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Abstract—Mechanisms for continuously changing or shifting a
system’s attack surface are emerging as game-changers in cyber
security. In this paper, we propose a novel defense mechanism for
protecting the identity of nodes in Mobile Ad Hoc Networks and
defeat the attacker’s reconnaissance efforts. The proposed mecha-
nism turns a classical attack mechanism – Sybil – into an effective
defense mechanism, with legitimate nodes periodically changing
their virtual identity in order to increase the uncertainty for the
attacker. To preserve communication among legitimate nodes, we
modify the network layer by introducing (i) a translation service
for mapping virtual identities to real identities; (ii) a protocol for
propagating updates of a node’s virtual identity to all legitimate
nodes; and (iii) a mechanism for legitimate nodes to securely
join the network. We show that the proposed approach is robust
to different types of attacks, and also show that the overhead
introduced by the update protocol can be controlled by tuning
the update frequency.

I. INTRODUCTION

Network reconnaissance is the first step in cyber-attacks
mounted by stealthy, resource-aware and intelligent adver-
saries. Reconnaissance enables an adversary to gather infor-
mation about the network topology and dynamics as well
as other critical information about the targeted system. This
information can be used to identify system vulnerabilities,
and design and execute specific exploits on the system or
services. Therefore, thwarting the network reconnaissance step
is critical for preventing further attack steps. To this aim,
Moving Target Defense (MTD) [1] is emerging as a game-
changing approach consisting in a number of mechanisms
that automatically change one or more system attributes in
order to make a system’s attack surface [2] unpredictable to
adversaries. As stated by the Executive Office of the Presi-
dent, National Science and Technology Council [3], Moving
Target Defense “enables us to create, analyze, evaluate, and
deploy mechanisms and strategies that are diverse and that
continually shift and change over time to increase complexity
and cost for attackers, limit the exposure of vulnerabilities and
opportunities for attack, and increase system resiliency”.

A well-designed MTD mechanism ensures that, at any
given time, an adversary cannot easily discover a specific entry
point to the system or specific protocols that could be exploited
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to compromise it. Ideally, MTD aims at making the random
attack strategy the most effective strategy for the attacker.

In our discussion, we will focus on Mobile Ad Hoc Net-
works (MANETs), which are attracting considerable interest,
especially in military communications, as they offer network
facilities which are readily deployable, self-organizing, robust
to failure of individual nodes, and able to adapt to frequent
topology changes triggered by node mobility, varying radio
conditions, or hostile intervention. Given their wireless nature,
MANETs are prone to passive reconnaissance attacks aimed at
reconstructing the topology of the network or analyzing traffic
flows and mobility patterns. Moreover, information gathered
from captured control and routing messages could be leveraged
to run a wide range of active attacks. For instance, attackers
could forge malicious routing messages aimed at disrupting
or altering legitimate communications. For these reasons, it is
crucial to hide node identities and traffic flow information from
adversaries, but current solutions to not guarantee protection
of routing information.

Based on the above considerations, we propose an MTD
approach to improve the security of MANETs by increasing
an attacker’s uncertainty about the topology of the network.
The proposed approach consists in periodically changing the
identity that legitimate nodes present to other nodes – referred
to as the virtual identity – and securely informing them about
the change. The proposed mechanism turns a classical attack
mechanism – the Sybil attack [4] – into an effective defense
mechanism. In Sybil, a malicious node can forge and use
multiple identities in order to subvert the reputation system
of a peer-to-peer network. Similarly, in the proposed defense
approach, legitimate nodes periodically change their virtual
identity in order to defeat the attacker’s reconnaissance efforts.
Each node has a unique real identity and a pool of virtual
identities. Such pool can be generated in different ways, but, in
this paper, we propose the use of hash chains to generate a pool
such that future identities are hard to predict for the attacker,
while all legitimate nodes can readily map virtual identities of
every other node to the corresponding real identity.

Legitimate nodes communicate using only virtual identi-
ties, which are periodically changed to confuse the attacker. To
preserve their ability to communicate with one another despite
of frequent identity changes, we modify the network layer by
introducing a translation service that can map virtual identities



to real identities, and develop a protocol for propagating
updates of a node’s virtual identity to all legitimate nodes and
an ad-hoc mechanism for legitimate nodes to securely join the
network.

In the following sections, we show that the proposed
approach is effective in preventing or mitigating several types
of classical external attacks against the routing layer. Addition-
ally, as the translation service itself – along with the update
and join protocols – may become the target of an attack, we
demonstrate its resilience to both packet delays or losses due
to mobility and specific attacks aimed at compromising its
operation.

