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The problem

Given a large, N×N matrix A and a function f

find trace of f (A): Tr( f (A))

Common functions:

f (A) = A−1

f (A) = log(A)
f (A) = RT

i A−1R j

Applications: UQ, Data Mining, Quantum Monte Carlo, Lattice QCD

Our focus: f (A) = A−1

[ 2 ]

2



The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n
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The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n

2 problems
Large number of samples

How to compute xT A−1x
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The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n

Solve Ay = x with CG
compute yT x

Find quadrature xT A−1x
with Lanczos

(Golub’69, Bai’95, Meurant’06,’09, Strakos’11, ...)
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The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)

If x is a vector of random Z2 variables

xi =
{

1 with probability 1/2
−1 with probability 1/2

then
E(xT A−1x) = Tr(A−1)

Monte Carlo Trace
for i=1:n

x = randZ2(N,1)
sum = sum + xT A−1x

trace = sum/n

O(100−1000s) statistically independent RHS

Recycling (de Sturler), Deflation (Morgan, AS’07, ...) speed up Krylov methods
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Selecting the vectors in xT A−1x

Random

x ∈ ZN
2 best variance for real matrices (Hutchinson 1989)

x = randn(N,1) worse variance than Z2

x = ei variance depends only on diag(A−1)
single large element?

x = FT ei mixing of diagonal elements: (Toledo et al. 2010)
F = DFT or F = Hadamard

Deterministic

x = HT ei, i = 1, . . . ,2k Hadamard in natural order (Bekas et al. 2007)

xm
i =

{
1 i ∈Cm

0 else Probing. Assumes multicolored graph (Tang et al. 2011)

Random-deterministic

Hierarchical Probing for lattices (A.S, J.L. 2013)
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Variance of the estimators

Rademacher vectors xi ∈ ZN
2

Tr = 1
s ∑

s
i=1 xT

i A−1xi Var(Tr) = 2
s ‖Ã−1‖2

F = 2
s ∑i6= j(A

−1
i j )2

Diagonal x = e j(i)

Tr = N
s ∑

s
i=1 A−1

j(i), j(i) Var(Tr) = N2

s Var(diag(A−1))

A−1

magnitude

variance
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Approximating diag(A−1) from ILU

Consider an incomplete LU of A: [L,U ] = ILU(A)

If U−1L−1 good approximation to A−1 then compute trace from:

M = diag(U−1L−1)

Computing M needs only one pass over L,U (Erisman, Tienny, ’75)

E = U−1L−1−A−1

In some cases, Tr(E) can be sufficiently close to zero

However, what if |Tr(E)| is not small?
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ILU gives more info

Observation: even if Tr(E) large,
M may approximate the pattern of diag(A−1) and/or E may have smaller variance

Ex. small Laplacian and DW2048
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Capture pattern better by fitting p(M) to diag(A−1)

Find p(): min‖p(M)−diag(A−1)‖ on a set of m indices

• Induce smoothness on M by sorting

• Use m equispaced indices to capture the range of values

• Compute A−1
j j of these indices

• Fit M j to A−1
j j using MATLAB’s LinearModel.stepwise

When ILU is a good preconditioner, Tr(p(M)) can be accurate to O(1E-3) !
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Examples of fitting TOLS4000, DW2048, af23560, conf6
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Improving on the Tr(M) and Tr(p(M))

• MC on E = M−diag(A−1)
potentially smaller variance on the diagonal

• MC on E2 = p(M)−diag(A−1)
m inversions for fitting, s−m inversions for MC
further variance improvement

• MC with importance sampling based on M or p(M)

Or is traditional Hutchinson better?

• MC with ZN
2 on A−1

• MC with ZN
2 on E

Depends on approximation properties of ILU
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Experiments AF23560, conf6 (kc−10−8)
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Experiments TOLS4000 ILU(A+10I), DW2048 ILU(A+0.01I)
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Experiments Fitting allows ILU(A+σ I)

Often ILU on A is not possible, ill-conditioned, or too expensive

Better results if we use a better conditioned ILU(A+σ I) and allow the fitting to
fix the diagonal
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Experiments Sometimes ZN
2 better

QCD matrix (49K) close to kc EPB3
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Here E had smaller off diagonal variance — Not easily predictable by theory
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Dynamically identifying smallest variance

For every fitting point i = 1, . . . ,m

Compute ai = A−1ei

• Based on aii = A−1
ii update estimates for

var(diag(A))
var(diag(E)) (aii−Mi)
var(diag(E2)) (aii− p(Mi))

• Use ‖ai‖2−a2
ii to update estimate for

var(MC on A) = ‖A‖2
F

• Compute µi = U−1L−1ei and update estimate for
var(MC on E) (‖ai−µi‖2−a2

ii−µ2
ii)

Large differences in various methods would show after a few points
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Dynamically identifying smallest variance

Estimated variance converges to actual variance

Relative differences apparent almost immediately
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Dynamically identifying smallest variance

Given a total s of allowed steps, ask what method will give the smallest error at s

Eg., the matb5 QCD matrix:
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After 10 steps, excellent match between estimated and observed variances
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Conclusions

A method to approximate Tr(A−1) based on ILU

• Negligible additional computational cost

• Very good accuracy, if ILU is effective

• Fitting improves accuracy

• MC on the fitted diagonal improves speed too

Easy to monitor and choose the most appropriate MC estimator
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