Using ILU to estimate the diagonal of the inverse of a matrix

Andreas Stathopoulos, Lingfei Wu, Jesse Laeuchli College of William and Mary

Vasilis Kalantzis, Stratis Gallopoulos
University of Patras, Greece

Acks: NSF, DOE SciDAC

The problem

Given a large, $N \times N$ matrix A and a function f

$$
\text { find trace of } f(A): \operatorname{Tr}(f(A))
$$

Common functions:

$$
\begin{aligned}
& f(A)=A^{-1} \\
& f(A)=\log (A) \\
& f(A)=R_{i}^{T} A^{-1} R_{j}
\end{aligned}
$$

Applications: UQ, Data Mining, Quantum Monte Carlo, Lattice QCD

Our focus: $f(A)=A^{-1}$

The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\mathbf{T r}\left(A^{-1}\right)
$$

Monte Carlo Trace
for $\mathrm{i}=1: n$
$x=\operatorname{randZ} 2(N, 1)$
$\operatorname{sum}=\operatorname{sum}+x^{T} A^{-1} x$
trace $=\operatorname{sum} / n$

The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\mathbf{T r}\left(A^{-1}\right)
$$

Monte Carlo Trace
for $\mathrm{i}=1$:n
$x=\operatorname{randZ} 2(N, 1)$
$\operatorname{sum}=\operatorname{sum}+x^{T} A^{-1} x$

2 problems
Large number of samples
How to compute $x^{T} A^{-1} x$
trace $=\operatorname{sum} / n$

The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\mathbf{T r}\left(A^{-1}\right)
$$

Monte Carlo Trace
for $\mathrm{i}=1: n$
$x=\operatorname{randZ} 2(N, 1)$
$\operatorname{sum}=\operatorname{sum}+x^{T} A^{-1} x$
Solve $A y=x$ with CG compute $y^{T} x$

Find quadrature $x^{T} A^{-1} x$ with Lanczos
trace $=\operatorname{sum} / n$
(Golub'69, Bai'95, Meurant'06,'09, Strakos'11, ...)

The methods

Currently all methods are based on Monte Carlo (Hutchinson 1989)
If x is a vector of random Z_{2} variables

$$
x_{i}=\left\{\begin{array}{r}
1 \text { with probability } 1 / 2 \\
-1 \text { with probability } 1 / 2
\end{array}\right.
$$

then

$$
E\left(x^{T} A^{-1} x\right)=\mathbf{T r}\left(A^{-1}\right)
$$

Monte Carlo Trace
for $\mathrm{i}=1: n$
$x=\operatorname{randZ} 2(N, 1)$
sum $=\operatorname{sum}+x^{T} A^{-1} x \quad O(100-1000 s)$ statistically independent RHS
trace $=\operatorname{sum} / n$

Recycling (de Sturler), Deflation (Morgan, AS'07, ...) speed up Krylov methods

Selecting the vectors in $x^{T} A^{-1} x$

Random

$$
\begin{aligned}
& x \in Z_{2}^{N} \\
& x=\operatorname{randn}(N, 1) \\
& x=e_{i} \\
& x=F^{T} e_{i}
\end{aligned}
$$

best variance for real matrices (Hutchinson 1989)
worse variance than Z_{2}
variance depends only on $\operatorname{diag}\left(A^{-1}\right)$ single large element?
mixing of diagonal elements: (Toledo et al. 2010)
$F=$ DFT or $F=$ Hadamard

Deterministic
$x=H^{T} e_{i}, i=1, \ldots, 2^{k}$ Hadamard in natural order (Bekas et al. 2007)
$x_{i}^{m}=\left\{\begin{array}{ll}1 & i \in C_{m} \\ 0 & \text { else }\end{array} \quad\right.$ Probing. Assumes multicolored graph (Tang et al. 2011)

Random-deterministic
Hierarchical Probing for lattices (A.S, J.L. 2013)

Variance of the estimators

Rademacher vectors $x_{i} \in Z_{2}^{N}$
$\overline{\operatorname{Tr}}=\frac{1}{s} \sum_{i=1}^{s} x_{i}^{T} A^{-1} x_{i} \quad \operatorname{Var}(\overline{\operatorname{Tr}})=\frac{2}{s}\left\|\tilde{A}^{-1}\right\|_{F}^{2}=\frac{2}{s} \sum_{i \neq j}\left(A_{i j}^{-1}\right)^{2}$
Diagonal $x=e_{j(i)}$
$\overline{T r}=\frac{N}{s} \sum_{i=1}^{s} A_{j(i), j(i)}^{-1}$
$\operatorname{Var}(\overline{T r})=\frac{N^{2}}{s} \operatorname{Var}\left(\operatorname{diag}\left(A^{-1}\right)\right)$