We implemented the proposed defense mechanism in the
ns-2 simulator, and evaluated its performance under several
traffic and mobility conditions. As expected, a trade-off exists
between the update frequency – which in turns influences the
level of security achieved – and the resulting overhead and
performance. Our simulation results show that the overhead
introduced by the update protocol can be controlled by tuning
the update frequency. As the size of the network increases,
lower update frequencies should be chosen to maintain the
overhead within acceptable limits. However, this is reasonable,
as the effort required from an attacker to gain knowledge about
the network also increases with the size of the network.

The paper is organized as follows. Section II discusses
related work, whereas Section III describes the threat model
we consider. Section IV presents the identity virtualization
mechanism, and the generation of ID pools through hash
chains. We present the details of the translation service and
the update protocol respectively in Section V and Section VI,
and, in Section VII, we evaluate our approach with respect
to different classes of attacks. Section VIII reports on the
experimental evaluation on a prototype implementation of the
mechanism. Finally, some concluding remarks are given in
Section IX.

II. RELATED WORK

Several approaches for dynamically changing nodes IP
addresses for proactive security have been proposed in the
literature.

In 2001 Kewley et al. [5] presented a technique called
DYNAT (Dynamic Network Address Translation). It is aimed
at confusing any adversary sniffing the network by obfus-
cating host identity information in TCP/IP packet headers
when packets enter public parts of the network. Whenever
a client host wants to communicate with a protected server
host, the addressing information contained in the header of its
request packets is translated (encrypted) by a DYNAT shim
before routing the packet to the server. A server gateway
receives the packets, reverses the translation in the header fields
(decryption) and obtains the true host identity information,
used to pass the packets to the target server. Both the client and
the server gateway must share a secret seed value, that is used
to encrypt the identity information at sender side and decrypt
them at the recipient. They are synchronized to periodically
change the secret, and thus change the translation results,
making it difficult for the adversary to create and maintain a
map of the network. Although this technique has the advantage
of providing a transparent approach to protect node identities

from sniffing, it has been designed to protect a set of static
nodes deployed behind a centralized gateway, that represents
an interface between the protected network and the external
world and performs the translation of addressing information
for all incoming and outgoing packets. When considering
more complex scenarios, characterized by highly dynamic
network configurations, this approach would not work as it
might be impossible to manage all communications through
the centralized gateway and achieve node synchronization.

Another work funded by DARPA is presented in [6] by
Atighetchi et al., that give an overview of current set of
network-level defenses in the DARPA APOD (Application
That Participate in Their Own Defense) project. Among the
proposed network-centric defense mechanisms, the APOD
toolkit also provides a port and address hopping mechanism,
based on constantly changing a service’s TCP identity to
both hide the service’s real identity and confuse the attacker
during reconnaissance. Packets intercepted by attackers will
reveal random addresses, which are valid only for a small
period of time, e.g., 1 minute. For a port attack to be
successful, the attacker must discover the current ports and
execute the attack all within one refresh cycle. Similarly to
the previous described approach, the hopping mechanism is
implemented by a client component, directly located on the
client machine, that intercepts higher level calls to the real
server, and replaces all (realaddress:realport) header informa-
tion with (fakeaddress:fakeport). The NAT gateway is located
either on the servers LAN or directly on the server host and
performs the reverse mapping from (fakeaddress:fakeport) to
(realaddress:realport). Even if this approach provides better
unpredictability of identities than DYNAT, it also requires
synchronization among the two communicating components,
and the same considerations previously made apply in this
case.

Antonatos et al. [7] introduce a proactive defense mecha-
nism called Network Address Space Randomization (NASR)
whose objective is to harden networks against worms that use
precomputed hitlists of vulnerable targets, by forcing nodes
to frequently change their IP addresses. In order to achieve
this goal, the authors implemented an advanced NASR-enabled
DHCP server to expire DHCP leases at intervals suitable for
effective randomization. As the addresses are actually changed
at the end-points of a communication, active connections are
disrupted during the update; moreover, NASR is limited in the
address space as it uses LAN addresses, and requires changes
to the end-host operating system, thus making the deployment
costly.

In [8] the authors introduce a MTD technique called Open-
Flow Random Host Mutation (OF-RHM): each host is assigned
an address range, selected from the entire unused address
space in the network, and at each mutation interval, a virtual
IP is chosen from this range and associated with the host.
A Software-Defined Networking (SDN) approach is adopted
for range allocation and mutation coordination: a centralized
controller (NOX) properly installs flows in OpenFlow switches
to forward requests and perform the address translation actions.

In summary, all the previous techniques rely upon cen-
tralized authorities to perform ID updates and translation;
this make them not suitable for ad-hoc networks, which do
not have a fixed infrastructure and need to use distributed



management. Therefore, the approach presented in this paper
differs significantly from previous work. In fact, we propose
a distributed approach targeted to MANETs, in which each
node builds its own ID pool starting from a private secret and
is provided with a mechanism to translate virtual IDs into real
IDs. In order to allow legitimate nodes to communicate despite
of frequent ID changes and without node synchronization, we
introduce an ad-hoc update protocol. Note that, in the type of
scenarios considered in most previous approaches, nodes do
not need to inform all other nodes about their new identities.

