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Abstract—Distributed Denial of Service (DDoS) attacks still
pose a significant threat to critical infrastructure and Internet
services alike. In this paper, we propose MOTAG, a moving target
defense mechanism that secures service access for authenticated
clients against flooding DDoS attacks. MOTAG employs a group
of dynamic packet indirection proxies to relay data traffic
between legitimate clients and the protected servers. Our design
can effectively inhibit external attackers’ attempts to directly
bombard the network infrastructure. As a result, attackers will
have to collude with malicious insiders in locating secret proxies
and then initiating attacks. However, MOTAG can mitigate insider
attacks and filter out innocent clients by continuously “moving”
secret proxies to new network locations while shuffling client-
to-proxy assignments. We develop a greedy shuffling algorithm
to minimize the number of proxy re-allocations (shuffles) while
maximizing attack isolation. Simulations are used to investigate
MOTAG’s effectiveness versus proxy consumption on protecting
services of different scales against intensified DDoS attacks.

Index Terms—DDoS; Moving Target Defense; Secret Proxy;
Insider; Shuffling

I. INTRODUCTION

A report by Arbor Networks has indicated a significant
increase in the prevalence of large-scale distributed denial-
of-service (DDoS) attacks [1]. In 2010, the largest reported
bandwidth achieved by a flood-based DDoS attack reached
100 Gbps. Meanwhile, the cost of performing a DDoS attack
has turned out to be surprisingly low. A Trend Micro’s white
paper [2] about Russian underground market has revealed that
the price for 1-week DDoS service could be as low as $150.

A number of mechanisms have been proposed in the past to
prevent or mitigate DDoS attacks. For instance, filtering-based
approaches [3], [4], [5] use ubiquitously deployed filters to
block undesired traffic sent to the protected nodes. Capability-
based defense mechanisms [6], [7], [8], [9] constrain the
resource usage of the senders within the threshold permitted by
the receivers. Secure overlay solutions [10], [11], [12], [13],
[14], [15] interpose an overlay network to indirect packets
between clients and the protected nodes, aiming to absorb and
filter out attack traffic. However, these static defense systems
either rely on global deployment of additional functionalities
on Internet routers or require large, robust virtualized network
to withstand the ever-exacerbating attacks. Besides, some of
them are still vulnerable to sophisticated attacks, such as
sweeping [11] and adaptive flooding attacks [12].

In this paper, we propose MOTAG, a dynamic DDoS de-
fense mechanism that adopts moving target strategy to protect
centralized online services. In particular, MOTAG offers DDoS
resilience for authorized and authenticated clients of security

sensitive services such as online banking and stock trade. MO-
TAG employs a layer of secret moving proxies to mediate all
communications between clients and the protected application
servers. The network-level filters surrounding the application
servers only allow traffic from the working proxy nodes to
reach the protected service.

Proxy nodes in MOTAG have two important characteristics.
First, all proxy nodes are “secret” in that their IP addresses
are concealed from the general public and are exclusively
known by legitimate clients after successful authentication.
Each legitimate client is provided with the IP address of
one working proxy at any given time to avoid unnecessary
information leakage. We apply existing proof-of-work (PoW)
schemes [16], [17], [18], [19] to protect the client authentica-
tion channel. Second, proxy nodes are “moving”. As soon as
an active proxy node is attacked, it is replaced by another node
at a different location, and the associated clients are migrated
to alternative proxies. We show that these characteristics not
only enable us to mitigate external DDoS attacks, but also
empower us to discover and isolate malicious insiders that
divulge the location of secret proxies to external attackers. We
do so via shuffling (repositioning) clients’ assignment to new
proxy nodes when their original proxies are being attacked.
We develop algorithms to accurately estimate the number of
insiders and adjust client-to-proxy assignment accordingly to
rescue most innocent clients after each shuffle.

Our solution does not rely on global adoption on Internet
routers or collaboration across different ISPs to function.
Neither do we depend on resource-abundant overlay network
to out-muscle high bandwidth attacks and to provide fault tol-
erance. Instead, we take advantage of our proxies’ secrecy and
mobility properties to fend off powerful attackers. This entails
lower deployment costs while offering substantial defensive
agility, resulting as an effective DDoS protection.

II. THREAT MODEL AND ASSUMPTIONS

Instead of targeting open and general-purpose web services,
we focus our efforts on protecting security sensitive online
services against network flooding attacks. The clients of the
protected services are pre-authorized so that their identities
can be authenticated before they are served. We assume a large
pool of backup proxies that attackers are incapable of attacking
altogether. However, only a small group of proxies are active at
any time to avoid extensive operational costs. An ideal source
for the proxy pool is one or several cloud environment where
customers are charged only for running instances.
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We assume powerful attackers with high aggregate band-
width. They are capable of simultaneously overwhelming
many standalone machines on the Internet. However, we do not
assume attackers that can saturate well-provisioned Internet
backbone links for ISPs, data centers, and cloud service
providers. Attackers, in case of uncertainty, can first perform
a reconnaissance attack, i.e. IP and port scanning, to pinpoint
targets for the subsequent flooding attack.

