
Towards User Re-Authentication on Mobile Devices

via On-Screen Keyboard

Zijiang Hao, Qun Li

College of William and Mary, Williamsburg, VA, USA

{hebo, liqun}@cs.wm.edu

Abstract—Mobile devices have become our true companions
in recent years. While bringing plenty of convenience, they also
come with many security and privacy concerns. Being small, a
mobile device is prone to loss or theft. Privacy data such as
emails in a saved Gmail or Yahoo account on a lost device can be
easily accessed by an unwanted visitor. Therefore, it is essential
to research methods protecting mobile devices from any such
unauthorized access. In this paper, we explore the potential of
re-authenticating mobile device users by exploiting the biometrics
derived from their tapping behaviors on the on-screen keyboard.
We conduct an offline analysis on a dataset collected from 33
subjects using a Google Nexus S phone. The results show that
more than 90% accuracy can be achieved for text input with 20
continuous key-taps.

I. INTRODUCTION

Recent years have seen the fast spread of mobile devices.

According to a recent Cisco’s white paper [1], the number of

mobile devices has far exceeded the world population. Mobile

devices are indeed part of people’s life nowadays. People use

them to send and receive emails (e.g., through Gmail), access

social networks (e.g., Facebook and Twitter), enjoy online

banking and shopping services, and so on.

However, the increasing use of mobile devices results in the

rise of security and privacy concerns. First, a mobile device

is prone to loss and theft because it is designed to be small

and portable. Symantec claims that one in every three U.S.

users has experience with cell phone loss or theft [2]. Second,

privacy data such as personal pictures on a lost device can be

directly accessed by an unwanted visitor without any protection.

Moreover, there are many apps running on mobile devices

that allow users to store their accounts and passwords on

local disks. Therefore, a lost mobile device with saved account

information may cause huge damage to its owner. Consider

this scenario: an attacker steals a smartphone and finds that

it has Gmail and Facebook installed with saved accounts. He

or she may log into Gmail/Facebook, and send advertising

or obscene emails/messages, which would seriously hurt the

owner’s reputation.

Arguably, there are security mechanisms designed for mobile

devices to prevent local data from being accessed by attackers.

Authentication mechanisms, such as text-based and shape-

based passwords and identification numbers, are based on

secret knowledge. However, these methods suffer from several

problems. First, based on our observation, few users enable

such authentication mechanisms on their mobile devices. In

contrast, most of them prefer to unlock a screen by sliding

a bar (in iOS) or a circle (in Android). Second, even if a

PIN or password is set for unlocking a mobile device, there

are still many ways to breach this security barrier: (1) PINs

with a limited length (e.g., four digits) are prone to brute-

force attacks if there is no restriction on trial times. (2) All of

these methods suffer from shoulder surfing, eavesdropping and

smudge attacks. (3) An attacker can physically access the raw

data stored on a mobile device without launching its operating

system.

Some mobile devices support remote data wiping, through

which the owner of a lost or stolen mobile device can remotely

wipe all the data stored on the device [3]. This mechanism

is threatened by several situations: (1) An attacker may have

already accessed the data before the owner notices the device

loss. (2) An attacker may cut down all possible connections to

the mobile device so that it cannot be controlled remotely. (3)

The owner has no data backup and thus is unwilling to wipe

the device.

A natural solution to the aforementioned challenges is to

exploit biometrics to re-authenticate the user who is interacting

with the mobile device. Unlike secret knowledge-based mecha-

nisms, biometrics are unique for individuals and are difficult to

forge. Moreover, many biometrics-based security mechanisms

are non-intrusive (i.e., requiring no user intervention), which

means that they introduce little negative effect on user experi-

ence.

To this end, we present SafeKey, a security system for mobile

devices that exploits the biometrics of user tapping behaviors

to enforce user re-authentication. More specifically, SafeKey

re-authenticates users at runtime, using the biometrics non-

intrusively derived from the user tapping behaviors on the on-

screen keyboard. Our main contributions are summarized as

follows.

- First, we derive several biometrics from user tapping behav-

iors on the on-screen keyboard and use them to authenticate

mobile device users. To be practical, we consider the user

authentication problem as a one-class classification problem

and hence remove the assumption on the availability of non-

owners’ data in the training phase.

- Second, we design SafeKey, a non-intrusive system that

exploits the biometrics of user tapping behaviors on the on-

screen keyboard. It constructs a one-class classifier for each

key displayed on the keyboard, and combines all the classi-

fiers to authenticate the user who is tapping. Additionally, it

adapts the classifiers to the changes of user input behaviors

through classifier re-training.