III. THREAT MODEL

The most commonly adopted threat model for the security
analysis of wired and wireless networks was proposed by
Dolev and Yao in [9]. The Dolev-Yao model assumes that
network nodes adopt a perfect cryptographic scheme, such that
an encrypted message can only be decrypted by knowing the
corresponding decryption key.

In this paper, we adopt the Dolev-Yao threat model,
and consider attackers able to intercept, spoof and alter any
message exchanged among nodes within their hearing range,
as well as to inject forged messages or replay old ones.
Additionally, multiple attackers may collude and exchange the
information they collect, but they are bound to follow the rules
of cryptography. In our work, we focus on attacks aimed at
interfering, steering or eavesdropping normal communications
among nodes and we also consider specific attacks against the
MTD mechanism and protocols we propose, as they can also
become the target of attacks. We do not consider attacks by
insiders who know the keying materials and legitimately join
all network activities, as they are out of the scope of this paper,
and focus instead on external attackers.

Before launching an attack, an attacker has to scan the
network and/or specific mobile nodes in order to collect
necessary information for planning the attack. Attacker may
adopt different strategies to maximize their gain in terms of
collected information. For instance, if the identity space is
small enough, they may simply attempt to probe all possible
identities (e.g., IP addresses) until a viable exploit is found.
Otherwise, they may choose to probe identities observed in
recently captured traffic. An attacker may also exchange data
with other attackers and perform sophisticated traffic analysis
in order to reduce the uncertainty surrounding valid node
identities.

In this paper, we do not consider attacks aimed at tracking
nodes by analyzing their traffic and mobility patterns and
correlating multiple virtual identities a node used in the
past. However, note that node mobility makes it difficult for
attackers to correlate multiple virtual identities with a single
node. Nevertheless, in order to make traffic analysis even more
complex for the attacker and defeat tracking attempts, we may
combine the approach proposed here with a mechanism that
allows two nodes to switch their respective identity pools when
they are within transmission range of each other.

IV. IDENTITY VIRTUALIZATION MECHANISM

The basic idea behind the proposed MTD mechanism is
to use a large number of virtual identities to protect a node’s
real ID. Each node may have multiple virtual IDs associated

with its real ID, and only legitimate nodes should be able to
correlate virtual IDs to nodes’ real IDs. Virtual IDs are used
for communication while real IDs are never publicly used. ID
pools can be either pre-loaded on the node or computed at
runtime. In this paper, we use hash chain to generate ID pools
at runtime.

In order to limit the exposure of a node’s ID, and make
the IDS an attacker may have collected over time useless, we
introduce a validity interval for virtual IDs: each ID is used by
a node for a limited period of time and then replaced with a
different one. To preserve communication among legitimate
nodes, we propose a mechanism for legitimate nodes to
identify currently valid IDs in the network and determine the
mapping between real and virtual IDs. To this aim, we modify
and augment the network layer of the protocol stack with:

• a Translation Service for mapping real IDs to virtual
IDs and vice versa;

• an Update Protocol for disseminating and managing
information about nodes’ updates.

Information about network status (i.e., current valid IDs)
is stored by each node in a translation table, and periodically
updated through the Update Protocol. This protocol, described
in details in Section VI, has been designed to provide integrity
and authentication requirements: it prevents attackers from
altering and spoofing protocol messages and also provides a
means to counteract replay attacks. In Section VII, we analyze
the possible activity of external attackers, aimed at disturbing
or steering the protocol, and show its robustness with respect
to a variety of attacks.

The Translation Service is used in conjunction with the
routing protocol to handle incoming and outgoing messages,
and can map real IDs to virtual IDs by accessing the local
translation table. When the network layer receives a packet
from another node, it uses the Translation Service to find the
real IDs associated with the virtual IDs in the source and
destination address fields of the packet. If a match is found,
a route is determined based on the local routing table and
the packet is broadcast in order to reach the next hop on that
route. Similarly, when a node originates a message for a given
destination, the network layer uses the Translation Service to
translate the source and destination addresses into valid virtual
IDs and uses such IDs for the outgoing message. Moreover,
all the control messages the routing protocol itself needs to
exchange to build routes (e.g., AODV requests) use virtual
IDs, and are handled as previously described.

A. Using Hash Chains to Generate ID Pools

Hash chains have been first proposed by Lamport [10]
as a password protection scheme against eavesdropping and
replay attacks. Since then, they have been employed in a wide
range of applications, such as onetime passwords or server
supported signatures, thanks to their interesting properties and
low computational costs. In this paper, we use hash chains for
generating pools of virtual IDs.