Attackers can also target at flooding the authentication
channel through which the legitimate clients can be authen-
ticated. However, it is significantly harder for them to pass
strong authentication by brute force and reach the proxies as
legitimate clients. Some attackers may uncover certain secret
proxies by compromising legitimate clients or eavesdropping
on legitimate clients’ network connections. We call those at-
tackers “insiders” and assume that their number in a protected
system is limited.

III. MOTAG ARCHITECTURE

We depict the overall architecture of MOTAG in Figure 1.
There are four inter-connected components: the authentication
server, the proxies, the filter ring, and the application server.
The application server provides the online service (e.g online
banking, online stock exchange) that we want to protect and
make accessible to authenticated clients. The proxy nodes
are a group of dynamic and distributed machines that relay
communications between clients and the application server.
The filter ring, similar to what was described in [12], is
comprised of a number of high speed routers placed around
the application server, allowing inbound traffic only from
valid proxy nodes. The authentication server is responsible
for authenticating clients and linking legitimate ones with
individual proxy nodes.
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Fig. 1. Overview of the MOTAG Architecture.

Under MOTAG, all clients have to be authenticated before
they are allowed to talk to the application server. A simple
way to realize this is to associate the application domain
name with the IP address of the authentication server during
DNS registration. Each successfully authenticated client will
be randomly assigned to one of the active proxy nodes whose

identities are not publicly known. The authentication server
will inform each client about the IP address of the designated
proxy, and in the meantime, notify the proxy node about the
forthcoming connection from the client. The authentication
server, as well as each proxy node, maintains a dedicated
interface for the purpose of signaling. Through this signaling
channel, proxies report to the authentication server if they are
attacked; the authentication server informs proxies about client
assignment and coordinate their actions against DDoS attacks.

The authentication server also assigns a capability token
for each client-to-proxy session. This token limits a client’s
throughput by specifying the number of packets (or, the
number of bytes) allowed for the session in the next time
window (t seconds). A proxy should receive identical copies
of a capability token from two parties for every session, one
from the authentication server to notify new client assignment
and one from the client as a proof of identity. Every proxy
node maintains a per-session counter and regulates traffic
according to individual capability. Such capability-based polic-
ing is key for detecting external, brute-force flooding attacks
in that it distinguishes authorized packets from illegal ones.
Furthermore, it can detect and frustrate any internal attempt
to abuse the assigned capability such as sharing capability with
external attackers. For communications between proxy nodes
and the application server, a lightweight authenticator (e.g.
source address, destination #port) as described in Mayday [12]
can be employed for proxy identity validation. The filter ring
routers can perform fast lookups to verify such lightweight
authenticators in proxy-to-application packets. These authen-
ticators can be dynamically altered and active proxy nodes will
receive timely updates via the signaling channel. To prevent
the authentication server from being flooded by botnets, we
employ proof-of-work (PoW) schemes [16], [17], [18], [19]
to ensure its accessibility for legitimate clients.

A. Secret Moving Proxies

Since attackers only need to know the target’s IP address
to launch a flooding attack, one intuitive defense is to with-
hold such information from the attackers while keeping only
legitimate clients informed. To achieve this goal, we have
to distinguish legitimate clients from attackers. However, the
distinction between the two may be blurred by IP spoofing,
behavior mimicry, identity theft and malware infection. More-
over, a legitimate client may be compromised by attackers
and become a malicious insider. Therefore, it is better to
hide the application server from all clients while inserting
a protection layer in the middle. In MOTAG, we build this
intermediate layer with a pool of geographically distributed
proxies to diffuse attackers’ traffic and shield the application
server behind. We do not activate all proxies at once. Instead,
we only keep a small subset of proxies working at all times
and dynamically substitute attacked ones at runtime, confusing
attackers with “moving” proxies. The IP addresses of all
proxies are also concealed from the general public. The
mapping from clients to working proxies is many-to-one. Each
proxy can accommodate many clients, while each client is only



appointed to (and knows the IP address of) a single proxy
node.

If a proxy node is attacked, it will be shut down and a new
proxy node at a different network location will be activated for
replacement. All clients connecting to the attacked node will
be re-assigned across the entire set of active proxies, according
to the algorithm in Section IV-C. The new assignment can
be pushed to the affected clients by the authentication server,
or the clients can be re-authenticated for security assurance.
We name the overall process of proxy replacement and client
re-allocation as client-to-proxy shuffling. Shuffling is a co-
ordinated operation in MOTAG that often involves multiple
proxies and their associated clients. The details are to be
discussed in Section IV. To preserve proxies’ confidentiality
and avoid introducing unnecessary communication jitters, no
shuffling will be performed if there is no attack. A small,
fixed set of proxy nodes with constant IP addresses are used
to serve all legitimate clients under normal conditions. To
prevent malicious proxy profiling by insiders, proxy assigned
to each client will remain unchanged across different logins,
if available. Moreover, to make physical proxy nodes more
reusable over time, if the addresses of some secret proxies
are disclosed during one instance of DDoS attack, they will
be changed to a different, unknown set of addresses after the
attack.

