

Enhancing the PRIMME Eigensolver for Computing Accurately Singular Triplets of Large Matrices

Lingfei Wu and Andreas Stathopoulos

Department of Computer Science College of William and Mary

April 10th, 2014

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

 Social network analysis: voting similarities among politicians

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Social network analysis: voting similarities among politicians
- Image-processing: calculation of Eigenfaces in face recognition

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Social network analysis: voting similarities among politicians
- Image-processing: calculation of Eigenfaces in face recognition
 - Textual database searching: Google, Yahoo, and Baidu

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Social network analysis: voting similarities among politicians
- Image-processing: calculation of Eigenfaces in face recognition
 - Textual database searching: Google, Yahoo, and Baidu
 - Numerical linear algebra: least square fitting, rank, low-rank approximation, computation of pseudospectrum

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Social network analysis: voting similarities among politicians
- Image-processing: calculation of Eigenfaces in face recognition
 - Textual database searching: Google, Yahoo, and Baidu
 - Numerical linear algebra: least square fitting, rank, low-rank approximation, computation of pseudospectrum
 - Variance reduction in Monte Carlo method

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Assume $A \in \Re^{m \times n}$ is a large, sparse matrix:

Introduction: what is SVD ?

$$\label{eq:alpha} \begin{split} A &= U \Sigma V^T \\ U^T U &= I, V^T V = I, \Sigma = Diag \end{split}$$

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Introduction: what is SVD ?

Assume $A \in \Re^{m \times n}$ is a large, sparse matrix:

$$A = U\Sigma V^T$$
$$U^T U = I, V^T V = I, \Sigma = Diag$$

Our Problem: find k smallest singular values and corresponding left and right singular vectors of A

$$Av_i = \sigma_i u_i, \sigma_1 \leq \ldots \leq \sigma_k$$

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

• A Hermitian eigenvalue problem on

Introduction: how to compute SVD?

Introduction: how to compute SVD ?

- Introduction
- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue
- Related work
- primme_svds: why choose the two stage strategy
- primme_svds: how to develop the two stage strategy
- Evaluations
- Conclusions

- A Hermitian eigenvalue problem on
 - Normal equations matrix $C = A^T A$ or $C = A A^T$

• Augmented matrix $B = \begin{pmatrix} 0 & A^T \\ A & 0 \end{pmatrix}$

Introduction: how to compute SVD ?

- Introduction
- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- A Hermitian eigenvalue problem on
 - Normal equations matrix $C = A^T A$ or $C = AA^T$

• Augmented matrix $B = \begin{pmatrix} 0 & A^T \\ A & 0 \end{pmatrix}$

Lanczos bidiagonalization method (LBD)

Introduction: how to compute SVD ?

- Introduction
- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue
- Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- A Hermitian eigenvalue problem on
 - Normal equations matrix $C = A^T A$ or $C = AA^T$
 - Augmented matrix $B = \begin{pmatrix} 0 & A^T \\ A & 0 \end{pmatrix}$
- Lanczos bidiagonalization method (LBD)

 $A = PB_dQ^T$

 $B_d = X \Sigma Y^T$

Where U = PX and V = QY

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Introduction: difference between methods

Convergence speed

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Convergence speed

- fast for largest SVs
- \circ $\,$ slow for smallest SVs $\,$

0

Ο

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Eigen methods on *C* Eigen methods on *B*

- Convergence speed
 - fast for largest SVs
 - slow for smallest SVs
 - slower for largest SVs
 - extremely slow for smallest SVs (interior eigenvalue problem)

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Convergence speedEigen

- methods on C
- Eigen methods on *B*
- LBD on A

- fast for largest SVs
 slow for smallest SVs
- slower for largest SVs
- extremely slow for smallest SVs (interior eigenvalue problem)
- fast for largest SVs
- \circ similar to C but exhibits irregular
 - convergence for smallest SVs

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why
choose the two stage
strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Introduction: difference between methods