Assume the network is composed of N nodes. For ease of
presentation, in the following we assume a node’s real identity
is simply an integer i, with 0 ≤ i ≤ N−1. Each nodes i obtains
a shared secret seed s during the join phase – as described in



section VI-A – and generates a random initial seed value xi.
Then, each node i constructs a hash chain of length n+ 1 by
recursively applying a one-way hash function F to the initial
seed xi, and combining the argument with s at each step, as
shown below, where F 0(xi) = xi by default.

(∀k ∈ [1, n]) IDi(k) = F k(xi) = F (F k−1(xi), s) (1)

The use of the shared secret s prevents an attacker who has
knowledge of the hash function used for generating the hash
chain from logically linking multiple virtual IDs to the same
physical node, as described in details in section VII-A.

Because of the one-way property of the hash function,
Fn−1(xi) cannot be generated by knowing the last element
Fn(xi) – called the commitment of the chain – without know-
ing the value of xi. However, knowing Fn(xi), if Fn−1(xi)
is given, its correctness can be verified by checking that

F (Fn−1(xi)) = Fn(xi) (2)

Values in the hash chain of node i will be used as its
virtual IDs in the reverse order with respect to generation.
In particular, the first virtual ID used by node i will be the
commitment of its hash chain, that is IDi(n) = Fn(xi),
corresponding to hash index n; similarly, the last virtual ID
adopted by node i will be IDi(1) = F (xi), corresponding to
hash index 1.

Any node who observes IDi(k) is able to compute all the
previous virtual IDs already used by the same node, that is
IDi(j), with k + 1 ≤ j ≤ n, but no one can compute any of
the future virtual IDs, that is IDi(j), with 1 ≤ j ≤ k − 1.

We assume the commitments of each node’s ID chain are
securely distributed to each node. This way, a node receiving a
packet from IDi(k) can use the commitment IDi(n) to verify
the authenticity of the sender by repeatedly applying the hash
function (n− k) times to IDi(k).

V. TRANSLATION SERVICE

As said, the translation layer interfaces with the routing
layer, without altering the operation of the routing protocol,
except that all routing messages will no longer contain real
IDs, but virtual IDs provided by the Translation Service. In
other words, our service is orthogonal to routing protocols.

Consider the simple network shown in Figure 1. Each node
has a real ID (the number inside the circle) and a current
valid virtual ID (the number outside the circle). Suppose that
node 1 wants to send a message to node 4, through the
routing path 1-2-3-4. Figure 2 shows what happens at the
sender node: the message is processed at the routing level in
order to find the path towards the destination (based on the
adopted routing protocol). The routing layer then invokes the
Translation Service, which translates the source and destination
IDs to their corresponding currently valid virtual addresses,
based on the local translation table. Finally, the message is
broadcast and reaches the next hop designated by the routing
protocol.
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Fig. 1. A simple network
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Fig. 2. Resolving IDs at the originator node (node 1)

The process is similar at any intermediate router node. As
shown in figure 3, an intermediate node receiving a packet,
let’s say node 2, will first translate the virtual IDs to the real
IDs in order to find the correct route towards the destination;
then it will forward the packet to the correct next hop (node
3), but still using virtual IDs.
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dst: 44 

Routing Table 

src: 51 
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4 44 

Translation Table 

Fig. 3. Resolving IDs at an intermediate node (node 2)

As virtual IDs change periodically, a malicious observer is
presented over time with many node identifiers, even related
to the same data flow. In normal conditions, the attacker could
collect information about node IDs observed in the network,
and perform some vulnerability scan on those nodes in order
to discover software weaknesses. She could then exploit such
vulnerabilities to launch specific attacks against the nodes.
With the proposed approach, by the time the attacker has
collected enough information to launch the attack against a
node, the ID may have changed, thus thwarting the attack itself.

VI. UPDATE PROTOCOL

Two fundamental concerns must be taken into account
when designing the Update Protocol: (i) when should nodes



change their IDs?, and (ii) how can legitimate nodes know how
to communicate with one another when their public identities
keep changing over time?

As for the first problem, several strategies can be adopted:
in the simplest scenario, nodes could decide to update their
IDs once a shared timer expires. This strategy does not
require to exchange control messages over the network and
allows each node to know exactly the current valid ID of all
other nodes at any given time, but it also relies upon strict
clocks’ synchronization, which can become difficult to achieve
efficiently when the network includes several hundreds nodes.
We argue that the overhead can be better controlled if each
node could autonomously and asynchronously decide when
to update its virtual ID and communicate its decision to the
other nodes through ad-hoc UPDATE messages. Therefore,
we assume that each node i updates its ID when a local
timer expires. Such timer is randomly selected in the interval
[Tmin, Tmax], where Tmax is the maximum ID validity interval
allowed (i.e. a validity interval larger than Tmax makes the
MTD mechanism ineffective), and Tmin is the minimum ID
validity interval allowed (i.e. a validity interval smaller than
Tmin would not give enough time for an UPDATE message
to propagate across the network before the next update is
triggered).