Secret moving proxies improve the agility and flexibility of
defense against DDoS attacks. They support legitimate server
access even during the course of an attack. MOTAG is different
from existing overlay network solutions [10], [11], [12], [15].
Existing overlay solutions propose a fairly static network
composition of overlay nodes that are known by all clients.
A static and open overlay relies on its capacity and routing
dynamics to tolerate and filter out the attack traffic. Building
and maintaining such an overlay entails extensive and con-
tinuous investment to acquire more nodes and bandwidth. In
addition, sweeping [11] and adaptive [12] flooding attacks may
cause severe service disruptions. In contrast, MOTAG keeps its
proxies confidential and mobile. Only authenticated clients are
informed about their assigned proxies. This enhances defense
agility against massive, sophisticated attacks while reducing
its dependence on the volume of proxy resources.

B. Authentication with Proof-of-Work Protection

The authentication server with assured accessibility is es-
sential to our moving target defense. It acts as the initial
checkpoint where legitimate clients are separated from illegal
ones. We use authentication as a mechanism to bind a client to
a specific network flow. Every client has to pass authentication
before assigned to a working proxy that eventually routes
traffic to the application server. MOTAG is agnostic to the
specific authentication mechanism employed. More than one
physical authentication server can be used to increase system
capacity and availability. The authentication server is also
responsible for advertising the initial and subsequent client-
to-proxy assignments during shuffling. To re-assign affected
clients to non-attacked proxies without breaking the end-

to-end connectivity, the authentication server will push new
proxy assignment to each affected client. As an alternative, we
could potentially re-authenticate clients upon re-appointment
to ensure their liveness. The authentication server is the only
part of the MOTAG architecture that can be publicly addressed.
Therefore, it can be a new target of distributed flooding (i.e.
Denial of Capability) attacks.

Instead of building new solutions to protect the authenti-
cation server, we take advantage of existing proof-of-work
(PoW) schemes [16], [17], [18], [19], which force clients
to solve certain cryptographic puzzles before allowing them
to consume resources on the server side. In particular, they
can realize per-computation fairness regarding bandwidth us-
age among all clients [19], prevent connection depletion
attacks [18], and mitigate DDoS attacks on application-level
authentication protocols [16], [17]. PoW approaches are suit-
able for protecting client authentication in that authentication
packets are infrequently sent and are more delay-tolerant.
However, they are improper for protecting application data
communication because they incur heavy overhead.

IV. CLIENT-TO-PROXY SHUFFLING

Hiding proxies while enforcing client authentication can
effectively prevent external attackers from reaching MOTAG’s
packet delivery system. Moreover, by keeping proxies mobile
and performing guided shuffling on client-to-proxy assign-
ments, MOTAG can also mitigate insider attacks that aim to
disclose the location of secret proxies.

Attackers can implant malicious insiders in the targeted sys-
tem via social engineering, compromising legitimate clients,
stealing clients’ identities for authentication, and eavesdrop-
ping on clients’ network connections. Once insiders uncover
the IP addresses of some proxy nodes, they will notify
external attackers who will carry out DDoS attacks against
these exposed proxies. We address such attacks as insider-
assisted DDoS attacks. The more insiders there are, the more
secret proxies will be endangered, and consequently, the more
innocent clients will be affected by the DDoS attack. Although
such insider attacks cannot be fully prevented, we aim to
minimize their impact on innocent clients.

When an insider-assisted attack hits one proxy, we cannot
identify which affiliated clients are insiders by simply looking
at the attack snapshot. Therefore, we cannot segregate the
innocent clients from the insiders residing on the same proxy
node, neither can we determine the number of insiders we
are facing. To solve these problems, we design a client-
to-proxy shuffling mechanism to quarantine insider-assisted
DDoS attacks and ensure service accessibility for as many
innocent clients as possible.

A. Shuffling Strategy

In MOTAG, a pool of proxy nodes are reserved and idled
before DDoS attacks break out. As soon as an attack happens,
a small number of proxy nodes in the pool are activated. The
set of active proxy nodes can be logically classified into two
groups, namely serving proxies and shuffling proxies. Serving



proxies provide more reliable connection services to the known
innocent clients, while shuffling proxies are responsible for
shuffling operations and only provide intermittent connections
to suspicious clients. When attacked, shuffling proxies will be
replaced and the associated clients are flushed and reassigned.
For the ease of representation, we use the same logical
identifier for a shuffling proxy and its replacement throughout
our analysis. As a result, it appears that we re-use the same set
of shuffling proxies over time. In fact, the attacked physical
proxies are always replaced.

Here, shuffling refers to the action of changing the client-
to-proxy assignment scheme in a semi-random fashion. For
example, a client appointed to proxy node P may be appointed
to proxy node Q after the next shuffle; a proxy node assigned
with client set X can be assigned with client set Y later. The
reason for the semi-randomness is that a greedy algorithm
(discussed in Section IV-C) is used to dictate the number of
clients attached to each shuffling proxy. At the beginning, all
the active proxies are unmarked. All clients are randomly
assigned to proxies. Each client will be assigned to only
one proxy at a time. If some proxies are attacked after the
initial assignment, they will be marked as shuffling proxies
while others are considered serving proxies. By employing
the greedy algorithm described in Section IV-C, we repeatedly
shuffle the client-to-proxy assignment within the shuffling
proxy group to distinguish insiders from innocent clients and
segregate them.

