

# High-Performance Outlier Detection Algorithm for Finding Blob-Filaments in Plasma

Lingfei Wu<sup>1</sup>, Kesheng Wu<sup>2</sup>, Alex Sim<sup>2</sup>, Michael Churchill<sup>3</sup>, Jong Y. Choi<sup>4</sup>, Andreas Stathopoulos<sup>1</sup>, CS Chang<sup>3</sup>, and Scott Klasky<sup>4</sup>

<sup>1</sup>College of William and Mary
 <sup>2</sup>Lawrence Berkeley National laboratory
 <sup>3</sup>Princeton Plasma Physics Laboratory
 <sup>4</sup>Oak Ridge National Laboratory



## Outline

## • Outline

Introduction

Related work

Blob detection

Hybrid parallel

Evaluations

Conclusion

## Introduction

**Related work** 

**Blob detection** 

Hybrid parallel

**Evaluations** 

Conclusion



# What is an outlier ?

#### Outline

#### Introduction

- Outlier Detection
- Our goal
- Blobs in fusion
- Motivation

### Related work

Blob detection

- Hybrid parallel
- Evaluations

Conclusion

An outlier is a data object that deviates significantly from the rest of the objects, as if it were generated by a different mechanism.<sup>1</sup>

- Outliers could be errors or noise to be eliminated
- Outliers can lead to the discovery of important information in data

Outlier detection is employed in a variety of applications:

- fraud detection
- time-series monitoring
- medical care
- public safety and security

<sup>&</sup>lt;sup>1</sup>Jiawei Han and Micheline Kamber, *Data Mining, Southeast Asia Edition: Concepts and Techniques*, Morgan kaufmann, 2006.



# **Our goal**

Outline

#### Introduction

- Outlier Detection
- Our goal
- Blobs in fusion
- Motivation

Related work

Blob detection

Hybrid parallel

Evaluations

Conclusion

Outlier detection is an important task in many safety critical environments.

- An outlier demands to be detected in real-time
- A suitable feedback is provided to alarm the control system
- The size of data sets need fast and scalable outlier detection methods

Our goal: apply the outlier detection techniques to effectively tackle the fusion blob detection problem on extremely large parallel machines

- Massive amounts of data are generated from fusion experiments / simulations
- Near real-time understanding of data is needed to predict performance



# **Blobs in fusion**

#### • Outline

#### Introduction

- Outlier Detection
- Our goal
- Blobs in fusion
- Motivation

Related work

Blob detection

Hybrid parallel

Evaluations

Conclusion

## What is fusion & Why fusion?

- Fusion is viable energy source for the future
  - Fossil fuels will run out soon; Solar and wind have limited potential
  - Advantages of fusion: inexhaustible, clear and safe





# **Blobs in fusion**

#### Outline

- Introduction
- Outlier Detection
- Our goal
- Blobs in fusion
- Motivation
- Related work
- Blob detection
- Hybrid parallel
- Evaluations
- Conclusion

# Blobs are intermittent bursts of particles near the edge of the confined plasma

 $\Rightarrow$  Driven by turbulence

Blobs are bad for fusion performance because they:

- Transport heat and particles away from the confined plasma
- May damage the main chamber wall
- Lead to increased levels of neutrals and impurities, bypassing control mechanisms



# **Blob detection is a very important task!**



## Outline

#### Introduction

- Outlier Detection
- Our goal
- Blobs in fusion
- Motivation

Related work

Blob detection

Hybrid parallel

Evaluations

Conclusion

## Fusion experiments generate massive amounts of data:

Diagnostics measuring lasts
from a few to several hundred
seconds generating large
amounts of data, ~ Gigabytes
to Terabytes!

**Big data challenges in fusion energy** 

Large-scale fusion simulation generates  $\sim$  a few tens of Terabytes per second!





# Big data challenges in fusion energy

## Outline

### Introduction

- Outlier Detection
- Our goal
- Blobs in fusion
- Motivation

Related work

Blob detection

Hybrid parallel

Evaluations

Conclusion

## Difficulties in large-scale data analysis:

- Existing data analysis is often a single-threaded, slow, and only for post-run analysis
- Fusion experiments demand real-time data analysis
- E.g. ICEE aims to apply blobdetection for monitoring healthof fusion experiments inKSTAR