A virtual ID IDi(k) is used by node i only within a
validity interval ∆Ti(k). When the timeout associated with
such validity interval expires, node i will replace its current
virtual ID – IDi(k) – with the next ID in the ID chain –
IDi(k − 1) – and randomly choose the duration of the next
validity interval ∆Ti(k − 1).

In order to preserve network communication, as previously
said, an UPDATE message is broadcast (flooded) by the up-
dating node i. In particular, when node i replaces IDi(k) with
IDi(k − 1), it will generate an UPDATE packet containing:

• the new valid ID IDi(k − 1) as its source ID,

• the hash index (k − 1), corresponding to the new ID
in node i’s hash chain.

The entry for node i in node j’s translation table looks as
shown in Table I.

TABLE I. ENTRY FOR NODE i IN THE TRANSLATION TABLE OF NODE j

NodeID HashIndex CurrentID
i k IDi(k)

NodeID(i) represents the real ID of the node, while
CurrentID(i) and HashIndex(i) are respectively the cur-
rent valid virtual ID for node i and the hash index of such ID
in node i’s hash chain.

Assume that node j receives an UPDATE containing
IDt(h) as the source ID and h as the hash index. For each en-
try i in the local translation table, if HashIndex(i) > h node
j computes Q = FHashIndex(i)−h(IDt(h)), and checks if
Q = CurrentID(i). If this equality holds, it means that node
i is the originator of the UPDATE message, therefore node j
will update the corresponding entry in the translation table by
setting: CurrentID(i) = IDt(h) and HashIndex(i) = h.

A. Joining and leaving the network

A legitimate node must be able to join and leave the net-
work at any time. In order to allow for correct communication
in a completely distributed scenario, a joining node must send
a proper request to the network. Clearly, a node’s join or leave
request must be authenticated. Achieving nodes’ authentication
is a non-trivial task in MANETs, as they typically lack a fixed
infrastructure or centralized management. In this section, we
assume that legitimate nodes are provided with two shared
secrets: k is used to encrypt request packets such that only
legitimate nodes are able to correctly handle them, while s is
a shared secret seed used by each node to alter the argument
of the hash function, as discussed in section IV-A.

Join. As shown in section VI, in order to allow for correct com-
munication, legitimate nodes need to share the commitment
of their hash chains. Even if it is hardly likely, two or more
different nodes could choose the same initial seed, resulting in
equal hash chains. The problem is very similar to the Address
Assignment Problem in MANETs, which has been addressed
by several researchers [11], [12]. The Zeroconf working group
[13] proposed a mechanism [14] to allow nodes to auto-
configure their addresses: when a node joins the network, it
randomly chooses an IP address and sends an ARP (Address
Resolution Protocol) message for the chosen IP address. If
the IP address is already used, the new node is informed, and
chooses another address and restarts the procedure. If the new
node receives no response within a given timeout, it concludes
that the IP is available so it can use it.

We use a similar mechanism to address the problem:
when a node wants to join the network, it chooses an ID i
and the initial random seed xi. Then it computes the hash
chain commitment IDi(n). The commitment is used as the
source address in a JOIN REQUEST packet, whose payload
is composed of the ID i and a random number ri. The packet
is encrypted with the shared secret k and flooded through the
network.

If a node recognizes the ID and/or the commitment in the
JOIN REQUEST packet as its own ID and/or commitment –
after decrypting it with the shared secret – it broadcasts (floods)
a JOIN RESPONSE packet, meaning that the ID and/or
commitment in question are already in use. If the joining
node does not receive a JOIN RESPONSE packet before a
local timer expires, it assumes the ID and the commitment are
available, and uses them to join the network.

As said, a node receiving the JOIN REQUEST packet,
compares the ID and commitment contained in the packet with
its own ones. If they are different, the packet is queued and
considered as “pending” until a proper timeout expires. If no
JOIN RESPONSE packets are received in this time interval
regarding that ID or commitment, the node assumes that the
ID-commitment pair belongs to a new legitimate network node,
and updates its own translation table accordingly. If a JOIN
RESPONSE packet is received for a pending ID-commitment
pair, it is removed from the queue.

Two or more nodes could issue a JOIN REQUEST for
the same commitment, or the same ID, or both. In order to
distinguish between its own request (that has been rebroadcast
by neighbors) and the request of a different node when
they contain the same ID-commitment pair, each requesting



node compares its randomly generated number ri with that
contained in the request packet. If they do not match, the node
sends a JOIN RESPONSE packet, and chooses a new random
ID and a new secret, and starts the join procedure again.

