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• Social network analysis: voting similarities among

politicians

• Image-processing: calculation of Eigenfaces in face

recognition

• Textual database searching: Google, Yahoo, and Baidu

• Numerical linear algebra: least square fitting, rank,

low-rank approximation, computation of pseudospectrum

• Variance reduction in Monte Carlo method
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Assume A ∈ ℜm×n is a large, sparse matrix:

A = UΣV T

UTU = I, V TV = I,Σ = Diag

Our Problem: find k smallest singular values and

corresponding left and right singular vectors of A

Avi = σiui, σ1 ≤ . . . ≤ σk
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• A Hermitian eigenvalue problem on

◦ Normal equations matrix C = ATA or C = AAT

◦ Augmented matrix B =

(

0 AT

A 0

)

• Lanczos bidiagonalization method (LBD)

A = PBdQ
T

Bd = XΣY T

Where U = PX and V = QY
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• Convergence speed

Eigen

methods on C
◦ fast for largest SVs

◦ slow for smallest SVs

Eigen

methods on B
◦ slower for largest SVs

◦ extremely slow for smallest SVs

(interior eigenvalue problem)

LBD on A ◦ fast for largest SVs

◦ similar to C but exhibits irregular

convergence for smallest SVs
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• Advantages of LBD:

◦ Builds same space as Lanczos on C but avoids

numerical issues by working on A
◦ Computationally inexpensive to combine with the

harmonic and refined projection methods

◦ Inherits the global convergence of Lanczos when

seeking many singular triplets

• Drawbacks of LBD:

◦ Orthogonality loss, large memory demands and

irregular convergence

◦ Current SVD solvers not reflect remarkable algorithmic

progress

◦ Cannot use preconditioning to accelerate convergence
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• Advantages of the JDSVD method:

◦ Can take advantage of preconditioning

◦ Two search spaces share advantages of LBD

◦ No numerical accuracy problem

• Drawbacks of the JDSVD method:

◦ Correction equation working on B may not be efficient

◦ Still in development and only MATLAB implementation



Motivation I: our goal for an SVD solver

Introduction

Related work

primme svds: why

choose the two stage

strategy

• Motivation I

• Motivation II

• Motivation III

• Our method

primme svds: how to

develop the two stage

strategy

Evaluations

Conclusions

CopperMountain2014 9 / 24

Extremely challenging task for small SVs:

• large sparse matrix ⇒ No shift-and-invert



Motivation I: our goal for an SVD solver

Introduction

Related work

primme svds: why

choose the two stage

strategy

• Motivation I

• Motivation II

• Motivation III

• Our method

primme svds: how to

develop the two stage

strategy

Evaluations

Conclusions

CopperMountain2014 9 / 24

Extremely challenging task for small SVs:

• large sparse matrix ⇒ No shift-and-invert

• very slow convergence ⇒ restarting and preconditioning



Motivation I: our goal for an SVD solver

Introduction

Related work

primme svds: why

choose the two stage

strategy

• Motivation I

• Motivation II

• Motivation III

• Our method

primme svds: how to

develop the two stage

strategy

Evaluations

Conclusions

CopperMountain2014 9 / 24

Extremely challenging task for small SVs:

• large sparse matrix ⇒ No shift-and-invert

• very slow convergence ⇒ restarting and preconditioning

• very few SVD solvers:

◦ SVDPACK: Lanczos and trace-minimization methods

working on B or C for only largest SVs

◦ PROPACK: LBD for largest SVs, using

shift-and-inverting for smallest SVs



Motivation I: our goal for an SVD solver

Introduction

Related work

primme svds: why

choose the two stage

strategy

• Motivation I

• Motivation II

• Motivation III

• Our method

primme svds: how to

develop the two stage

strategy

Evaluations

Conclusions

CopperMountain2014 9 / 24

Extremely challenging task for small SVs:

• large sparse matrix ⇒ No shift-and-invert

• very slow convergence ⇒ restarting and preconditioning

• very few SVD solvers:

◦ SVDPACK: Lanczos and trace-minimization methods

working on B or C for only largest SVs

◦ PROPACK: LBD for largest SVs, using

shift-and-inverting for smallest SVs

⇒ calls for full functionality, highly-optimized SVD solver



Motivation I: our goal for an SVD solver

Introduction

Related work

primme svds: why

choose the two stage

strategy

• Motivation I

• Motivation II

• Motivation III

• Our method

primme svds: how to

develop the two stage

strategy

Evaluations

Conclusions

CopperMountain2014 9 / 24

Extremely challenging task for small SVs:

• large sparse matrix ⇒ No shift-and-invert

• very slow convergence ⇒ restarting and preconditioning

• very few SVD solvers:

◦ SVDPACK: Lanczos and trace-minimization methods

working on B or C for only largest SVs

◦ PROPACK: LBD for largest SVs, using

shift-and-inverting for smallest SVs

⇒ calls for full functionality, highly-optimized SVD solver

PRIMME: PReconditioned Iterative MultiMethod Eigensolver
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PRIMME: PReconditioned Iterative MultiMethod Eigensolver

• Over 12 eigenmethods including near optimal GD+k and

JDQMR methods

• Supports seeking interior eigenvalues

• Accepts initial guesses for all required eigenvectors

• Accepts many shifts and finds the closest eigenvalue to

each shift

• Accepts preconditioner for C or B, or if M ≈ A−1, uses

MMT ≈ C−1 and

[

0 M
MT 0

]

≈ B−1

• A robust framework: subspace acceleration, locking

mechanism

• Parallel, high performance implementation for large,

sparse, hermitian matrices
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If u1, v1 are left and right initial guesses, each method builds

Krylov space:

• Eigen methods on C :

Kk(A
TA, v1)

• LBD on A and AT :

Kk(AA
T , Av1), Kk(A

TA, v1)
• Eigen methods on B:
(

K k

2

(AAT , u1)

K k

2

(ATA, v1)

)

⊕
(

K k

2

(AAT , Av1)

K k

2

(ATA,ATu1)

)
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If u1, v1 are left and right initial guesses, each method builds

Krylov space:

• Eigen methods on C :

Kk(A
TA, v1)

• LBD on A and AT :

Kk(AA
T , Av1), Kk(A

TA, v1)
• Eigen methods on B:
(

K k

2

(AAT , u1)

K k

2

(ATA, v1)

)

⊕
(

K k

2

(AAT , Av1)

K k

2

(ATA,ATu1)

)

• JDSVD method (outer iteration) on A and AT :

K k

2

(AAT , u1)⊕K k

2

(AAT , Av1),

K k

2

(ATA, v1)⊕K k

2

(ATA,ATu1)
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• GD+1 on C is best for a few smallest SVs, but limited by

accuracy

• need another phase to refine the accuracy

Our solution: a hybrid, two-stage singular value
method

* Stage I: works on C to max residual tolerance

max (σiδuser‖A‖, ‖A‖2ǫmach)

- Must dynamically adjust tolerance in PRIMME to meet

user tolerance

* Stage II: works on B to improve the approximations from C

to user required tolerance δuser‖A‖
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• What’s the tolerance threshold to converge to?
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Let (σ̃, ũ, ṽ) be a targeted singular triplet of A

rv = Aṽ − σ̃ũ, ru = AT ũ− σ̃ṽ,

rC = Cṽ − σ̃2ṽ, rB = B

[

ṽ
ũ

]

− σ̃

[

ṽ
ũ

]

.