# Real-time blob detection is a very challenging task!



# Three approaches for blob detection

| In<br>Re<br>BI | Outline<br>troduction<br>elated work<br>Related work<br>ob detection<br>vbrid parallel | Single<br>threshold &<br>conditional<br>averaging | <ul> <li>The exact criterion varies</li> <li>Averaging may destroy important information</li> </ul>                                         |
|----------------|----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                        |                                                   |                                                                                                                                             |
|                | valuations<br>onclusion                                                                | Image<br>analysis<br>techniques                   | <ul> <li>Very sensitive to the setting of parameters</li> <li>Hard to use generic method for all images</li> </ul>                          |
|                |                                                                                        | Contouring<br>method &<br>thresholding            | <ul> <li>Can not be a real-time blob detection</li> <li>May miss detecting blobs at the edge</li> <li>Is still post-run-analysis</li> </ul> |
|                |                                                                                        |                                                   |                                                                                                                                             |



# An efficient blob detection approach

- Outline
- Introduction
- Related work
- Blob detection
- Our approach
- The sketch
- Refine mesh
- Two-step detection
- Fast CCL
- Hybrid parallel

Evaluations

Conclusion

- Our approach: an outlier detection algorithm for efficiently finding blobs in fusion simulations / experiments
  - Two-step outlier detection with various criteria after normalizing the local intensity
  - Leverage a fast connected component labeling method to find blob components based on a refined triangular mesh
- Contributions:
  - A new method not missing detection of blobs in the edge of the region of interests compared to contouring method
  - Targeting for more challenging in-shot-analysis and between-shot-analysis
  - The first research work to achieve blob detection in a few milliseconds



• Outline

# **Outlier detection algorithm for finding blobs**

## Sketch the proposed outlier detection algorithm:





Conclusion

- Compute 4 times more triangles by creating new vertexes with the three middle points of original edges
- Apply recursively until reaching the desired resolution
- Depend on specified data set and demanded resolution

2.32



# **Two-step outlier detection to identify blobs**

Outline

Introduction

Related work

**Blob detection** 

- Our approach
- The sketch
- Refine mesh
- Two-step detection
- Fast CCL

Hybrid parallel

Evaluations

Conclusion

## Motivation for two-step outlier detection for finding blobs:



A contour plot in the region of interests





Outline

Introduction

Related work

Blob detection

- Our approach
- The sketch
- Refine mesh
- Two-step detection

- Fast CCL
- Hybrid parallel

Evaluations

Conclusion

# A fast connected component labeling algorithm

We apply an efficient connected component labeling algorithm on a refined triangular mesh to find blob components:

- This is a two-pass approach and each triangle is scanned firstly
- Reduce unnecessary memory access if any vertex in a triangle is found to be connected with others
- After the label array is filled full, we need flatten the union and find tree
- Second pass is performed to correct labels and all blob candidate components are found



- Outline
- Introduction
- Related work
- Blob detection
- Hybrid parallel
- MPI/OpenMP
- Evaluations
- Conclusion

A hybrid MPI/OpenMP parallelization on many-core processor architecture:

Parallelization of blob detection approach

- High-level: use MPI to allocate n processes to process each time frame
- Low-level: use OpenMP to accelerate the computations with m threads





# **Results: same time frame + four planes**

- Outline
- Introduction
- Related work
- Blob detection
- Hybrid parallel
- Evaluations
- Results I
- Results II
- Results III

Conclusion









BDAC-SC14



## **Results: same plane** + four time frames

- Outline
- Introduction
- Related work
- **Blob detection**
- Hybrid parallel
- Evaluations
- Results I
- Results II
- Results III

Conclusion







BDAC-SC14



# **Results: real-time blob detection**

Outline

Introduction

Related work

Blob detection

Hybrid parallel

Evaluations

Results I

• Results II

Results III

Conclusion



- Complete blob detection in around 2 ms with MPI/OpenMP using 4096 cores and in 3 ms with MPI using 1024 cores
- MPI/OpenMP is two times faster than MPI
- Linear time speedup in blob detection time and slightly more in I/O time



# **Conclusion and future work**

|   | $\cap$ | ıtl | ine |
|---|--------|-----|-----|
| • |        | JU  | ine |

Introduction

Related work

Blob detection

Hybrid parallel

Evaluations

Conclusion

Conclusion

We present for the first time a real time blob detection method for finding blob-filaments in real fusion experiments or numerical simulations.

- Key components:
  - Two-step outlier detection with various criteria
  - A fast connected component labeling method
  - Hybrid MPI/OpenMP parallelization
- Future work:
  - Test the detection algorithm to experimental measurement data from operating fusion devices
  - Develop a blob tracking algorithm