Leave. Several mechanisms are already available, at the rout-
ing level, to detect a node’s departure based on link breaks.
Without applying any further strategy, an attacker may be
able to identify when a node is leaving the network and
determine its last used ID. As the leaving node will no
longer issue UPDATEs, such ID will always be valid for other
legitimate nodes, and an attacker may able to use it to establish
communications with them. Even if the attacker’s knowledge
of the network is still limited, in order to mitigate this risk,
we can introduce a timer associated with each entry of the
translation table. As all nodes update their ID at least every
Tmax time units, if no UPDATE packets are received for a
certain node after this timer expires, but some data packets are
still received from that ID, a malicious activity can be detected.
In this way, we can avoid to perform a network flooding also
for the leave procedure, thus saving nodes’ energy.

B. Nodes re-initialization

As discussed, each node i has up to n IDs to use, given a
secret xi, that is the n IDs of its hash chain. Once the pool of
available IDs has been depleted, a re-initialization procedure
must be performed. The re-initialization procedure consists
in choosing a new secret and distributing the corresponding
commitment to the whole network. This can be achieved in
the same way as the join procedure described above.

C. Overhead and latency

Clearly, the higher level of security achieved by the
periodic UPDATE process is paid with the introduction of
computation overhead and latency. The described procedure
involves a linear look-up in the local translation table, and
the recursive application of the hash function to find a match.
Indeed, even if the computational cost of the hash function is
very small, if the network is composed of thousands of nodes,
the linear search can introduce a sensitive delay in UPDATE
packets’ management. Actually, if update frequency is not too
high, as nodes do not perform the update at the same moment,
this delay can be easily absorbed. Moreover, a simple strategy
can be adopted to reduce the impact of repeated UPDATE
packets, either received from legitimate neighbors due to the
flooding mechanism, or deliberately replayed by malicious
nodes: in fact, each time an UPDATE packet is received, the
recipient node has to verify the match with all the entries of
the table, thus wasting time and resources before making the
decision of dropping the packet. In order to avoid this, every
time a node successfully verifies the content of an UPDATE
packet and updates its translation table accordingly, it stores the
ID contained in the packet in an Update Cache Queue. The
queue contains at most M entries, with M < N : when the
queue is full, the next value will be added to the tail, and the
head will be removed. When an UPDATE packet is received,
the node will first search in the Update Cache Queue for the
source ID contained in it; if an entry is found for the specified
ID, the packet will be automatically discarded, otherwise it
will be processed normally.

When a node i replaces its current valid ID, its UPDATE
packet will take some time to reach all other nodes of
the network. During this time interval, that we call Update
Latency, legitimate nodes could have a different view of the
network status, and such inconsistency could affect network
traffic in which the updating node is involved. In particular,
some packets traveling over the network will contain the old
valid ID of node i in the source or destination fields. Each
node j that receives one of such packets will process or discard
them depending on whether or not it has already received the
UPDATE from i.

If the communication is carried out over a reliable transport
protocol such as TCP, each message sent by a node must be
acknowledged by the recipient; if the sender does not receive
an acknowledgment (ACK) within a given amount of time, it
will retransmit the message – with a certain frequency – until
an ACK is received. This behavior could lead to a deadlock
condition when the recipient of a transmission updates its
ID during the transmission. Assume that node i is sending
messages to j and that, at a certain time, j updates its current
ID. Until the UPDATE packet of j is received by i, the
messages sent by i will contain an invalid ID in the destination
field, and thus will be dropped. Consequently, node i will
start retransmitting these messages waiting for the relative
ACKs. If no further mechanism is provided, the ACKs for
these messages will never be received by the source node, as
the messages sent by i to the invalid ID will be discarded
automatically from the translation layer, and the messages
will be retransmitted over and over again. In order to cope
with this problem, the transport layer should have access to
the translation table, in order to check the current valid ID
associated with the recipient, and update the destination field
before retransmitting a queued packet.

Note that no deadlock condition can occur when the sender
updates its ID during a transmission. Assume that node i is
sending messages to j and that, at a certain time, i updates
its current ID, continuing to send messages with the new ID;
also assume that the UPDATE packet of node i is in some
way delayed, so that the data packet arrives to the recipient j
before the UPDATE. In this case, j will discard the message
(as it contains an invalid ID) and any other retransmission of
that message until it gets the UPDATE. At this point, j will
recognize the ID of the sender as valid and send back an ACK
to i, that will stop retransmitting the message.

If an unreliable transport layer is used instead, such as UDP,
no retransmissions will be issued and the packets containing
not valid IDs will be simply discarded.

The following subsection provides further discussion about
the management of UPDATEs’ losses and delays.

D. Managing UPDATE losses and delays

In the presence of network congestion and/or node mobil-
ity, it is likely to experience occasional losses or delays of
UPDATE messages, which may cause inconsistencies among
different nodes’ view of the status of the network. In particular,
as shown in the previous section, while the UPDATE protocol
itself is not influenced by UPDATE losses, as each UPDATE
message can be handled independently on its logical predeces-



sors, application or routing traffic could be affected if involved
nodes do not share the same information about network status.