- Third, we implement a SafeKey prototype on a Google Nexus

S smartphone, and collect data from 33 subjects (7 females

and 26 males). Evaluation results demonstrate that SafeKey

can achieve up to 90% accuracy for user text input with 20

continuous key-taps, and longer input can make the accuracy

even higher.

Some existing works [4], [5], [6], [7], [8], [9], [10] also

exploit biometrics derived from user behaviors on the touch

screen to (re-)authenticate users. These works either derive

biometrics from other user behaviors than key-taps, such as

sliding gestures, or conduct two- or multi-class classification

to enforce user authentication. Our work distinguishes itself

by re-authenticating users based on their on-screen keyboard

tapping behaviors, and employing one-class classification to

remove the assumption on the availability of non-owners’ data.

It is unreasonable to assume that data from other people (non-

owners) is always available in the training phase. Some third

parties may be willing to provide such data, but it will be a

disaster if some of them are malicious. Even if a third party

can be fully trusted, the data it provides may be limited and

cannot represent the entire population. Other biometrics, such

as fingerprint, finger vein structure and iris structure, are also

used to authenticate mobile device users in the literature [11],

[12], [13]. Our work is complementary to these works, as we

use different biometrics to authenticate users.

The rest of this paper is organized as follows. In Section II,

we present the design of SafeKey, with its evaluation presented

in Section III. Then we conclude in Section IV.

II. SAFEKEY ARCHITECTURE

A. Threat Model

We summarize the threat model of SafeKey below.

I) The attacker can physically access the victim’s mobile

device for some reason (e.g., the device is stolen by the

attacker).

II) The victim has stored his/her account information of an

online app (e.g., Gmail or Facebook), so that the attacker can

easily log into the app with the victim’s account.

III) After logging into the app, the attacker inputs a piece of

text by tapping the software keyboard displayed on the touch

screen, and sends the text out on behalf of the victim.

In addition to this threat model, SafeKey also makes the

following assumptions.

I) The first Ntrain taps on the software keyboard after the

mobile device comes out of the factory are considered only

from the owner. Each tap after them is considered from either

the owner, or a non-owner, which is determined by SafeKey.

II) All taps made in a relatively short time period (e.g., 30

seconds) are considered from the same user (i.e., either the

owner, or a non-owner).

We believe that these assumptions are reasonable. For the

first one, users always protect new devices with great caution,

and use them a lot for curiousness. For the second one, it

is very unlikely that multiple users tap the software keyboard

alternatively during a short time period.

B. SafeKey Overview

Figure 1 depicts the architecture of SafeKey. There are five

components in SafeKey.

Fig. 1. SafeKey architecture.

1) Key-tap Detector: The Key-tap Detector captures every

tap on the software keyboard and records the instantaneous

readings of the touch screen, accelerometer, and gyroscope. In

our prototype, the Key-tap Detector is implemented as a listener

which listens to the software keyboard for motion events. The

sensor readings it records for each key-tap includes:

- keycode: the code of the tapped key.

- tdown: the time of the “key down” event.

- tup: the time of the “key up” event.

- x: the x-axis coordinate on the software keyboard of the “key

down” event.

- y: the y-axis coordinate on the software keyboard of the “key

down” event.

- pressure: the pressure value of the “key down” event.

- size: the touched size value of the “key down” event.

- accl[]: the linear acceleration sensor readings during [tdown,

tup].

- gyro[]: the gyroscope readings during [tdown, tup].

Key-taps are grouped based on the second assumption made

by SafeKey: all key-taps made during a short time period are

from the same user. In our prototype system, this function is

implemented by setting a threshold Tgroup for the time interval

between two consecutive key-taps in the same group. When

a key-tap Kn is detected, the Key-tap Detector waits for the

next key-tap Kn+1 for Tgroup time, and considers Kn the last

key-tap of the current key-tap group if Kn+1 does not come in

Tgroup time. The Key-tap Detector then transfers the recorded

data in the unit of key-tap group to the Feature Extractor.

2) Feature Extractor: After receiving the data of a key-

tap group, Feature Extractor extracts a feature vector for each

key-tap in the group. The features extracted for each key-tap

include:

- keycode: the code of the tapped key (for indexing purpose).

- duration: the time difference between tup and tdown of the

key-tap.

- x: the raw x-axis coordinate reading of a key-tap.

- y: the raw y-axis coordinate reading of a key-tap.

- pressure: the raw pressure reading of a key-tap.