Approximating $\operatorname{diag}\left(A^{-1}\right)$ from ILU

Consider an incomplete LU of $A:[L, U]=I L U(A)$
If $U^{-1} L^{-1}$ good approximation to A^{-1} then compute trace from:

$$
M=\operatorname{diag}\left(U^{-1} L^{-1}\right)
$$

Computing M needs only one pass over L, U (Erisman, Tienny, '75)

$$
E=U^{-1} L^{-1}-A^{-1}
$$

In some cases, $\operatorname{Tr}(E)$ can be sufficiently close to zero

However, what if $|\operatorname{Tr}(E)|$ is not small?

ILU gives more info

Observation: even if $\operatorname{Tr}(E)$ large, M may approximate the pattern of $\operatorname{diag}\left(A^{-1}\right)$ and/or E may have smaller variance

Ex. small Laplacian and DW2048

Capture pattern better by fitting $p(M)$ to $\operatorname{diag}\left(A^{-1}\right)$

Find $p(): \min \left\|p(M)-\operatorname{diag}\left(A^{-1}\right)\right\|$ on a set of m indices

- Induce smoothness on M by sorting
- Use m equispaced indices to capture the range of values
- Compute $A_{j j}^{-1}$ of these indices
- Fit M_{j} to $A_{j j}^{-1}$ using MATLAB's LinearModel.stepwise

When ILU is a good preconditioner, $\operatorname{Tr}(p(M))$ can be accurate to $\mathrm{O}(1 \mathrm{E}-3)$!

Improving on the $\operatorname{Tr}(M)$ and $\operatorname{Tr}(p(M))$

- MC on $E=M-\operatorname{diag}\left(A^{-1}\right)$ potentially smaller variance on the diagonal
- MC on $E 2=p(M)-\operatorname{diag}\left(A^{-1}\right)$
m inversions for fitting, $s-m$ inversions for MC
further variance improvement
- MC with importance sampling based on M or $p(M)$

Or is traditional Hutchinson better?

- MC with Z_{2}^{N} on A^{-1}
- MC with Z_{2}^{N} on E

Depends on approximation properties of ILU

Experiments

AF23560, conf6 $\left(k_{c}-10^{-8}\right)$

Often ILU on A is not possible, ill-conditioned, or too expensive
Better results if we use a better conditioned $\operatorname{ILU}(A+\sigma I)$ and allow the fitting to fix the diagonal

Experiments

QCD matrix (49 K) close to k_{c}
EPB3

Here E had smaller off diagonal variance - Not easily predictable by theory

Dynamically identifying smallest variance

For every fitting point $i=1, \ldots, m$

$$
\text { Compute } a_{i}=A^{-1} e_{i}
$$

- Based on $a_{i i}=A_{i i}^{-1}$ update estimates for

```
var(diag(A))
var(diag(E)) (aii
var(diag(E2)) ( (aii - p(Mi))
```

- Use $\left\|a_{i}\right\|^{2}-a_{i i}^{2}$ to update estimate for

$$
\operatorname{var}(\mathrm{MC} \text { on } A)=\|\bar{A}\|_{F}^{2}
$$

- Compute $\mu_{i}=U^{-1} L^{-1} e_{i}$ and update estimate for

$$
\operatorname{var}(\mathrm{MC} \text { on } E)\left(\left\|a_{i}-\mu_{i}\right\|^{2}-a_{i i}^{2}-\mu_{i i}^{2}\right)
$$

Large differences in various methods would show after a few points

Dynamically identifying smallest variance

Estimated variance converges to actual variance
Relative differences apparent almost immediately

Dynamically identifying smallest variance

Given a total s of allowed steps, ask what method will give the smallest error at s
Eg., the matb5 QCD matrix:

After 10 steps, excellent match between estimated and observed variances

Conclusions

A method to approximate $\operatorname{Tr}\left(A^{-1}\right)$ based on ILU

- Negligible additional computational cost
- Very good accuracy, if ILU is effective
- Fitting improves accuracy
- MC on the fitted diagonal improves speed too

Easy to monitor and choose the most appropriate MC estimator