Consider the case of a mobile network in which node i and
node j are communicating. Assume that at time t the network
becomes partitioned in two subnetworks, one containing i
(partition A) and the other containing j (partition B), and
that node i issues an UPDATE just after the partitioning,
so that nodes in partition B do not receive the UPDATE.
Without the ID update mechanism, if partitions did merge
at time t + δ, only packets sent during interval δ would be
lost, and communication could be established again without
further losses. With the ID update mechanism instead, also
all packets sent after merging and before the next update
(assuming this is correctly received by all nodes) would be lost,
as no one of the nodes belonging to partition B is able to find
a mapping for the new ID of node i. In order to mitigate this
problem, in the presence of mobility, an updating node could
decide to reply the last UPDATE during a validity interval,
to help synchronization. Of course, a trade off exists between
replaying frequency and overhead introduced.

VII. SECURITY EVALUATION

In this section, we evaluate the security of the proposed
solution with respect to a variety of attacks. In the previous
sections, we outlined the primary benefits of periodically
changing a node’s ID. Here, we address both specific attacks
against the update protocol itself, and some of the most
common routing attacks, showing how our protocol’s design
is able to thwart and/or mitigate them.

We only consider attackers, so they do not know a node’s
sensitive information, such as the random seed used to generate
the hash chain and the shared secret used to encrypt JOIN
REQUEST and JOIN RESPONSE packets.

A. Attacks against the UPDATE protocol

With respect to the UPDATE protocol itself, an attacker
could perform different actions targeted at jeopardizing a
specific phase of the protocol:

JOIN phase. As attackers do not know the shared secret, they
cannot pretend to be legitimate nodes and join the network.
For the same reason, also attacks aimed at forging JOIN
REQUEST packets to verify if some identities exist in the
network (by verifying whether a JOIN RESPONSE packet is
received for those identities) are not possible.

UPDATE phase. An attacker may try to forge an UPDATE
packet with its own ID or replay an intercepted UPDATE
packet to pretend that a node is changing its ID. However,
neither of these attacks can succeed. In fact, these packets will
be recognized as invalid or old respectively and discarded by
legitimate nodes. Indeed, the attacker could use this strategy
to perform a denial of service attack, as legitimate nodes are
forced to process each packet before discarding it. The solution
proposed in section VI-C can mitigate this attack.

ID generation phase. Assuming the hash function used in
the generation of ID pools is known to attackers, they could
perform the type of brute force attack described in the follow-
ing, if provided with significant processing power. An attacker
could systematically test every seed in the seed space and

generate the entire hash chain starting from that seed, and
check whether the generated commitment corresponds to one
of the commitments previously gahtered during the JOIN or
re-initialization phase. Clearly, we need to have a large seed
space to thwart brute force attacks.

B. Attacks against the routing protocol

In this section we consider the most common routing
attacks [15], and show how our protocol’s design is able to
thwart and/or mitigate many of them. We assume the adopted
routing protocol is AODV, properly modified as described in
section V.

Blackhole attack. The blackhole attack consists in generating
incorrect routes so that packets are no longer forwarded to the
proper recipient but instead get lost or are redirected to the
attacker itself. In our modified version of AODV, routes are
determined by exchanging AODV RREQ and RREP packets
containing valid virtual IDs instead of real IDs. In order to
advertise itself as having a valid route to a destination node
and intercept all traffic towards it, a malicious node should
have a valid virtual ID. Since the attacker does not have a
valid virtual ID, this attack can be prevented.

Wormhole attack. In the wormhole attack, an attacker records
packets at one location in the network and tunnels them to
another location, thus preventing for example the discovery
of any routes other than through the wormhole. Similar to
Blackhole attacks, in order to re-route traffic through itself, a
malicious node needs a valid virtual ID, therefore this attack
is not feasible.

Sybil attack. A malicious device can illegitimately take on
multiple identities [4]. However, as the attacker cannot legit-
imately join the network, such identities will be ignored by
legitimate nodes.

Routing message flooding attack. In this type of attack,
attackers do not follow the specifications of the routing pro-
tocol. As an example, an attacker can originate many AODV
REQUEST packets using some recently heard IDs and flood
the network.

As legitimate nodes periodically change their IDs, the
spoofed ID used for malicious packets may no longer valid.
In this case they will be ignored, thus mitigating the attack.
Moreover, specific solutions aimed at addressing this problem
have been proposed [16].

Another type of routing message flooding attack is the
Routing Table Overflow attack, in which the attacker advertises
routes to non-existent nodes to generate overflow in the routing
table. As there is no valid virtual ID associated with these
nodes, the attack can not be performed.

Route invalidation attack. In this attack, a malicious node
could forge ERROR messages to invalidate routes, using
recently overheard virtual IDs. Even in this case, as legitimate
nodes periodically change their IDs, the spoofed ID used in
the malicious packet may no longer be valid, thus mitigating
the attack.