- size: the raw size reading of a key-tap.

- avgaccl: the average magnitude of all linear acceleration

readings during [tdown, tup].

- avggyro: the average magnitude of all angular acceleration

readings during [tdown, tup].

After feature extraction, the Feature Extractor checks the

number of feature vectors that have been collected. If it is less

than Ntrain, more feature vectors will be collected. Otherwise,

extracted features are transferred to either the Classifier Trainer

or the Key-tap Predictor for further processing.

3) Classifier Trainer: The Classifier Trainer trains a one-

class classifier for each key covered by the available feature

vectors. Unlike the two- and multi-class classifiers adopted by

existing works that require training data from both the owner

and non-owners, the training algorithm of one-class classifiers

only requires data from the owner. In SafeKey, it is guaranteed

that the Classifier Trainer can only receive feature vectors from

the owner.

The classification algorithm used in our prototype is the one-

class Support Vector Machine (SVM). We choose SVM as the

classification algorithm because: (1) It is one of the best off-

the-shelf classification algorithms and has been widely used in

various fields such as human activity recognition and document

classification. (2) Its execution time has been demonstrated to

be short on mobile devices. In the training phase, the Classifier

Trainer divides the training feature vectors into groups based

on their keycodes and trains a one-class SVM classifier for

each group. It is worth noticing that different keycodes may

be in the same group. For example, ‘a’ and ‘A’ are in the same

group, since the two keycodes are actually mapped to the same

key on the software keyboard.

4) Key-tap Predictor: When the Key-tap Predictor receives

a group of feature vectors, it determines whether the group

belongs to the owner or not in the following way.

I) For each feature vector v in the group, if v’s keycode
has an existing trained classifier, the Key-tap Predictor feeds

v into the corresponding classifier based on v’s keycode, and

gets the prediction result (i.e., whether v belongs to the owner).

Otherwise, the Key-tap Predictor does nothing.

II) For the group, if the number of feature vectors classified

as positive (i.e., belonging to the owner) is greater than or equal

to a pre-defined threshold TG, the group of feature vectors is

considered positive. Otherwise, it is considered negative (i.e.,

belonging to a non-owner).

When a group of feature vectors is considered negative, the

Guard is triggered.

5) Guard: When the Guard is triggered, SafeKey assumes

that the mobile device is being attacked as described in Sec-

tion II-A. To protect the mobile device from being misused, the

Guard performs a pre-determined action, which is locking the

screen and asking for a secure password to unlock it.

If the user unlocks the screen quickly, SafeKey considers

that the user is the owner, and that the Key-tap Predictor has

just mis-classified the feature vectors. In this case, the feature

vectors are stored. If the number of stored feature vectors

reaches a pre-determined threshold (e.g., half of Ntrain), the

Classifier Trainer component is triggered again to re-train the

existing classifiers for the keys whose keycodes are covered by

the stored feature vectors. By doing this, SafeKey automatically

updates its classifiers to capture the changes of the owner’s

input patterns. Note that the Classifier Trainer may train new

classifiers in this process, for the keys whose keycodes have not

been covered previously but are covered by the stored feature

vectors.

III. EVALUATION

In this section, we evaluate SafeKey through data collection

and offline analysis, and compare the results of SafeKey with

those of other algorithms.

A. Data Collection

We collect a key-tap dataset from 33 subjects, including 7

females and 26 males. All of them are between 22 and 30

years old. Each subject is asked to casually input five text

messages on a Google Nexus S smartphone every day, with

each text message consisting of at least 80 words. We conduct

this experiment for several days to ensure that each subject

provides at least 6000 key-taps. The collected dataset is used

for further offline analysis on a desktop PC.

When inputting the text messages, each subject is asked to

sit down, hold the smartphone by his/her left hand, and tap the

software keyboard with his/her right hand. However, different

subjects are allowed to have different tapping gestures, two

examples of which are illustrated in Figure 2.

Fig. 2. Possible tapping gestures. The subject holds the smartphone with his/her
left hand, and taps the software keyboard with his/her right hand.

B. Outlier Elimination

Before evaluating the performance with the collected dataset,

we perform an important preprocessing, i.e., eliminating the

outliers in the dataset. Outliers are the data points that do not

conform to normal behaviors. They may have great impact on

classifier training and result in degraded classifier performance.

There are many ways to detect and eliminate outliers [14].

