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The problem

Given a large, N×N matrix A and a function f

find trace of f (A): Tr( f (A))

Common functions f (A) =

A−1, log(A), exp(A), RT
i A−1R j, ...

Applications: UQ, Data Mining, Quantum Monte Carlo, Lattice QCD

Our focus: f (A) = A−1 but techniques general
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Standard underlying method

Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n
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Standard underlying method

Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n

2 problems
Large number of samples

How to compute xT A−1x
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Standard underlying method

Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n

Solve Ay = x vs quadrature xT A−1x
Golub’69, Bai’95, Meurant’06,’09, Strakos’11

O(100−1000s) statistically independent RHS
Recycling (de Sturler), Deflation (Morgan, AS’07)
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Selecting the vectors in xT A−1x to min variance or error

Random

x ∈ ZN
2 best variance for real matrices (Hutchinson 1989)

x = ei variance depends only on diag(A−1)
x = FT ei mixing F = DFT, Hadamard (Avron et al. 2010)

Deterministic

x = Hei, i = 1, . . . ,2k Hadamard in natural order (Bekas et al. 2007)

xm
i =

{
1 i ∈Cm

0 else Probing. Assumes multicolored graph (Tang et al. 2011)

x = H(pm,ki) Hierarchical Probing for lattices (A.S, J.L. 2013)
Maintains benefits of probing but cheap and incremental
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Variance of the estimators

Rademacher vectors xi ∈ ZN
2

Tr = 1
s ∑

s
i=1 xT

i A−1xi Var(Tr) = 2
s ‖Ã−1‖2

F = 2
s ∑i6= j(A

−1
i j )2

Diagonal x = e j(i)

Tr = N
s ∑

s
i=1 A−1

j(i), j(i) Var(Tr) = N2

s Var(diag(A−1))

A−1

magnitude

variance

Unclear which method is best a-priori
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Why focus on the diagonal method?

Trace = integral of a 1-D signal. Can we improve Monte Carlo?

Not without external information about the distribution of diagonal elements

Our goals:

• What if we have an approximation M ≈ diag(A−1)?

• Is Tr(M)≈ Tr(A−1) sufficient?

• If not, can we use fitting p(M) (regression/interpolation/quadrature)?

• Can the fitting reduce Var(p(M)−diag(A−1))?
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Approximations to diag(A−1)

• Inexpensive bounds on diagonal elements (Robinson and Wathen ’92)
e.g., for A SPD, 1/Aii often capture the pattern of diag(A−1)

• Let [L,U ] = ILU(A) (incomplete LU) and M = diag(U−1L−1)
Requires only A−1

i, j entries from sparsity of L,U (Erisman, Tienny, ’75)

• Eigen/singular vectors

M = diag(XΛ
−1Y T), for nev smallest eigenvalues

Already available from deflating multiple right hand sides!
Number of eigenvectors can be increased while solving Ax = ei (eigCG)
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For some problems M captures pattern of diag(A−1) well

Laplacian delsq(numgrid(’S’,34))

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Index of diagonal

 

 

diag(A−1)

diag(XL−1XT)

diag((LU)−1) Deflation: 15 smallest eigenpairs
ILU(’crout’,’row’,0.01)

Traces not close but

Var(diag(XΛ−1XT −A−1)) = 4e-4
Var(diag((LU)−1−A−1)) = 1e-2

MC on diag(A−1−M) can be competitive to Hutchinson’s method
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In some cases approximation is pointless

Rajat10 circuit simulation matrix (size 30202)
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Capture pattern better by fitting M to D = diag(A−1)

MC resolves shift D = c+M, but not scale D = bM (variance may increase!)

Approach 1. Least squares fit with bM + c

1. Solve Di = eT
i A−1ei, for i ∈ S a set of k indices

2. Find [b,c] = argmin{‖D(S)− (bM(S)+ c)‖2, b,c ∈ℜ}

Not many points (linear systems) are needed. Typically 10-20.

