
LAVEA: Latency-aware Video Analytics on Edge
Computing Platform

Shanhe Yi, Zijiang Hao, Qingyang Zhang†‡, Quan Zhang†, Weisong Shi†, Qun Li
College of William and Mary, †Wayne State University, ‡Anhui University, China

{syi,hebo,liqun}@cs.wm.edu, †{qyzhang, quan.zhang, weisong}@wayne.edu

Abstract—
We present LAVEA, a system built for edge computing, which

offloads computation tasks between clients and edge nodes,
collaborates nearby edge nodes, to provide low-latency video
analytics at places closer to the users. We have utilized an edge-
first design to minimize the response time, and compared various
task placement schemes tailed for inter-edge collaboration. Our
results reveal that the client-edge configuration has task speedup
against local or client-cloud configurations.

I. INTRODUCTION

Edge computing is proposed to overcome inherent prob-

lems of cloud computing and power the Internet of Things

(IoT) [1]–[5]. Among many edge applications, we focus on

video edge analytics. The ability to provide low latency video

analytics is critical for applications in the fields of public

safety, counter-terrorism, self-driving cars, VR/AR, etc [6].

For example, in “Amber Alert”, our system can automate

and speedup the searching of objects of interest by vehicle

recognition, plate recognition and face recognition utilizing

web cameras deployed at many places. Simply uploading or

redirecting video feeds to cloud cannot meet the requirement

of latency-sensitive applications. Because computer vision

algorithms such as object tracking, object detection, object

recognition, face and optical character recognition (OCR) are

either computation intensive or bandwidth hungry. In address-

ing such problems, Mobile cloud computing (MCC) utilizes

both the mobile and cloud for computation. An appropriate

partition of tasks that makes trade-off between local and

remote execution can speed up the computation and preserve

energy at the same time. However, there are still concerns of

cloud about the limited bandwidth, the unpredictable latency,

and the abrupt service outage. Existing work has exploited

adding intermediate server (cloudlet) between mobile client

and the cloud. Cloudlet is an early implementation of the

cloud-like edge computing platform with virtual machine

(VM) techniques. We employed a different design on top of

lightweight OS-level virtualization which is low-cost, modular,

easy-to-deploy/manage, and scalable.

In this paper, we are considering a mobile-edge-cloud en-

vironment and we put most of our effort into the mobile-edge

and inter-edge side design. To demonstrate the effectiveness

of our edge computing platform, we have built the Latency-

Aware Video Edge Analytics (LAVEA) system. We divide the

response time minimization problem into two sub-problems.

First, we formulated computation offloading problem as a

mathematical optimization to choose offloading tasks and al-

locate bandwidth among clients. Second, we enable inter-edge

collaboration by leveraging nearby edge nodes to reduce the

overall task completion time. We investigated task placement

schemes and the findings provided us insights that lead to an

efficient predication-based task placement scheme.

II. SYSTEM DESIGN

We present our system design in Figure 1. Our design

goals are: 1) Latency. The ability to provide low latency

services is recognized as one of the essential requirements of

edge computing system design. 2) Flexibility. Edge computing

system should be able to flexibility utilize the 3) Edge-first.
By edge-first, we mean that the edge computing platform is

the first choice of our computation offloading target.

Host or Host Cluster Hardware

Host OS

Container

Container Manager (Docker Engine)

HDFS SQL KV
Store

Data Store
Service

Offloading
Service

Queueing
Service

Scheduling
Service

Edge Front Gateway

Worker

Task Queue

Container Container Container Container

Monitoring
Service

Worker Worker

Task Scheduler

Worker Worker Worker

Worker Worker Worker

Producer

Workload Optimizer

Producer

Graph

Queue Prioritizer

Task Worker

Profiler
Service

Edge Computing Platform API

Platform Internal API

OS-level Virtualization

Edge Computing Platform SDK
Edge Computing Platform Client API

Application

Profiler
Offloading Controller

Worker Worker Worker

Task Scheduler

Local Worker
Stack

OS or Container

Edge Computing
Node

 Access Potint

Security Camera

Dash Camera Smartphone and Tablet

Laptop

Fig. 1: The architecture of edge computing platform

In LAVEA, the edge computing node attached to the same

access point or base station as clients is called the edge-front.
Edge-front offloading. We consider N clients and only one

edge server. Each client i, i ∈ [1, N] processes tasks belong

to a certain job, e.g. recognizing plates, and select tasks for

offloading to the edge. Without loss of generality, we start with

a directed acyclic graph (DAG) G = (V,E) as the task graph.