Accuracy

CopperMountain2014

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Accuracy
- Eigen
- methods on C
- can only achieve accuracy of $O(\kappa(A) ||A|| \epsilon_{mach})$

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

• can only achieve accuracy of $O(\kappa(A) \|A\| \epsilon_{mach})$

• can achieve accuracy of $O(||A||\epsilon_{mach})$

Introduction

- The applications
- The problems
- The methods
- Convergence issue
- Accuracy issue

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Accuracy Eigen methods on C	
Eigen methods on B	
LBD on A	

• can only achieve accuracy of $O(\kappa(A) ||A|| \epsilon_{mach})$

• can achieve accuracy of $O(||A||\epsilon_{mach})$

• can achieve accuracy of $O(||A||\epsilon_{mach})$

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Advantages of LBD:

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A
 - Computationally inexpensive to combine with the harmonic and refined projection methods

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A
 - Computationally inexpensive to combine with the harmonic and refined projection methods
 - Inherits the global convergence of Lanczos when seeking many singular triplets

- Introduction
- Related work
- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A
 - Computationally inexpensive to combine with the harmonic and refined projection methods
 - Inherits the global convergence of Lanczos when seeking many singular triplets
- Drawbacks of LBD:

n	tr	00	du	ct	io	n

Related	work
---------	------

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A
 - Computationally inexpensive to combine with the harmonic and refined projection methods
 - Inherits the global convergence of Lanczos when seeking many singular triplets
- Drawbacks of LBD:
 - Orthogonality loss, large memory demands and irregular convergence

- Introduction
- Related work
- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A
 - Computationally inexpensive to combine with the harmonic and refined projection methods
 - Inherits the global convergence of Lanczos when seeking many singular triplets
- Drawbacks of LBD:
 - Orthogonality loss, large memory demands and irregular convergence
 - Current SVD solvers not reflect remarkable algorithmic progress

- Introduction
- Related work
- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of LBD:
 - \circ Builds same space as Lanczos on C but avoids numerical issues by working on A
 - Computationally inexpensive to combine with the harmonic and refined projection methods
 - Inherits the global convergence of Lanczos when seeking many singular triplets
- Drawbacks of LBD:
 - Orthogonality loss, large memory demands and irregular convergence
 - Current SVD solvers not reflect remarkable algorithmic progress
 - Cannot use preconditioning to accelerate convergence

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

• Advantages of the JDSVD method:

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of the JDSVD method:
 - Can take advantage of preconditioning

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of the JDSVD method:
 - Can take advantage of preconditioning
 - Two search spaces share advantages of LBD

Introduction

Related work

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of the JDSVD method:
 - Can take advantage of preconditioning
 - Two search spaces share advantages of LBD
 - No numerical accuracy problem

Introduction

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of the JDSVD method:
 - Can take advantage of preconditioning
 - Two search spaces share advantages of LBD
 - No numerical accuracy problem
 - Drawbacks of the JDSVD method:

Introduction

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of the JDSVD method:
 - Can take advantage of preconditioning
 - Two search spaces share advantages of LBD
 - No numerical accuracy problem
- Drawbacks of the JDSVD method:
 - \circ Correction equation working on B may not be efficient

I	n	tr	0	dι	ict	ior	ſ

riolatoa morre

- The LB-type method
- The JD-type method

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Advantages of the JDSVD method:
 - Can take advantage of preconditioning
 - Two search spaces share advantages of LBD
 - No numerical accuracy problem
- Drawbacks of the JDSVD method:
 - \circ Correction equation working on B may not be efficient
 - Still in development and only MATLAB implementation

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to
develop the two stage
strategy

Evaluations

Conclusions

Motivation I: our goal for an SVD solver

Extremely challenging task for small SVs:

• large sparse matrix \Rightarrow No shift-and-invert

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to
develop the two stage
strategy

Evaluations

Conclusions

Motivation I: our goal for an SVD solver

Extremely challenging task for small SVs:

- large sparse matrix \Rightarrow No shift-and-invert
- very slow convergence \Rightarrow restarting and preconditioning

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation I: our goal for an SVD solver