As pointed out in the threat model, we assume attackers are
aggressive and exhaustive to keep attacking all expose proxies.
We also assume there are only a limited number of insiders.
As a result, some shuffling proxies may be attacked after each
shuffle and some will not. The intact shuffling proxies become
serving proxies and the unaffected clients on them are saved
and marked as trusted clients. Clients connected to the attacked
proxies are also considered as attacked and untrusted, since
we cannot tell who are actually the insiders within the whole
population. To save the innocent but attacked ones, we will
randomly re-distribute all the untrusted clients across the group
of shuffling proxies. Given the specific number of suspicious
clients and available proxy nodes, a few new proxies may be
activated as shuffling proxies from the pool to help accelerate
shuffling operations. Generally speaking, the more shuffling
proxies are available, the faster insiders will be quarantined.

One round of client-to-proxy shuffling provides us some
important information on quarantining suspicious clients. By
repeating the client-to-proxy shuffling for multiple rounds
and keeping record of the suspicious proxies/clients, we can
narrow down the range of suspects and gradually identify most
innocent clients. The insiders will eventually be quarantined
and the attack damage will be minimized. To achieve this goal
as quickly as possible, proxy consolidation can be performed
to concentrate trusted clients onto less serving proxies, thereby
sparing more proxy nodes for the shuffling purpose.

B. Shuffling Optimization

It is critical to design an optimal shuffling algorithm that
can mitigate insider-assisted attacks with the fewest shuffles.
To that end, we need to identify and separate as many innocent
clients as possible after each round. First of all, we analytically
evaluate the number of innocent clients to be saved under
different client-to-proxy assignments. We provide a method
to estimate the number of insiders in Section IV-D.

Specifically, among a total number of N clients to be
shuffled, the number of insiders is Ni, and the number of
innocent clients is Nc, so we have Ni +Nc = N. After one
round of shuffling, Nca innocent clients are still being attacked,
and Ncu of them are not (Nca + Ncu = Nc). Our goal is to
mathematically compute the expected value of Ncu (denoted
as E(Ncu)) under different circumstances and find a way to
maximize it, given a number of K available shuffling proxies.
We use A j to represent the number of clients appointed to
proxy j.

Obviously, E(Ncu) = ∑
K
j=1 p jA j, where p j is the probability

that proxy j is not being attacked. Considering an arbitrary
proxy j, it is not being attacked only when none of the insiders
are connecting to it. Hence, p j is also the probability that all
insiders are assigned to proxy nodes other than j. According
to simple combinatorics, p j =

(N−A j
Ni

)
/
(N

Ni

)
, where

(N
Ni

)
is the

total number of ways to distribute the Ni insiders within the
population N, and

(N−A j
Ni

)
is the number of combinations that

all insiders are within the N −A j clients not connecting to
proxy j. Therefore, the expected value of Ncu can be calculated
by Equation IV.1.

E(Ncu) =
K

∑
j=1

p jA j =
∑

K
j=1

(N−A j
Ni

)
A j(N

Ni

) (IV.1)

We also have E(Nca) = Nc−E(Ncu).
Given the total number of clients N, the number of insiders

Ni, the number of shuffling proxies K, and the client-to-proxy
assignment vector A, we want to maximize E(Ncu). Intuitively,
the more shuffling proxies are used, the more innocent clients
are expected to be saved via each shuffle. In the extreme case
where K ≥ N, each client can be allocated with an exclusive
proxy node (A j = 1, ∀ j ∈ (1,K)). In this case, E(Ncu) = Nc,
meaning no innocent client will be attacked. This is the ideal
scenario where all insiders are quarantined their own proxy
nodes within one round of shuffling. However, in practice, it
is usually impossible to provide a dedicated proxy node for
each client when clients are large in number. In most cases,
the client population would outnumber the shuffling proxies
by far (K <<N). Consequently, the way of distributing clients
across proxy nodes becomes utterly important.

Assuming we have a constant number of K shuffling prox-
ies, we are facing an optimization/maximization problem with
Equation IV.1 being the objective function. The variables are
summarized into the vector A of natural numbers that defines
the client-to-proxy assignment scheme, with the constraint
being



K

∑
j=1

A j = N, where A ∈ NK (IV.2)

For all cases that Ni ≥ 1, the objective function is nonlinear.
Since A j has to be a non-negative integer for all j ∈ (1,K),
our optimization problem is in fact a nonlinear integer pro-
gramming problem [20]. The general class of nonlinear inte-
ger programming problem is NP-hard [21]. For our special
problem, we adopt a greedy approach that can produce a
near optimal solution within polynomial time. Our simulations
under various configurations show that the results produced by
the greedy algorithm approach very closely to the theoretical
upper bound of E(Ncu).

C. The Greedy Shuffling Algorithm

Algorithm 1 shows the greedy algorithm for computing
the client-to-proxy assignment. The main function is called
GreedyAssign. Since in Equation IV.1 E(Ncu) is the sum
of pieces (i.e. p jA j) for all shuffling proxies computed in
the same way, we firstly perform optimality analysis for an
individual component. For an arbitrary proxy j, A j can be any
value within [0,N−1]. A j cannot be N. Otherwise, everyone
will be attacked if there is an insider onboard.

Since the value of Ni will affect the optimal choice of A j,
for a particular Ni, we enumerate all possible values of A j and
select the one (ω) that maximizes p jA j. This subroutine is
described in procedure MaxProxy of Algorithm 1. Apparently,
the computational complexity of MaxProxy for one proxy is
O(N ∗Ni). Under our greedy approach, we assign ω clients to
as many proxies as possible.