VIII. EXPERIMENTAL EVALUATION

As discussed in section VI-C, the higher level of security
achieved through the periodic update process is paid with



the introduction of computational overhead and latency. The
overhead due to the look-up operation in the local translation
table – performed by each node every time a packet is
processed – and the update operations themselves affect normal
communications by slowing them down or by increasing the
number of retransmissions. Due to the update latency, some
nodes can temporarily hold a different view of the network
status. Routing or data traffic involving such nodes in this time
interval could be negatively affected, as packets containing non
valid IDs will be automatically discarded. This can lead to
delays and increased retransmissions in reliable networks, or
packet losses in unreliable networks.

In the following, we present a set of experiments aimed at
evaluating the performance of the proposed MTD mechanism
in terms of overhead. We implemented the Translation Layer
in NS-2, by developing an agent for running the UPDATE
protocol and managing the Translation Service. The nodes of
the simulated network run TCP on top of a modified version
of AODV, which communicates with the Translation Service
according to the described design.

In our experiments, we set the simulation time to 200
seconds and considered validity intervals of decreasing length.
Each node randomly chooses a timer in a given time interval
[Tmin, Tmax] and uses it as the duration of the current validity
interval. Table II shows the considered time intervals and
the corresponding update frequency, given by the number
of update operations performed by each node during the
simulation time.

TABLE II. VALIDITY INTERVALS CONSIDERED IN THE EXPERIMENTS
AND CORRESPONDING UPDATE FREQUENCIES

(Tmin;Tmax) Updates frequency
(100,105) 1
(50,55) 3
(20,25) 9
(10,15) 19

For each value of the update frequency, we generated 10
different random scenarios and recorded several statistics, such
as the number of nodes, the traffic patterns, and changes in the
nodes’ mobility patterns.

Figure 4 shows how the number of retransmitted TCP pack-
ets increases when update frequency increases, in networks
composed of 100, 500 and 1,000 nodes respectively, with a
single-sender/single-receiver TCP communication pattern. As
shown, when reducing the validity interval, the rate at which
the percentage of retransmitted packets increases, becomes
greater. This trend is clearer when considering a larger number
of nodes.

As said, due to the update latency, some of the packets
exchanged over the network will be dropped as they use invalid
IDs. Figure 5 shows the percentage of well-formed received
packets, that is packets that are correctly processed by recipient
nodes – as they contain valid IDs. Even in this case, the higher
the update frequency, the faster the resulting percentage of
well-formed packets decreases.

Figure 6 shows the total number of UPDATE packets
traveling over the network during the simulation time, which
provides a measure of the packet overhead introduced by the
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Fig. 5. Percentage of well-formed packets vs. update frequency

UPDATE protocol. The number of UPDATE packets originated
in the network is quadratic in the number of nodes.

As expected, a trade-off exists between the level of se-
curity provided by the update mechanism and the resulting
overhead/performance. As shown in the charts included in this
section, when the size of the network increases, performance
rapidly degrades and overhead increases as the validity interval
becomes smaller. This suggests that larger validity intervals
should be chosen for larger networks in order to limit the
overhead. Indeed, the effort required from an attacker to gain
knowledge about the network is proportional to the number of
nodes, therefore it is reasonable to reduce the update frequency
in large networks, while preserving the security benefits of the
proposed mechanism.
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Figure 7 shows the percentage of well-formed received
packets, in the case of 10 concurrent TCP connections and of a



single TCP connection respectively, for a network composed of
100 nodes. Clearly, as more packets travel through the network,
the percentage of discarded packets is greater in the case of
multiple connections.
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Finally, Figure 8 shows the percentage of well-formed
packet for a network composed of 100 nodes, in the case of
multiple connections and different moving speeds.
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IX. CONCLUSIONS

Mechanisms for continuously changing or shifting a sys-
tem’s attack surface are emerging as game-changers in cyber
security. Such mechanisms increase the complexity for attack-
ers, limit the exposure of vulnerabilities, and increase overall
system resiliency. In this paper, we proposed a novel MTD
mechanism for periodically changing the virtual identity of
nodes in a MANET. The proposed mechanism turns a classical
attack mechanism – Sybil attack – into an effective defense
mechanism, with legitimate nodes periodically changing their
virtual identity in order to defeat the attacker’s reconnaissance
efforts. In order to preserve the ability for legitimate nodes to
communicate, we modified the network layer by introducing
(i) a translation service that can map virtual identities to real
identities; (ii) a protocol for propagating updates of a node’s
virtual identity to all legitimate nodes; and (iii) an ad-hoc
mechanism for legitimate nodes to securely join the network.
We showed that the proposed approach is robust, and can
prevent or mitigate different types of attacks. We also showed
that the overhead introduced by the update protocol is low.
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