Extremely challenging task for small SVs:

- large sparse matrix \Rightarrow No shift-and-invert
- very slow convergence \Rightarrow restarting and preconditioning very few SVD solvers:
 - SVDPACK: Lanczos and trace-minimization methods working on B or C for only largest SVs
 PROPACK: LBD for largest SVs, using shift-and-inverting for smallest SVs

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation I: our goal for an SVD solver

Extremely challenging task for small SVs:

- large sparse matrix \Rightarrow No shift-and-invert
- very slow convergence \Rightarrow restarting and preconditioning
- very few SVD solvers:
 - SVDPACK: Lanczos and trace-minimization methods working on B or C for only largest SVs
 DDDAOK: LDD for largest OV/s regime
 - PROPACK: LBD for largest SVs, using shift-and-inverting for smallest SVs

 \Rightarrow calls for full functionality, highly-optimized SVD solver

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation I: our goal for an SVD solver

Extremely challenging task for small SVs:

- large sparse matrix \Rightarrow No shift-and-invert
- very slow convergence \Rightarrow restarting and preconditioning
- very few SVD solvers:
 - SVDPACK: Lanczos and trace-minimization methods working on B or C for only largest SVs
 - PROPACK: LBD for largest SVs, using shift-and-inverting for smallest SVs

 \Rightarrow calls for full functionality, highly-optimized SVD solver

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

PRIMME: PReconditioned Iterative MultiMethod Eigensolver

Over 12 eigenmethods including near optimal GD+k and JDQMR methods

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

- Over 12 eigenmethods including near optimal GD+k and JDQMR methods
- Supports seeking interior eigenvalues

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

- Over 12 eigenmethods including near optimal GD+k and JDQMR methods
- Supports seeking interior eigenvalues
- Accepts initial guesses for all required eigenvectors

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

- Over 12 eigenmethods including near optimal GD+k and JDQMR methods
- Supports seeking interior eigenvalues
- Accepts initial guesses for all required eigenvectors
 - Accepts many shifts and finds the closest eigenvalue to each shift

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

- Over 12 eigenmethods including near optimal GD+k and JDQMR methods
- Supports seeking interior eigenvalues
- Accepts initial guesses for all required eigenvectors
 - Accepts many shifts and finds the closest eigenvalue to each shift
 - Accepts preconditioner for C or B, or if $M \approx A^{-1}$, uses $MM^T \approx C^{-1}$ and $\begin{bmatrix} 0 & M \\ M^T & 0 \end{bmatrix} \approx B^{-1}$

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

- Over 12 eigenmethods including near optimal GD+k and JDQMR methods
- Supports seeking interior eigenvalues
- Accepts initial guesses for all required eigenvectors
 - Accepts many shifts and finds the closest eigenvalue to each shift
- Accepts preconditioner for C or B, or if $M \approx A^{-1}$, uses $MM^T \approx C^{-1}$ and $\begin{bmatrix} 0 & M \\ M^T & 0 \end{bmatrix} \approx B^{-1}$
- A robust framework: subspace acceleration, locking mechanism

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation II: building an SVD solver on PRIMME

- Over 12 eigenmethods including near optimal GD+k and JDQMR methods
- Supports seeking interior eigenvalues
- Accepts initial guesses for all required eigenvectors
 - Accepts many shifts and finds the closest eigenvalue to each shift
- Accepts preconditioner for C or B, or if $M \approx A^{-1}$, uses $MM^T \approx C^{-1}$ and $\begin{bmatrix} 0 & M \\ M^T & 0 \end{bmatrix} \approx B^{-1}$
- A robust framework: subspace acceleration, locking mechanism
- Parallel, high performance implementation for large, sparse, hermitian matrices

Introduction

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Eigen methods on C:
 - $K_k(A^T A, v_1)$

Introduction

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Eigen methods on C:
 - $K_k(A^T A, v_1)$
- LBD on A and A^T : $K_k(AA^T, Av_1), K_k(A^TA, v_1)$