In the evaluation, we eliminate outliers by suppressing, i.e.,

we set an upper bound for each feature, and a feature value

exceeding this bound is considered an outlier value and will be

suppressed to this upper bound. Figure 3 illustrates the values

of each feature extracted from all users’ data. The horizontal

axis depicts different key-taps, while the vertical axis depicts

(a) Interval (s) (b) Duration (s) (c) Pressure

(d) Size (e) Avg. magnitude of linear accl. (m/s2) (f) Avg. magnitude of angular accl. (rad/s)

Fig. 3. Feature values extracted from the dataset.

the feature values. The red line in each subfigure illustrates the

upper bound of the corresponding feature.

Intervals illustrated in Figure 3(a) (i.e., the time difference

between a current key-tap’s tdown and the previous key-tap’s

tup) are not used in our prototype system. However, they are

used in the evaluation for comparison purpose. For this reason,

we also plot them in the figure. Sizes illustrated in Figure 3(d)

are discrete values due to the low precision of Google Nexus

S’s touch screen. Size and pressure readings returned by the

Android API are normalized values, which have no units. The

units of other features are denoted in the subfigure captions.

C. Evaluation Methods and Performance Metrics

In the evaluation, we plan to measure the performance of

SafeKey and those of other methods. In this section, we present

how the evaluation is performed and what metrics are used for

measuring the performance.

1) Data Division, Training, and Testing: For each user u,

we equally divide her/his 6000 key-taps into two sets. The first

3000 key-taps are used for training and denoted as set1,u, while

the last 3000 key-taps are used for validation and denoted as

set2,u. The data of each key is proportionally distributed into

set1,u and set2,u.

For set1,u, we further divide it into two sets: the first 2000

key-taps are used for training and denoted as settrain1,u, while

the last 1000 key-taps are used for testing and denoted as

settest1,u. The data of each key is proportionally distributed

into settrain1,u and settest1,u. In the training phase, we conduct

the grid search [15] to investigate different parameter combi-

nations. For each parameter combination, we train a one-class

SVM for each key with settrain1,u following the 10-fold cross

validation routine. For each key, the parameter combination that

achieves the highest performance is considered as optimal and

selected for that key. The purpose of taking the cross validation

routine in the training phase is to alleviate the overfitting

problem. In addition, we separate settest1,u from settrain1,u
in the training dataset because we use settest1,u to optimize

any other system parameter other than the classifier parameters.

The system parameter will be introduced later in this section.

For set2,u, we also divide it into two sets: the first 2000 key-

taps are used for training the final classifiers for the keys with

the selected optimal parameter combinations and denoted as

settrain2,u, while the last 1000 key-taps are used for testing the

trained classifiers and denoted as settest2,u. The data of each

key is proportionally distributed into settrain2,u and settest2,u.

For convenience purpose, we introduce the following four

terms, which will be used later in this section.

settrain1 = settrain1,1, ..., settrain1,N ;

settest1 = settest1,1, ..., settest1,N ;

settrain2 = settrain2,1, ..., settrain2,N ;

settest2 = settest2,1, ..., settest2,N ;

, where N = 33 is the number of users.

2) Performance Metrics: To comprehensively measure the

performance, we select three metrics: accuracy, false accep-

tance rate (FAR), and false rejection rate (FRR). Their math-

ematical definitions are listed as follows:

accuracy =
TP + TN

TP + FN + TN + FP

FAR = FP / (TN + FP)

FRR = FN / (TP + FN)

TABLE I
AUTHENTICATION PERFORMANCE, SAFEKEY

(a) Performance on training dataset <settrain1, settest1>.

G Best TG Accuracy FAR FRR

1 1 73.95% 21.12% 30.99%

2 1 76.80% 34.66% 11.75%

5 3 83.00% 13.50% 20.50%

10 5 87.42% 14.40% 10.77%

20 10 89.89% 10.76% 9.45%

50 25 92.12% 8.19% 7.56%

100 49 93.37% 7.88% 5.37%

200 97 94.67% 7.57% 3.09%

500 252 96.54% 5.84% 1.08%

1000 514 97.68% 4.64% 0.00%

(b) Performance on validation dataset <settrain2, settest2>.

G TG Accuracy FAR FRR

1 1 74.47% 21.78% 29.27%

2 1 77.09% 35.83% 9.99%

5 3 84.15% 13.85% 17.84%

10 5 88.74% 14.89% 7.63%

20 10 91.89% 11.07% 5.16%

50 25 94.03% 8.54% 3.40%

100 49 94.85% 8.29% 2.01%

200 97 95.31% 7.91% 1.46%

500 252 96.15% 6.20% 1.50%

1000 514 97.44% 5.11% 0.00%

, where TP , FN , TN and FP stand for “true positive”, “false

negative”, “true negative” and “false positive”, respectively.

