Fitting techniques for estimating the trace of the inverse of a matrix

Andreas Stathopoulos, Lingfei Wu, Jesse Laeuchli College of William and Mary

Vasilis Kalantzis
University of Minnesota

Stratis Gallopoulos
University of Patras, Greece

Acks: NSF, DOE SciDAC

The problem

Given a large, $N \times N$ matrix A and a function f

$$
\text { find trace of } f(A): \operatorname{Tr}(f(A))
$$

Common functions $f(A)=$

$$
A^{-1}, \log (A), \exp (A), R_{i}^{T} A^{-1} R_{j}, \ldots
$$

Applications: UQ, Data Mining, Quantum Monte Carlo, Lattice QCD

Our focus: $f(A)=A^{-1}$ but techniques general

Standard underlying method

Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\operatorname{Tr}\left(A^{-1}\right)
$$

Monte Carlo Trace
for $\mathrm{i}=1: n$
$x=\operatorname{randZ} 2(N, 1)$
$\operatorname{sum}=\operatorname{sum}+x^{T} A^{-1} x$
trace $=\operatorname{sum} / n$

Standard underlying method

Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\mathbf{T r}\left(A^{-1}\right)
$$

Monte Carlo Trace

```
for i=1:n
    x = randZ2(N,1)
    sum = sum + x T}\mp@subsup{A}{}{-1}
```

trace $=\operatorname{sum} / n$

Standard underlying method

Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\mathbf{T r}\left(A^{-1}\right)
$$

Monte Carlo Trace
for $\mathrm{i}=1: n$
$x=\operatorname{randZ2}(N, 1) \quad$ Solve $A y=x$ vs quadrature $x^{T} A^{-1} x$
sum $=$ sum $+x^{T} A^{-1} x \quad$ Golub'69, Bai'95, Meurant'06,'09, Strakos'11 $O(100-1000 s)$ statistically independent RHS
trace $=\operatorname{sum} / n$ Recycling (de Sturler), Deflation (Morgan, AS'07)

Selecting the vectors in $x^{T} A^{-1} x$ to min variance or error

Random

$$
\begin{aligned}
& x \in Z_{2}^{N} \\
& x=e_{i} \\
& x=F^{T} e_{i}
\end{aligned}
$$

Deterministic

$$
x=H e_{i}, i=1, \ldots, 2^{k} \quad \text { Hadamard in natural order (Bekas et al. 2007) }
$$

best variance for real matrices (Hutchinson 1989)
variance depends only on $\operatorname{diag}\left(A^{-1}\right)$
mixing $F=$ DFT, Hadamard (Avron et al. 2010)

$$
\begin{aligned}
& x_{i}^{m}= \begin{cases}1 & i \in C_{m} \\
0 & \text { else }\end{cases} \\
& x=H\left(p_{m}, k_{i}\right)
\end{aligned}
$$

Probing. Assumes multicolored graph (Tang et al. 2011)
Hierarchical Probing for lattices (A.S, J.L. 2013)

Maintains benefits of probing but cheap and incremental

Variance of the estimators

Rademacher vectors $x_{i} \in Z_{2}^{N}$

$$
\overline{\operatorname{Tr}}=\frac{1}{s} \sum_{i=1}^{s} x_{i}^{T} A^{-1} x_{i} \quad \operatorname{Var}(\overline{\operatorname{Tr}})=\frac{2}{s}\left\|\tilde{A}^{-1}\right\|_{F}^{2}=\frac{2}{s} \sum_{i \neq j}\left(A_{i j}^{-1}\right)^{2}
$$

Diagonal $x=e_{j(i)}$
$\overline{\operatorname{Tr}}=\frac{N}{s} \sum_{i=1}^{s} A_{j(i), j(i)}^{-1}$

$$
\operatorname{Var}(\overline{T r})=\frac{N^{2}}{s} \operatorname{Var}\left(\operatorname{diag}\left(A^{-1}\right)\right)
$$

Unclear which method is best a-priori

Why focus on the diagonal method?

Trace $=$ integral of a 1-D signal. Can we improve Monte Carlo?
Not without external information about the distribution of diagonal elements

Our goals:

- What if we have an approximation $M \approx \operatorname{diag}\left(A^{-1}\right)$?
- Is $\operatorname{Tr}(M) \approx \operatorname{Tr}\left(A^{-1}\right)$ sufficient?
- If not, can we use fitting $p(M)$ (regression/interpolation/quadrature)?
- Can the fitting reduce $\operatorname{Var}\left(p(M)-\operatorname{diag}\left(A^{-1}\right)\right)$?

Approximations to $\operatorname{diag}\left(A^{-1}\right)$

- Inexpensive bounds on diagonal elements (Robinson and Wathen '92)
e.g., for A SPD, $1 / A_{i i}$ often capture the pattern of $\operatorname{diag}\left(A^{-1}\right)$
- Let $[L, U]=\operatorname{ILU}(A)$ (incomplete LU) and $M=\operatorname{diag}\left(U^{-1} L^{-1}\right)$

Requires only $A_{i, j}^{-1}$ entries from sparsity of L, U (Erisman, Tienny, '75)

- Eigen/singular vectors

$$
M=\operatorname{diag}\left(X \Lambda^{-1} Y^{T}\right), \text { for nev smallest eigenvalues }
$$

Already available from deflating multiple right hand sides!
Number of eigenvectors can be increased while solving $A x=e_{i}$ (eigCG)

For some problems M captures pattern of $\operatorname{diag}\left(A^{-1}\right)$ well

Laplacian delsq(numgrid('S', 34))