Function GreedyAssign is called recursively to assign the
remaining clients to the rest of the proxies. The computation
will terminate under three conditions. First, when there are
more proxy nodes left than clients, each client will be assigned
to an exclusive proxy node. Second, when there is only
one proxy left, all remaining clients will be appointed to it.
Third, when the expected number of remaining insiders is
rounded to 0, all remaining clients will be evenly distributed
for load balancing. The overall computational complexity of
the greedy algorithm is O(N ∗K ∗Ni). Moreover, the client-to-
proxy assignment vectors for different N, K, Ni configurations
can be pre-computed and stored in the form of a lookup table,
thereby avoiding extra computational overhead to our shuffling
operations when attack happens.

We compare the results of the greedy algorithm with the
theoretical upper bound of the global maximum of E(Ncu).
Since Equation IV.1 is a summation of p jA j for each individual
shuffling proxy j, the max of IV.1 cannot be greater than the
sum of the max of each p jA j when relaxing Constraint IV.2,
i.e. Max(E(Ncu)) ≤ K ∗Max(p jA j). Here, Max(p jA j) can be
obtained by running subroutine MaxProxy(N,0,N−1,Ni). We
implemented both GreedyAssign and MaxProxy on MATLAB.
We then computed the results of our greedy algorithm as well
as the theoretical upper bound of the global maximum under
various configurations. The comparison is shown in Figure 2.

Algorithm 1 Greedy algorithm for computing client-to-proxy
assignment.

function GREEDYASSIGN(Client, Insider,Prox)
if Client ≤ Prox then

Assign 1 exclusive proxy to each client
else if Prox = 1 then

Assign all clients to the proxy
else if Insider = 0 then

Evenly distribute Client over Prox
else

ω =MaxProxy(Client,0,Client−1, Insider)
ProxToFill = f loor(Client/ω)

if ProxToFill ≥ Prox then
ProxToFill = Prox−1

RemC =Client−ProxToFill ∗ω

RemP = Prox−ProxToFill
RemA = Round( Insider∗RemC

Client )

Fill ProxToFill Proxies with ω clients each
Fill the rest proxies according to
GreedyAssign(RemC,RemA,RemP)

procedure MAXPROXY(Client,Lbnd,Ubnd, Insider)
Max=0, MaxAssign=0
for i = Lbnd→Ubnd do

Save =
(Client−i

Insider
)
i/
(Client

Insider
)

if Save > Max then
Max = Save, MaxAssign = i

return MaxAssign

In our computation, three key parameters, namely the num-
bers of total clients (N), insiders (Ni), and employed shuffling
proxies (K), collectively determine the final results. When
we vary one parameter in each plot while keeping the other
two constant, the expected number of saved clients by our
greedy approach from one shuffle almost overlaps with the
theoretical upper bound. This means that performance of the
greedy algorithm performs is near optimal. The line denoting
the greedy approach deviates slightly only when the number
of insiders is well below the number of shuffling proxies. This
is not a big problem because when the number of shuffling
proxies becomes significantly higher, a majority of innocent
clients can be isolated from an attack in just one shuffle,
making it possible to save almost all innocent clients within
very few rounds. It is also shown in Figure 2a that, when the
number of insiders is low, we can easily minimize the impact
of an insider-assisted attack. However, the result will quickly
deteriorate as the number of insiders grows. When it becomes
twice the number of shuffling proxies, more than 80% of the
total clients will still be affected by the attack after one shuffle.
In that case, more shuffles will be needed to protect a majority
of innocent clients.

D. Estimating the Number of Insiders

In our earlier discussion, we assume the number of insiders
(Ni) is fixed and given; however, in practice, we have no such
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prior knowledge. Since the value of Ni has direct influence on
the client-to-proxy assignment, it is important to make accurate
estimation. We solve this problem using maximum-likelihood
estimation (MLE). We first establish a connection between
the number of insiders Ni and the number of proxies that are
not under attack (denoted as X). In a particular attack where
X = m, we calculate the probabilities Pr(X = m) with regard
to different Ni values, and use the Ni value that maximizes the
probability as the estimated number of insiders.

According to the inclusion-exclusion principle under balls-
and-urns model [22], we can compose Equation IV.3 to calcu-
late Pr(X = m), where Pr(X ≥M) stands for the probability
that at least M (M = m,m + 1, . . . ,K) proxy nodes are not
attacked, K is the total number of all shuffling proxies.

Pr(X = m) = Pr(X ≥ m)−
(

m+1
m

)
Pr(X ≥ (m+1))

+

(
m+2

m

)
Pr(X ≥ (m+2))− . . .

+ (−1)K−m
(

K
m

)
Pr(X ≥ K) (IV.3)

In particular, these M not-under-attack proxies constitute

the set U = {u1,u2, . . . ,uM}, where u j is the real ID of the jth
available proxy node. Set U can be any M sized subset of the
K shuffling proxies.

