once
. Deal with replay attacks

- A vulnerability
. When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
- Essential reason
- The ticket to Bob stays valid even if Alice changes her key

- The additional two messages assure Bob that the initiator has talked to KDC since Bob generates N_{B}

- Only has five messages
- KDC checks if N_{C} matches in both cipher-texts - Make sure that Bob is really Bob