Introduction

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Eigen methods on C:
 - $K_k(A^T A, v_1)$
- LBD on A and A^T : $K_k(AA^T, Av_1), K_k(A^TA, v_1)$
- Eigen methods on *B*: $\begin{pmatrix} K_{\frac{k}{2}}(AA^{T}, u_{1}) \\ K_{\frac{k}{2}}(A^{T}A, v_{1}) \end{pmatrix} \oplus \begin{pmatrix} K_{\frac{k}{2}}(AA^{T}, Av_{1}) \\ K_{\frac{k}{2}}(A^{T}A, A^{T}u_{1}) \end{pmatrix}$

Introduction

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Eigen methods on C:
 - $K_k(A^T A, v_1)$
- LBD on A and A^T : $K_k(AA^T, Av_1), K_k(A^TA, v_1)$
 - Eigen methods on *B*: $\begin{pmatrix} K_{\frac{k}{2}}(AA^{T}, u_{1}) \\ K_{\frac{k}{2}}(A^{T}A, v_{1}) \end{pmatrix} \oplus \begin{pmatrix} K_{\frac{k}{2}}(AA^{T}, Av_{1}) \\ K_{\frac{k}{2}}(A^{T}A, A^{T}u_{1}) \end{pmatrix}$
- JDSVD method (outer iteration) on A and A^T : $K_{\frac{k}{2}}(AA^T, u_1) \oplus K_{\frac{k}{2}}(AA^T, Av_1),$ $K_{\frac{k}{2}}(A^TA, v_1) \oplus K_{\frac{k}{2}}(A^TA, A^Tu_1)$

Introduction

- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Motivation III: the impact of restarting

primme_svds: the two stage strategy

Introduction

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- GD+1 on C is best for a few smallest SVs, but limited by accuracy
- need another phase to refine the accuracy

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

primme_svds: the two stage strategy

- GD+1 on C is best for a few smallest SVs, but limited by accuracy
- need another phase to refine the accuracy

Our solution: a hybrid, two-stage singular value method

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

*

Evaluations

Conclusions

primme_svds: the two stage strategy

- GD+1 on C is best for a few smallest SVs, but limited by accuracy
- need another phase to refine the accuracy

Our solution: a hybrid, two-stage singular value method

- Stage I: works on C to max residual tolerance $\max \left(\sigma_i \delta_{user} ||A||, ||A||^2 \epsilon_{mach}\right)$
 - Must dynamically adjust tolerance in PRIMME to meet user tolerance

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

primme_svds: the two stage strategy

- GD+1 on C is best for a few smallest SVs, but limited by accuracy
- need another phase to refine the accuracy

Our solution: a hybrid, two-stage singular value method

- Stage I: works on C to max residual tolerance $\max \left(\sigma_i \delta_{user} ||A||, ||A||^2 \epsilon_{mach}\right)$
 - Must dynamically adjust tolerance in PRIMME to meet user tolerance
- * Stage II: works on B to improve the approximations from C to user required tolerance $\delta_{user} ||A||$

primme_svds: an example

Introduction

Related work

primme_svds: why choose the two stage strategy

- Motivation I
- Motivation II
- Motivation III
- Our method

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

What's the tolerance threshold to converge to?

Stage I of primme_svds: working on C

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

• What's the tolerance threshold to converge to?

Stage I of primme_svds: working on C

How to dynamically adjust the tolerance in PRIMME?

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

Stage I of primme_svds: working on C

Let $(\tilde{\sigma}, \tilde{u}, \tilde{v})$ be a targeted singular triplet of A $r_v = A\tilde{v} - \tilde{\sigma}\tilde{u}, \qquad r_u = A^T\tilde{u} - \tilde{\sigma}\tilde{v},$ $r_C = C\tilde{v} - \tilde{\sigma}^2\tilde{v}, \quad r_B = B\begin{bmatrix}\tilde{v}\\\tilde{u}\end{bmatrix} - \tilde{\sigma}\begin{bmatrix}\tilde{v}\\\tilde{u}\end{bmatrix}.$