The key idea to compute Pr(X ≥M) is similar to how we
derive Equation IV.1. If a particular set U of proxies are not
attacked, the insiders must be among the clients assigned to
the rest proxy nodes (the complement of U). Thus, we have
Equation IV.4, in which ∑

(M)
U denotes the summation over

all possible combinations of U (all M sized subsets of the
K shuffling proxies), and N−∑

M
j=1 Au j gives the number of

clients connecting to the proxies not in U. u j is an arbitrary
proxy node in the set, and Au j denotes the number of clients
assigned to that node.

Pr(X ≥M) =
∑
(M)
U

(N−∑
M
j=1 Au j
Ni

)(N
Ni

) (IV.4)

Under a certain client-to-proxy assignment scheme A, we
can now correlate Pr(X = m) with Ni by combining Equa-
tion IV.3 and IV.4. Since the greedy algorithm recursively
attempts to assign as many proxies as possible with the same
client number that maximizes each individual component of
the objective function, it usually produces groups of shuffling
proxies with equal numbers of clients. Therefore, we can break
down the overall estimation problem into each group and
summarize the results from all groups at the end. It is worth
noticing that since we do not have prior knowledge about
the number of insiders, the entire client population is evenly
distributed across all proxy nodes before the first shuffle. This
allows MOTAG to quickly draw the first estimation as soon as
an attack happens. Thus, we can simplify the calculation by
transforming Equation IV.4 into Equation IV.5 for each proxy
group. In Equation IV.5, NG, NiG , KG, AG, and MG represent
the number clients, the number of insiders, the number of
shuffling proxies, the number of clients assigned to each proxy
node, and the number of proxy nodes not under attack within
group G, respectively.

Pr(X ≥MG) =

(KG
MG

)(NG−MGAG
NiG

)
(NG

NiG

) (IV.5)
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Fig. 3. Insider estimation under 10K clients, 100 shuffling proxies

To evaluate our insider estimation algorithm, we also im-
plemented it on MATLAB and run simulations with different
numbers of insiders. Based on the number of attacked proxies,



our algorithm makes educated guesses on the real insider
numbers. The guess that maximizes the result of Equation IV.3
becomes the final estimation. These estimations, along with the
actual insider numbers, are plotted in Figure 3. For each data
point, we run the simulation 30 times to compute the mean
and 99% confidence interval. According to the results in the
figure, our algorithm gives very accurate estimations.

V. SECURITY ANALYSIS

MOTAG is a dynamic traffic indirection framework opened
only to authenticated clients. It is designed to account for
both brute force and sophisticated DDoS attacks against the
protected application server and other potential targets.

a) Resistance to external attacks: In MOTAG, external
attackers will not be able locate the secret proxies unless they
are part of the system. Even if they are capable of attacking a
large number of Internet nodes simultaneously, they will not
be able to identify where to direct their attack. MOTAG is
invulnerable to reconnaissance attacks. Our proxy nodes are
widely distributed on the Internet, if external attackers do not
have prior knowledge about the potential IP of a proxy, it
would be impractical for them to locate the node by scanning
the vast network. Even if they can manage to let their probing
packets hit some proxies, the proxy nodes will not respond
because no capability tokens are assigned for the attackers.
As a result, MOTAG significantly raises the bar for brute force
attackers. The mobility of proxy nodes adds another layer of
protection against external attackers. In the case that attackers
hit a secret proxy by chance, the attacked node will quickly
“move away”. Without the ability to trace the shifting proxies,
external attackers will get lost in front of the moving targets.

b) Resistance to insider-assisted attacks: Insider-
assisted attacks pose a more serious threat to the proxy-based
defense because the addresses of secret moving proxies are
only disclosed to authenticated clients. MOTAG is resilient
to three types of malicious behavior initiated by insiders. i)
Capability sharing. A capability token is bound to each client-
to-proxy session for traffic policing. Even if an insider shares
the assigned capability with external attackers, their aggregate
throughput will still not be allowed to exceed the specified
limit. ii) Divulging secret proxies. As discussed in Section IV,
by dynamically “moving” proxy nodes and shuffling client-to-
proxy designation, MOTAG can quarantine insiders that lead
DDoS attacks by divulging secret proxies to external attackers.
iii) Silent proxy profiling. As described in Section II, there
might be inactive insiders that silently profile our proxy system
throughout the entire shuffling process. However, since clients
assigned to proxies that are not attacked will not be shuffled,
it is highly likely that silent insiders will be staying with
the same proxy all the time and unable to collect new proxy
information.

c) Resistance to compromised proxies: With the help
from malicious insiders, attackers may even compromise some
proxy nodes. If successful, the application server and the
authentication server will be directly exposed to attackers.
However, the filter ring routers surrounding the application

server will filter out any packets that fail to include a legal
lightweight authenticator. Similar to what was used in [12], a
lightweight authenticator can be proxy’s unique IP address, or
a carefully crafted destination IP address/port number assigned
differently to each proxy node. Consequently, attack traffic
has to use the credentials of the compromised proxies to get
through, which can be readily identified and revoked. The
signaling channels to the authentication server can be protected
in the same manner.