If ‖vi‖ = 1, ‖ui‖ = ‖Avi/σi‖ = 1, then rv = 0 and

‖ru‖ = ‖rC‖
σ̃

= ‖rB‖
√
2

Thus, the stopping criterion for the methods on C becomes,

δC = max (δuser σ̃/‖A‖, ǫmach)
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◦ Accurate shifts for interior eigenvalue problem

◦ Good initial guesses formed by eigenvectors from C
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• Inputs from C:

◦ Accurate shifts for interior eigenvalue problem

◦ Good initial guesses formed by eigenvectors from C

⇒ Calls for JDQMR - one of near-optimal methods in

PRIMME

• Irregular convergence of Rayleigh Ritz (RR) on B

⇒ Enhance PRIMME with refined projection method
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Refined projection minimizes the residual ‖BV y − σ̃V y‖
where V search space for a given user shift σ̃

- QR factorization on BV − σ̃V only after restart

- one column updating for Q and R during iteration

- computational cost similar with the RR method
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Eigenvalue method VS Iterative Refinement (IR)?

• correction equation on B equivalent to IR but JD leverages

subspace acceleration with near-by eigenvectors

• stops the linear solver optimally

• IR may fail without deflation strategies



Outline of the implementation of primme svds

Introduction

Related work

primme svds: why

choose the two stage

strategy

primme svds: how to

develop the two stage

strategy

• Stage I

• Stage II

• Implementation

Evaluations

Conclusions

CopperMountain2014 17 / 24

• Developed PRIMME MEX, a MATLAB interface for

PRIMME



Outline of the implementation of primme svds

Introduction

Related work

primme svds: why

choose the two stage

strategy

primme svds: how to

develop the two stage

strategy

• Stage I

• Stage II

• Implementation

Evaluations

Conclusions

CopperMountain2014 17 / 24

• Developed PRIMME MEX, a MATLAB interface for

PRIMME

• User interfaces are similar to MATLAB eigs() and svds(),

but allow access to full-functionality of PRIMME



Outline of the implementation of primme svds

Introduction

Related work

primme svds: why

choose the two stage

strategy

primme svds: how to

develop the two stage

strategy

• Stage I

• Stage II

• Implementation

Evaluations

Conclusions

CopperMountain2014 17 / 24

• Developed PRIMME MEX, a MATLAB interface for

PRIMME

• User interfaces are similar to MATLAB eigs() and svds(),

but allow access to full-functionality of PRIMME

• Refined projection implemented in PRIMME, and C

implementation of primme svds in PRIMME soon
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Table 1: Properties of the test matrices

Matrix well1850 pde2961 dw2048 fidap4 jagmesh8 lshp3025 wang3

order 1850 2961 2048 1601 1141 3025 26064

κ(A) 1.1e2 9.5e2 5.3e3 5.2e3 5.9e4 2.2e5 1.1e4

‖A‖2 1.8e0 1.0e1 1.0e0 1.6e0 6.8e0 7.0e0 2.7e-1

gapmin(1) 3.0e-3 8.2e-3 2.6e-3 1.5e-3 1.7e-3 1.8e-3 7.4e-5

gapmin(3) 3.0e-3 2.4e-3 2.9e-4 2.5e-4 1.6e-3 9.1e-4 1.9e-5

gapmin(5) 3.0e-3 2.4e-3 2.9e-4 2.5e-4 4.8e-5 1.8e-4 1.9e-5

gapmin(10) 2.6e-3 7.0e-4 1.6e-4 2.5e-4 4.8e-5 2.2e-5 6.6e-6

Other state-of-the-art methods to compare:

• JDSVD: (Hochstenbach, 2001)

• IRRHLB: (Jia, 2010)
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• primme svds: a meta-method to compute a few singular

triplets based on state-of-the-art eigensolver PRIMME

• Key idea: a two-stage strategy

◦ take advantage of faster convergence on normal

equations matrix

◦ resolve remaining accuracy by exploiting power of

PRIMME and refined projection on augmented matrix

◦ Any stage has flexibility to be replaced by other better

methods

• Shown efficiency and effectiveness both with and without

preconditioning

• A highly optimized production software enables the solution

of large, real world problems
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PRIMME: PReconditioned Iterative MultiMethod Eigensolver

• PRIMME including its MATLAB interface and

primme svds will be available this summer

• C implementation of primme svds will be released with

next version of PRIMME

Download: www.cs.wm.edu/∼andreas/software



Thank you for your attention!
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