These three metrics together comprehensively measure the

performance of classifiers and have been widely used in various

applications, such as human activity recognition and speaker

identification.

D. Authentication Performance

As mentioned, our prototype system trains a one-class SVM

classifier for each key, and combines the decisions of all the

classifiers to make the final decision. In what follows, we

analyze the dataset that we have collected to evaluate the

authentication performance of our prototype system.

In the testing phase, we group the feature vectors in the

testing dataset with size G. Technically, from the beginning of

the dataset, we count G continues feature vectors, which are

temporal adjacent, as a group. Each two adjacent groups have

G− 1 overlapping feature vectors. This overlapping strategy is

similar to that adopted in [9].

For a group of feature vectors, our prototype predicts a

feature vector as either positive (i.e., belonging to the owner) or

negative (i.e., belonging to a non-owner) with the classifier that

belongs to the feature vector’s keycode. The final prediction on

the whole group is made as follows. If the number of positive

predictions in the group is greater than or equal to a pre-defined

value TG, the group is predicted as positive. Otherwise, it is

predicted as negative.

A smaller TG may result in higher false acceptance rate,

while a larger TG may result in higher false rejection rate. We

determine the best TG for a group size G by traversing all

possible values of TG (i.e., from 1 to G) in the training phase

with data <settest1> and select the one that achieves the best

tradeoff between FAR and FRR. Then we apply the best TG of

each size G on the testing data in the validation data set, i.e.,

<settest2>.

Table I demonstrates the results. The left table shows the

performance with the best TG of each G on the training data

set while the right table shows the performance with the best TG

of each G on the validation data set. The results in both tables

are quite similar, which indicates the trained classifiers do not

suffer from the overfitting problem since we follow the cross

validation routine. Moreover, we observe that accuracy keeps

increasing with the increase of the group size G, and reaches

around 90% when G = 20. It is because that a larger group size

can smooth out noise and achieve better performance. This is an

encouraging result which shows that SafeKey can authenticate

a user who taps only 20 keys on the software keyboard with

an accuracy of about 90%.

TABLE II
ACCURACY OF KEYS

Key Accuracy Training size Testing size

o 77.73% 2541 1252

i 77.59% 3773 1921

a 77.27% 3749 1893

h 77.11% 3074 1541

e 77.10% 5799 2862

n 76.91% 3136 1541

[period] 75.93% 2784 1389

t 75.76% 2675 1325

[delete] 75.11% 3604 1867

[shift] 74.90% 3912 1959

We also analyze the separate accuracy achieved by each key’s

classifier. Table II lists the keys with the top ten accuracies.

From the table, we observe that the accuracies are quite similar

no matter where and how large the key is. Considering Table I,

the final accuracy is improved with the combinatorial decision

strategy adopted in our prototype system.

E. A Comparison with Two-Class Model

As mentioned, SafeKey takes advantage of one-class clas-

sifiers which require only the owner’s data in the training

phase. However, two-class classifiers have been widely used

in existing works. They always have better performance than

the corresponding one-class classifiers, but suffer from the

fact that they need both positive and negative data in the

training phase. Therefore, we conduct experiments to evaluate

the authentication performance of the two-class model which

is in contrast to the SafeKey’s one-class model.

The experiments are almost same as those in Section III-D.

The only difference is that when training a classifier, we not

only use the owner’s data, but also use non-owners’ data. In

TABLE III
AUTHENTICATION PERFORMANCE, TWO-CLASS MODEL

(a) Performance on training dataset <settrain1, settest1>.

G Best TG Accuracy FAR FRR

1 1 81.64% 18.03% 18.69%

2 1 82.57% 29.61% 5.24%

5 3 89.95% 11.29% 8.81%

10 6 92.28% 6.93% 8.51%

20 11 94.07% 6.65% 5.21%

50 28 95.36% 4.69% 4.59%

100 55 96.08% 4.45% 3.38%

200 105 97.05% 4.91% 1.00%

500 285 98.10% 2.56% 1.23%

1000 602 99.24% 1.52% 0.00%

(b) Performance on validation dataset <settrain2, settest2>.