VI. MOTAG EVALUATION

A. Insider Quarantine Capability

In this section, we experimentally evaluate MOTAG’s ef-
fectiveness on mitigating insider-assisted DDoS attacks. To
that end, we implement all core algorithms of MOTAG in
Matlab and run them with simulated clients and proxy nodes.
We randomly select clients to be malicious insiders without
informing MOTAG. MOTAG decides the number of clients
assigned to each proxy node but each client is randomly
appointed to a proxy with empty slots. In all simulations, we
use Mersenne twister [23] as our random number generator.
We assume attackers possess infinite bandwidth, so all proxies
connected by the malicious insiders are considered as attacked.
All clients on these attacked proxies are marked as suspicious.
Then, MOTAG uses the method in Section IV-D to estimate
the number of existing insiders and uses the algorithm in
Section IV-C to determine the client-to-proxy assignment for
the next shuffle. It usually takes more than one shuffle to save
a majority of innocent clients when the number of insiders
is large. Figure 4 quantitatively shows the number of shuffles
needed to save 80% and 95% innocent clients by using our
greedy algorithm (solid lines) and by applying the theoretical
upper bound of Equation IV.1 (dotted lines) in each shuffle.
Figure 4a and 4b vary the number of insiders while keeping
the total number of clients and shuffling proxies constant.
Figure 4c and 4d only change the number of shuffling proxies.
10,000 clients are simulated in Figure 4a and 4c, while
100,000 clients are simulated in Figure 4b and 4d. We run
the same 30 times simulation for each data point and plot
with 99% confidence interval.

We see that the performance of MOTAG is close to the
theoretical optimum. In particular, Figure 4a and 4b show that
the number of shuffles needed to save the same percentage
of innocent clients grows almost linearly with the increase in
the number of insiders. More shuffles indicate longer time to
mitigate an attack, but it also means that attackers have to
devote much more effort to recruit more insiders. Figure 4c
and 4d reveal that the number of necessary shuffles increases
as less proxy nodes are available. The lines climb slowly when
the proxies outnumber the insiders and become significantly
steeper otherwise. Moreover, the small confidence intervals
of MOTAG’s data points indicate that the performance of our
shuffling algorithm is reliable and predictable.

Notice that the change from 10,000 to 100,000 clients
almost causes no difference in the simulation results. Instead,
the ratio between the number of shuffling proxies and the
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(b) Varying the number of insiders under 100K clients, 100 shuffling proxies
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(c) Varying the number of shuffling proxies under 10K clients, 100 insiders
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Fig. 4. The number of shuffles needed to save 80% and 95% of innocent
clients

number of insiders is the decisive factor on protecting innocent
clients. Figure 5 shows the minimum number of shuffling
proxies required to save 95% of innocent clients within 5, 10,
and 15 shuffles, respectively. The number of insiders ranges
from 10 to 800. The solid lines represent a client population
of 10 thousand and the dotted lines denote 100 thousand.
We see a close to linear relationship between the number
of required shuffling proxies and the number of insiders in
achieving a constant security goal. These results can help
system administrators decide how many proxy nodes they will
need to achieve their security goals. Again, a 10 fold increase
in the client population only has a minor impact on the results
and the 99% confidence intervals are almost negligible.
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Fig. 5. Number of proxy nodes needed to save 95% of innocent clients
within 5, 10, and 15 shuffles, with 10K and 100K clients and a increasing
number of insiders

B. Overhead

MOTAG mainly introduces two aspects of overhead to
communications between clients and the application server,
namely proxy-based communication indirection, and client-to-
proxy shuffling.

TABLE I
LATENCY OVERHEAD INTRODUCED BY PROXY INDIRECTION

Direct Indirect
RTT Mean RTT Overhead Max RTT Overhead

1 63ms 104ms 63.35% 143ms 125.41%
2 86ms 99ms 15.64% 128ms 49.45%
3 83ms 102ms 23.73% 133ms 60.47%
4 90ms 112ms 23.77% 131ms 45.18%
5 84ms 107ms 27.73% 120ms 42.48%

TABLE II
THROUGHPUT OVERHEAD INTRODUCED BY PROXY INDIRECTION (MB/S)

1 2 3 4 5
Direct 90.66 83.46 86.24 123.30 121.20

Indirect 15.20 14.46 13.99 15.97 14.09

First, to assess the overhead introduced by proxy-based
traffic indirection, we select 10 geographically distinct U.S.
nodes from PlanetLab to form 5 end-to-end flows. We also
randomly pick 24 other nodes that spread across the country
to serve as proxies. We measure the latency and throughput for
both direct and indirect communications of the 5 flows, and
the results are shown in Table I and Table II, respectively.
SSH tunneling through individual proxy node is employed
to redirect traffic between end nodes. Round trip time (RTT)
numbers are obtained by bouncing short TCP messages back
and forth between the end nodes of each flow 100 times to get
the mean. Throughput numbers are the average of 10 Iperf [24]
sessions. Apparently, the impact of introducing proxies on
latency (usually less than 30%) is much less significant than its
influence on throughput. The drop on throughput is not only
caused by traffic indirection by proxies, but is also a result of
message encryption and decryption by SSH agents. In fact,
different crypto strategies, including no encryption, can be



listed as options when implementing MOTAG based systems.
Users can make informed decisions based on the nature of the
protected application.