Deflation: 15 smallest eigenpairs ILU('crout', 'row', 0.01)

Traces not close but
$\operatorname{Var}\left(\operatorname{diag}\left(X \Lambda^{-1} X^{T}-A^{-1}\right)\right)=4 \mathrm{e}-4$ $\operatorname{Var}\left(\operatorname{diag}\left((L U)^{-1}-A^{-1}\right)\right)=1 \mathrm{e}-2$

MC on $\operatorname{diag}\left(A^{-1}-M\right)$ can be competitive to Hutchinson's method

In some cases approximation is pointless

Rajat10 circuit simulation matrix (size 30202)

M from 100 smallest singular triplets

Capture pattern better by fitting M to $D=\operatorname{diag}\left(A^{-1}\right)$

MC resolves shift $D=c+M$, but not scale $D=b M$ (variance may increase!)
Approach 1. Least squares fit with $b M+c$

1. Solve $D_{i}=e_{i}^{T} A^{-1} e_{i}$, for $i \in S$ a set of k indices
2. Find $[b, c]=\operatorname{argmin}\left\{\|D(S)-(b M(S)+c)\|_{2}, b, c \in \mathfrak{R}\right\}$

Not many points (linear systems) are needed. Typically 10-20.
Significant improvement in the estimation of trace
Reduces variance for potentially continuing with MC

Approach 1 example $D \approx b M+c$

Matrix RDB5000, 50 smallest singular triplets, $\mathrm{k}=20$ points used to fit
Accuracy of systems and singular vectors is 1e-6.

Better fitting

Linear model preserves shape of M, thus relies too much on the quality of M
Interpolating with a higher degree polynomial could be noisy.
Approach 2 basic. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. Solve $D_{i}=e_{i}^{T} A^{-1} e_{i}$, for $i \in S$ a set of k indices
2. Fit $p(M(S))=D(S)$

For PCHIP to effectively capture the pattern (global and local) of D it needs:

- smoothness of the approximant
- elements of $M(S)$ to appear in increasing order
- to capture the whole range of values of D
- to capture where most of the action in D is happening

Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. $[\tilde{M}, J]=\operatorname{sort}(M)$ to obtain a CDF-like, smooth graph
2. Choose Q a set of k indices: $\{1,2\} \in Q$ and the $k-2$ are chosen such that they minimize the integration error with trapezoidal rule of \tilde{M}. Do not consider indices that produce non-unique \tilde{M}_{i} values.

Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. $[\tilde{M}, J]=\operatorname{sort}(M)$
2. Choose Q a set of k indices.
3. $S=J(Q)$ the corresponding indices in original ordering
4. Solve $D_{i}=e_{i}^{T} A^{-1} e_{i}$, for $i \in S$

Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. $[\tilde{M}, J]=\operatorname{sort}(M)$
2. Choose Q a set of k indices.
3. $S=J(Q)$ original ordering
4. Solve $D_{i}=e_{i}^{T} A^{-1} e_{i}$, for $i \in S$
5. PCHIP fit $p(M(S))=D(S)$. Use $p(M) \approx D$

Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. $[\tilde{M}, J]=\operatorname{sort}(M)$
2. Choose Q a set of k indices.
3. $S=J(Q)$ original ordering
4. Solve $D_{i}=e_{i}^{T} A^{-1} e_{i}$, for $i \in S$

If (4) computes also evecs, update points incrementally
5. PCHIP fit $p(M(S))=D(S)$. Use $p(M) \approx D$

Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

Fitting examples nev=k=100: OLM5000, $\mathrm{SiNa}, \mathrm{KUU}$

Very good eigenvalue approximation

Variance: $\mathbf{Z 2}$ on $E=A^{-1}-Y \Sigma^{-1} X^{T}$ vs MC on diag $D-p(M)$

RDB5000

SiNa

When to use it? Estimate dynamically:

1. Relative trace error

Cross validation:
(a) Use m subsets $S_{i} \subset S$
(b) Fit $p\left(\tilde{M}\left(S_{i}\right)\right)$ and compute the mean error ε_{i} of the $S-S_{i}$ points
(c) Confidence interval for error: $\pm 2 \sqrt{\operatorname{Var}\left(\varepsilon_{i}\right)}$
2. Variance of $(D-p(M))$ vs Z 2 on E
(a) Compute $a_{j}=A^{-1} e_{j}, j \in S$.
(b) Based on $a_{j j}$ update estimates for $\operatorname{var}(D), \operatorname{var}(D-M), \operatorname{var}(D-p(M))$
(c) Based on $a_{i j}$ and $\mu_{i}=Y \Sigma^{-1} X^{T} e_{i}$ update Hutchinson variance estimates

$$
\begin{aligned}
& \operatorname{var}(A)=2\|\bar{A}\|_{F}^{2} \\
& \operatorname{var}\left(A-Y \Sigma^{-1} X^{T}\right)
\end{aligned}
$$

Large differences in various methods would show after a few points

Dynamically identifying smallest variance

Estimated variance converges to actual variance
Relative differences apparent almost immediately

Dynamically identifying smallest variance

If a total of s steps allowed, what method will give the smallest error at s ?
Eg., the matb5 QCD matrix:

After 10 steps, excellent match between estimated and observed variances

Conclusions

If M approximates qualitatively well D, our technique combines deterministic regression and stochastic estimation to achieve good accuracy on $\sum D_{i}$ with as few samples as possible.

- Most eigenvectors are a by product of solving right hand sides (samples).
- Fitting achieves good eigenvalue accuracy, soon (less expensive than MC)
- Fitting may or may not improve variance
- Dynamic monitoring possible. Some improvements are needed.