Each vertex v ∈ V is the computation of a task (cv), while

each edge e = (u, v), u, v ∈ V, e ∈ E represents the interme-

diate data size (duv). The remote response time includes the

transmission delay of sending data to the edge server and the

execution time. We use an indicator Iv,i ∈ {0, 1} to indicate

the task v of client i running locally or remotely. The total

local execution time for client i is T local
i =

∑
v∈V Iv,icv/pi

where pi is the processor speed of client i. Similarly, we use

T
local
i =

∑
v∈V (1 − Iv,i)cv/pi to represent the execution time

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.182

1123

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.182

2573

of running the offloaded tasks locally. For network, when

there is an offloading decision, the client need to upload

the intermediate data (outputs of previous task, application

status variables, configurations, etc) to the edge server in order

to continue the computation. The data transmission delay is

modeled as Tnet
i =

∑
(u,v)∈E(Iu,i−Iv,i)duv/ri where ri is the

bandwidth assigned for this client. For each client, the remote

execution time is T remote
i =

∑
v∈V (1− Iv,i)(cv/p0) where p0

is the processor speed of the edge server.
The offloading task selection problem can be formulated as

min
Ii,ri

N∑

i=1

(T local
i + Tnet

i + T remote
i) (1)

where the task selection is represented by the indicator matrix

I. The optimization problem is subject to constraints: 1) The

total bandwidth s.t.
∑N

i=1 ri ≤ R 2) We restrict the data

flow to avoid ping-pong effect: s.t. Iv,i ≤ Iu,i, ∀e(u, v) ∈
E, ∀i ∈ [1, N] 3) Unlike mobile cloud offloading, we consider

the resource contention or schedule delay at the edge side

by adding a end-to-end delay constraint. s.t. T
local
i − (Tnet

i +

T remote
i) > τ, ∀i ∈ [1, N] where τ can be tuned to avoid

selecting borderline tasks that if offloaded will get no gain

due to the resource contention or schedule delay at the edge.

Inter-edge Collaboration. The intuitive task placement

scheme for inter-edge collaboration is to transfer tasks to

the candidate edge node which has the least number of

queued tasks upon the time of query, stated as shortest

queue length first (SQLF). However, this scheme neglects the

network latency and has scalability issue when the number

of candidates scales. We have designed a novel predication-

based shortest scheduling latency first (SSLF) scheme for

its ability to estimate the scheduling latency efficiently. To

measure response time, edge-front appends a no-op task to

the task queue of each candidate edge node. When the special

task is executed, the edge-front shall receive the response

message and maintain a series of response times for each

candidate. Since the candidate’s workload may vary from

time to time, the most recent response time cannot serve

as a good predictor of the response time. The edge-front

estimates the response time for each candidate by regression

analysis of history response time series. In this way, edge-front

node can offload tasks to the edge node with the estimated

least response time. Once the edge-front node start to place

task to a certain candidate, the estimation will be updated

using piggybacking of the redirected tasks, which lowers the

overhead of measuring.

III. EVALUATION

We have built a testbed consisting of four edge computing

nodes. We make use of two types of Raspberry Pi (different

models with different network interfaces) nodes as clients,

We employed three datasets: 1) Caltech Vision Group 2001

dataset, 2) a video contains rear license plates in various

resolutions, 3) a small dataset in the OpenALPR project.

To understand the benefit of offloading tasks, we design an

experiment on wired and wireless clients. The result of the

Fig. 2: The comparison of task
selection impacts on edge offload-
ing and cloud offloading for wired
clients (RPi2).

Fig. 3: The comparison of task
selection impacts on edge offload-
ing and cloud offloading for 2.4
Ghz wireless clients (RPi3).

first case is straightforward: the clients upload all the data

and run all the tasks remotely in edge offloading or in cloud

offloading, as shown in Fig. 2. The result of wireless client

node offloading tasks to the edge or the cloud is in Fig. 3.

Overall, our results show that the client-edge configuration

has a speedup ranging from 1.3x to 4x (1.2x to 1.7x) against

running in local (client-cloud).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

r
o

u
g

h
p

u
t

(t
a

sk
s/

se
c
)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Fig. 4: Performance of SQLF.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

r
o

u
g

h
p

u
t

(t
a

sk
s/

se
c
)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Fig. 5: Performance of SSLF.

In evaluating inter-edge collaboration, Fig. 4 and Fig. 5

illustrate the throughput result of SQLF scheme and SSLF

scheme respectively. In the setup, edge node #1 has the lowest

transmission overhead but the heaviest workload among the

three edge nodes, while edge node #3 has the lightest workload

but the highest transmission overhead. Edge node #2 has

modest transmission overhead and modest workload. In SQLF,

the edge-front node transmits tasks to less-saturated edge

nodes, efficiently reducing the workload on the edge-front

node. However, the edge-front node intends to transmit many

tasks to edge node, which has the lowest bandwidth and the

longest RTT to the edge-front node. SSLF scheme considers

both the transmission time of the task and the waiting time in

the queue on the target edge node, and therefore achieves the

better performance.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE
Personal communications, vol. 8, no. 4, pp. 10–17, 2001.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, Mobidata ’15. ACM, 2015, pp. 37–42.

[3] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Hot Topics in Web Systems and Technologies (HotWeb),
2015 Third IEEE Workshop on. IEEE, 2015, pp. 73–78.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[5] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software architecture
for fog computing,” Internet Computing, 2017.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
Oct 2016.

11242574