TABLE III
TIME TO SWITCH BETWEEN TWO PROXY NODES (SECONDS)

1 2 3 4 5
1.155 1.158 1.529 1.378 1.286

The time needed to shuffle clients among different proxy
nodes determines the agility and usability of MOTAG against
insider attacks. Quick shuffles will make it harder for attackers
to “follow” and have insiders quarantined faster. At the same
time, innocent but shuffled clients will suffer less severe
service disruptions. Therefore, to quantify the impact of our
system to the end users, we measure the time needed for a
client to switch from one proxy node to another. Again, we
choose 5 geographically dispersed nodes from PlanetLab to
be the destination servers. We randomly pick another node to
play the role of the authentication server. We time the entire
process that our local client gets notified by the authentication
server, then discards the current proxy and connects to the new
proxy, until eventually reaches back to the destination server.
During this process, the authentication server sends a session
ticket to both the client and the new proxy node, the client
will present this ticket to the proxy to get authenticated. Only
after that, the new proxy node will start forwarding packets
for the client. We use another 8 PlanetLab nodes as proxies
and switch between them. The average switching time for
each destination is listed in Table III. The numbers are fairly
consistent. A proxy switching time slightly above 1 second
should not cause significant service disruption for most non-
realtime applications.

VII. RELATED WORK

A lot of research efforts have been devoted to defense
against DDoS attacks over the past decade [25].

Filtering-based approaches [3], [4], [5] intend to use ubiqui-
tously deployed filters to block unwanted traffic far away from
the protected nodes. They assume that attack traffic can be
differentiated from legitimate traffic. However, this is usually
a difficult job because attackers can sneak through by IP
spoofing and mimicking normal senders. Instead of trying to
distinguish good clients from malicious ones at the beginning,
MOTAG first does client authentication to filter out illegal
clients. Only authenticated clients will be appointed to the
secret moving Internet proxies that can directly talk to the
protected application server.

Capability-based mechanisms adopt a different philosophy
that gives the control over resource usage to the packet
receiver [6], [7], [8], [9]. Senders have to obtain receivers’
explicit permission before sending packets to them. Traffic
from authorized or privileged senders with valid capability
can be prioritized during an attack. Using capability is a more
proactive way of defense. Nevertheless, such solutions also
rely on a global adoption on the Internet routers to provide

adequate protection, which is unlikely to happen given limited
incentives. MOTAG uses capability token to identify and rate-
limit authenticated clients. Rather than depending on high
degree of deployment on the Internet routers, we employ a
thin layer of secret moving proxies for traffic policing.

To eliminate the physical network constraints and admin-
istrative boundaries, secure overlay networks are proposed
to be built on top of the Internet to provide flow authen-
tication, filtering, indirection, as well as attack tracking and
tolerance [10], [11], [12], [13], [14], [15]. The common goal
is to hide the protected nodes behind the well-provisioned, dis-
tributed overlay network that absorbs DDoS traffic. TOR [26]
is a well-known implementation of overlay network. By using
an exposed, relatively static overlay network to withstand the
ever-intensifying DDoS attacks inflicted by expanding botnets,
the defenders will involve themselves in a never-ending armed
race with the attackers. Even if a strong overlay network that
can tolerate any DDoS attacks is in place, advanced attackers
can start by attacking a small portion of the overlay nodes
and sweep through the entire overlay step by step [11]. By
doing so repeatedly, attackers are guaranteed to hit the critical
nodes and cause major service disruptions (Sweeping Attack).
Sophisticated attackers can even measure the impact of their
attacks via recruited legitimate clients. They can use such
feedback to spot and hence adapt their attack to focus on the
pinch points [12] (Adaptive Attack). Moreover, the protected
server can potentially be exposed via insider attacks [27].

Besides overlay network, there are other efforts that hide the
paths to selected services behind intermediate protections [28],
[29]. These solutions intend to employ a simpler, easier-to-
deploy protection layer to filter out un-authorized traffic and
are thus conceptually similar to MOTAG. Unfortunately, they
fail to account for attacks in which authorized clients act as
malicious insiders to compromise their interlayer protection.
In this paper, we thoroughly analyzed insider threats and
proposed a novel shuffling mechanism to quarantine insider-
assisted attacks.

MOTAG endows mobility to its packet indirection proxies.
This resembles the earlier network address randomization
technique against hitlist worms [30] and the fast-flux scheme
to sustain accessibility to illegal commercial websites [31].
To the best of our knowledge, we are the first in using such
dynamic method on defense against DDoS attacks.

VIII. CONCLUSION

We present MOTAG, a framework that employs dynamic,
hidden proxies as moving targets to mitigate network flooding
DDoS attacks. To reach the protected service, authenticated
clients are assigned to individual proxy nodes that perform
packet forwarding and session policing. When a DDoS attack
is mounted against MOTAG proxies, the authenticated clients
connected to the attacked proxies are re-assigned to alternative
proxies at realtime, enabling them to evade the ongoing attack
and maintain access the protected service. With MOTAG,
we can effectively hide the protected critical services from
external attackers. Sophisticated attackers can only use insiders



to locate our proxy nodes and attack them. MOTAG employs
a novel, efficient shuffling mechanism to quarantine insider-
assisted attacks. Our simulations show that MOTAG can pro-
tect a majority of innocent clients from DDoS attacks assisted
by hundreds of insiders within a small number of shuffles. In
addition, our experimental methodology and the results can be
used to guide the implementation and deployment of MOTAG-
based DDoS defense systems.
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