If $||v_i|| = 1$, $||u_i|| = ||Av_i/\sigma_i|| = 1$, then $r_v = 0$ and

$$\|r_u\| = \frac{\|r_C\|}{\tilde{\sigma}} = \|r_B\|\sqrt{2}$$

Thus, the stopping criterion for the methods on C becomes,

 $\delta_C = \max\left(\delta_{user} \ \tilde{\sigma} / \|A\|, \epsilon_{mach}\right)$

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

Stage II of primme_svds: working on ${\cal B}$

Inputs from C:

- Accurate shifts for interior eigenvalue problem
- \circ $\;$ Good initial guesses formed by eigenvectors from C

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation
- Evaluations

Conclusions

Stage II of primme_svds: working on ${\cal B}$

Inputs from C:

- Accurate shifts for interior eigenvalue problem
- \circ $\;$ Good initial guesses formed by eigenvectors from C

 \Rightarrow Calls for JDQMR - one of near-optimal methods in PRIMME

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation
- Evaluations

Conclusions

Stage II of primme_svds: working on ${\cal B}$

Inputs from C:

- Accurate shifts for interior eigenvalue problem
- \circ $\;$ Good initial guesses formed by eigenvectors from C
- \Rightarrow Calls for JDQMR one of near-optimal methods in PRIMME
- Irregular convergence of Rayleigh Ritz (RR) on ${f B}$

n	It	rc	d	u	C	ti	0	r

Re	lated	work

primme_svds: why
choose the two stage
strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

Stage II of primme_svds: working on ${\cal B}$

Inputs from C:

- Accurate shifts for interior eigenvalue problem
- \circ $\,$ Good initial guesses formed by eigenvectors from C
- \Rightarrow Calls for JDQMR one of near-optimal methods in PRIMME
- Irregular convergence of Rayleigh Ritz (RR) on $B \Rightarrow$ Enhance PRIMME with refined projection method

Stage II of primme_svds: working on ${\cal B}$

Introduction

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation
- Evaluations

Conclusions

Refined projection minimizes the residual $\|BVy - \tilde{\sigma}Vy\|$ where V search space for a given user shift $\tilde{\sigma}$

- QR factorization on $BV \tilde{\sigma}V$ only after restart
- one column updating for Q and R during iteration
- computational cost similar with the RR method

Related	work
---------	------

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

Eigenvalue method VS Iterative Refinement (IR)?

Stage II of primme_svds: working on B

- correction equation on B equivalent to IR but JD leverages subspace acceleration with near-by eigenvectors
- stops the linear solver optimally
- IR may fail without deflation strategies

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

• Developed PRIMME MEX, a MATLAB interface for PRIMME

Outline of the implementation of primme_svds

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

Developed PRIMME MEX, a MATLAB interface for PRIMME

Outline of the implementation of primme_svds

 User interfaces are similar to MATLAB eigs() and svds(), but allow access to full-functionality of PRIMME

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

- Stage I
- Stage II
- Implementation

Evaluations

Conclusions

 Developed PRIMME MEX, a MATLAB interface for PRIMME

Outline of the implementation of primme_svds

- User interfaces are similar to MATLAB eigs() and svds(), but allow access to full-functionality of PRIMME
- Refined projection implemented in PRIMME, and C implementation of primme_svds in PRIMME soon

Evaluation: Test matrices

Introduction

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

- Test matrices
- Experiment I
- Experiment II
- Experiment III

Conclusions

Table 1: Properties of the test matrices

Matrix	well1850	pde2961	dw2048	fidap4	jagmesh8	lshp3025	wang3
order	1850	2961	2048	1601	1141	3025	26064
$\kappa(A)$	1.1e2	9.5e2	5.3e3	5.2e3	5.9e4	2.2e5	1.1e4
$ A _2$	1.8e0	1.0e1	1.0e0	1.6e0	6.8e0	7.0e0	2.7e-1
$gap_{min}(1)$	3.0e-3	8.2e-3	2.6e-3	1.5e-3	1.7e-3	1.8e-3	7.4e-5
$gap_{min}(3)$	3.0e-3	2.4e-3	2.9e-4	2.5e-4	1.6e-3	9.1e-4	1.9e-5
$gap_{min}(5)$	3.0e-3	2.4e-3	2.9e-4	2.5e-4	4.8e-5	1.8e-4	1.9e-5
$gap_{min}(10)$	2.6e-3	7.0e-4	1.6e-4	2.5e-4	4.8e-5	2.2e-5	6.6e-6
							/