Significant improvement in the estimation of trace

Reduces variance for potentially continuing with MC
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Approach 1 example D≈ bM + c

Matrix RDB5000, 50 smallest singular triplets, k=20 points used to fit

Accuracy of systems and singular vectors is 1e-6.
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fitted: diag(bM+c)

Tr(A−1) −267.880 Var(D) 6.1e−3
Tr(b∗M + c) −267.544 Var(D−M) 4.3e−4
Rel.Err. 1E−3 Var(D−bM− c) 4.3e−5
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Better fitting

Linear model preserves shape of M, thus relies too much on the quality of M

Interpolating with a higher degree polynomial could be noisy.

Approach 2 basic. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. Solve Di = eT
i A−1ei, for i ∈ S a set of k indices

2. Fit p(M(S)) = D(S)

For PCHIP to effectively capture the pattern (global and local) of D it needs:

• smoothness of the approximant

• elements of M(S) to appear in increasing order

• to capture the whole range of values of D

• to capture where most of the action in D is happening
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Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. [M̃,J] = sort(M) to obtain a CDF-like, smooth graph

2. Choose Q a set of k indices: {1,2} ∈Q and the k−2 are chosen such that they
minimize the integration error with trapezoidal rule of M̃. Do not consider
indices that produce non-unique M̃i values.
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Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. [M̃,J] = sort(M)

2. Choose Q a set of k indices.

3. S = J(Q) the corresponding indices in original ordering

4. Solve Di = eT
i A−1ei, for i ∈ S
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Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. [M̃,J] = sort(M)

2. Choose Q a set of k indices.

3. S = J(Q) original ordering

4. Solve Di = eT
i A−1ei, for i ∈ S

5. PCHIP fit p(M(S)) = D(S). Use p(M)≈ D
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Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

1. [M̃,J] = sort(M)

2. Choose Q a set of k indices.

3. S = J(Q) original ordering

4. Solve Di = eT
i A−1ei, for i ∈ S

5. PCHIP fit p(M(S)) = D(S). Use p(M)≈ D

If (4) computes also evecs,
update points incrementally
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Approach 2. Piecewise Cubic Hermitian Spline Interpolation (PCHIP)

Improvement over bM+c
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Fitting examples nev=k=100: OLM5000, SiNa, KUU

OLM5000
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SiNa
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Very good eigenvalue approximation

OLM5000
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SiNa

20 40 60 80 100

10
−3

10
−2

Matrix Sina: Relative Error of Trace

Number of deflated singular vectors

 

 

Trace RelErr of bM+c
Trace RelErr of p(M)

20 40 60 80 100
10

−3

10
−2

10
−1

Matrix Kuu: Relative Error of Trace

Number of deflated singular vectors

 

 

Trace RelErr of p(M)
Trace RelErr of bM+c

KUU

[ 21 ]

21



Variance: Z2 on E = A−1−Y Σ−1XT vs MC on diag D− p(M)

OLM5000
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When to use it? Estimate dynamically:

1. Relative trace error
Cross validation:

(a) Use m subsets Si ⊂ S
(b) Fit p(M̃(Si)) and compute the mean error εi of the S−Si points
(c) Confidence interval for error: ±2

√
Var(εi)

2. Variance of (D− p(M)) vs Z2 on E

(a) Compute a j = A−1e j, j ∈ S.
(b) Based on a j j update estimates for var(D), var(D−M), var(D− p(M))
(c) Based on ai j and µi = Y Σ−1XT ei update Hutchinson variance estimates

var(A) = 2‖A‖2
F

var(A−Y Σ−1XT )

Large differences in various methods would show after a few points

[ 23 ]

23



Dynamically identifying smallest variance

Estimated variance converges to actual variance

Relative differences apparent almost immediately
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Dynamically identifying smallest variance

If a total of s steps allowed, what method will give the smallest error at s?

Eg., the matb5 QCD matrix:
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After 10 steps, excellent match between estimated and observed variances
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Conclusions

If M approximates qualitatively well D, our technique combines deterministic
regression and stochastic estimation to achieve good accuracy on ∑Di with as
few samples as possible.

• Most eigenvectors are a by product of solving right hand sides (samples).

• Fitting achieves good eigenvalue accuracy, soon (less expensive than MC)

• Fitting may or may not improve variance

• Dynamic monitoring possible. Some improvements are needed.
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