G TG Accuracy FAR FRR

1 1 81.98% 18.73% 17.32%

2 1 82.11% 30.86% 4.91%

5 3 90.16% 11.61% 8.07%

10 6 92.80% 6.92% 7.47%

20 11 94.29% 6.57% 4.85%

50 28 95.32% 4.51% 4.85%

100 55 95.97% 4.29% 3.76%

200 105 96.89% 4.82% 1.40%

500 285 96.91% 2.88% 3.29%

1000 602 95.98% 1.99% 6.06%

the training and testing phases, to obtain unbiased classifiers

and performance results, we balance the number of the owner’s

feature vectors and the number of non-owners’ feature vectors.

Additionally, TG of each size G is determined and applied in

the same way as described in the previous subsection.

Table III demonstrates the results of the experiments. We

can observe that for single key-tap prediction (G = 1), the

two-class model achieves 82% accuracy, which is higher than

74% achieved by the one-class model. However, the difference

of accuracy between the two models keeps decreasing with the

growth of G. When G = 20, the two-class model’s accuracy is

94% while the one-class model’s accuracy is 92%.

We also observe that the two-class model has better FAR than

the one-class model. It is because that the training algorithm

of two-class SVM encodes non-owners’ information into the

classifiers. FAR sometimes is more important than FRR because

it implies failures in protecting the mobile device while FRR

only implies inconvenience to the owner. Nevertheless, when

G becomes large enough, the one-class model can also achieve

acceptable FAR. What is more, as elaborated before, one-class

model is much more practical than two-class model in building

user (re-)authentication systems.

IV. CONCLUSION

In this paper, we present SafeKey, a secure system for user

re-authentication on mobile devices. SafeKey has been demon-

strated to have the following features: (1) Self-constructiveness:

SafeKey treats the user authentication problem as an one-class

problem. It only needs the data collected from the owner to

construct the classifier for user authentication. By doing this,

it removes the assumption most existing works have made that

the data from non-owners is available in the training phase. (2)

Adaptiveness: SafeKey can automatically detect the changes of

user input patterns on the on-screen keyboard and re-train its

classifiers to adapt to these changes. (3) Effectiveness: SafeKey

achieves about 90% accuracy for user text input with only 20

key-taps. (4) Efficiency: SafeKey’s re-authentication algorithm

executes fast in runtime and consumes limited computational

and storage resources. (5) Non-intrusiveness: SafeKey automat-

ically functions in background without any user intervention.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update, 2015–2020 white paper,” http://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html, 2016.

[2] Symantec, “Norton survey reveals one in three experience cell phone loss,
theft,” https://www.symantec.com/en/au/about/newsroom/press-releases/
2011/symantec 0208 01, 2011.

[3] Google, “Remotely ring, lock, or erase a lost device,” https://support.
google.com/a/answer/173390?hl=en, 2016.

[4] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” IEEE Transactions on Information Forensics

and Security, vol. 8, no. 1, pp. 136–148, 2013.
[5] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch

me once and i know it’s you!: Implicit authentication based on touch
screen patterns,” in Proceedings of CHI, 2012.

[6] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon, “Biometric-rich
gestures: A novel approach to authentication on multi-touch devices,”
in Proceedings of CHI, 2012.

[7] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion,” in Proceedings of HotSec, 2011.

[8] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury, “Tap-
prints: Your finger taps have fingerprints,” in Proceedings of MobiSys,
2012.

[9] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smart-
phones,” in Proceedings of NDSS, 2013.

[10] N. Zheng, K. Bai, H. Huang, and H. Wang, “You are how you touch:
User verification on smartphones via tapping behaviors,” in Proceedings

of ICNP, 2014.
[11] R. Raghavendra, C. Busch, and B. Yang, “Scaling-robust fingerprint ver-

ification with smartphone camera in real-life scenarios,” in Proceedings

of BTAS, 2013.
[12] S. Bazrafkan, T. Nedelcu, C. Costache, and P. Corcoran, “Finger vein

biometric: Smartphone footprint prototype with vein map extraction using
computational imaging techniques,” in Proceedings of ICCE, 2016.

[13] K. B. Raja, R. Raghavendra, V. K. Vemuri, and C. Busch, “Smartphone
based visible iris recognition using deep sparse filtering,” Pattern Recog-

nition Letters, vol. 57, no. C, pp. 33–42, 2015.
[14] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”

Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.
[15] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 27:1–27:27, 2011.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.symantec.com/en/au/about/newsroom/press-releases/2011/symantec_0208_01
https://www.symantec.com/en/au/about/newsroom/press-releases/2011/symantec_0208_01
https://support.google.com/a/answer/173390?hl=en
https://support.google.com/a/answer/173390?hl=en