Other state-of-the-art methods to compare:

- JDSVD: (Hochstenbach, 2001)
- IRRHLB: (Jia, 2010)

cases

primme_svds (two stage) is much faster in hard cases

Evaluation: With preconditioning

Introduction 10 smallest with P = ilutp(droptol = 1e-3), tol = 1e-8 Related work 350 primme_svds: why primme_svds choose the two stage JDSVD 300 strategy Number of Matrix-Vectors primme_svds: how to develop the two stage 250 strategy **Evaluations** 200 Test matrices Experiment I 150 • Experiment II • Experiment III 100 Conclusions 50 jagmesh8 U 1shp3025 wang3

primme_svds (only first stage) is at least two times faster than JDSVD

Evaluation: With preconditioning

Introduction

primme_svds (two stage) is faster than JDSVD

Evaluation: Shift and invert technique

Introduction

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Conclusions

 primme_svds: a meta-method to compute a few singular triplets based on state-of-the-art eigensolver PRIMME

Introduction

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Conclusions

- primme_svds: a meta-method to compute a few singular triplets based on state-of-the-art eigensolver PRIMME
- Key idea: a two-stage strategy
 - take advantage of faster convergence on normal equations matrix

lr	۱t	rc	bd	lu	С	ti	0	n	

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Conclusions

•

- primme_svds: a meta-method to compute a few singular triplets based on state-of-the-art eigensolver PRIMME
- Key idea: a two-stage strategy
 - take advantage of faster convergence on normal equations matrix
 - resolve remaining accuracy by exploiting power of PRIMME and refined projection on augmented matrix

lr	۱t	rc	bd	lu	С	ti	0	n	

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Conclusions

- primme_svds: a meta-method to compute a few singular triplets based on state-of-the-art eigensolver PRIMME
- Key idea: a two-stage strategy
 - take advantage of faster convergence on normal equations matrix
 - resolve remaining accuracy by exploiting power of PRIMME and refined projection on augmented matrix
 - Any stage has flexibility to be replaced by other better methods

Introduction

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

Conclusions

•

- primme_svds: a meta-method to compute a few singular triplets based on state-of-the-art eigensolver PRIMME
- Key idea: a two-stage strategy
 - take advantage of faster convergence on normal equations matrix
 - resolve remaining accuracy by exploiting power of PRIMME and refined projection on augmented matrix
 - Any stage has flexibility to be replaced by other better methods
- Shown efficiency and effectiveness both with and without preconditioning

lr	۱t	rc	bd	lu	С	ti	0	n	

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Conclusions
- •

- primme_svds: a meta-method to compute a few singular triplets based on state-of-the-art eigensolver PRIMME
- Key idea: a two-stage strategy
 - take advantage of faster convergence on normal equations matrix
 - resolve remaining accuracy by exploiting power of PRIMME and refined projection on augmented matrix
 - Any stage has flexibility to be replaced by other better methods
- Shown efficiency and effectiveness both with and without preconditioning
- A highly optimized production software enables the solution of large, real world problems

PRIMME

Introduction

Related work

primme_svds: why choose the two stage strategy

primme_svds: how to develop the two stage strategy

Evaluations

Conclusions

- Conclusions

PRIMME: PReconditioned Iterative MultiMethod Eigensolver

- PRIMME including its MATLAB interface and primme_svds will be available this summer
- C implementation of primme_svds will be released with next version of PRIMME

Download: www.cs.wm.edu/~andreas/software

Thank you for your attention!