Snoogle: A Search Engine for the Physical World

Haodong Wang, Chiu C. Tan, and Qun Li
Department of Computer Science
College of William and Mary
Email:{wanghd,cct,liguh@cs.wm.edu

Abstract—Hardware advances will allow us to embed small We are unaware of any previous efforts in designing IR
devices into everyday objects such as toasters and coffee 980 systems on sensor hardware. (2) We investigated the use of
thus naturally form a wireless object network that connectsthe bloom filters and compressed bloom filters to reduce overall

object with each other. This paper presents Snoogle, a sedrc L L .
engine for such a network. Snoogle uses information retrie COMMunication costs. (3) A distributed top-k query aldurit

techniques to index information and process user queries,ral IS presented for efficient querying. (4) Our system design
compression schemes such as Bloom filters to reduce commu-rovides distributed security and privacy protections] #rs

nication overhead. Snoogle also considers security and pecy ~module is implemented in our system prototype for evaluatio
protections for sensitive data. We have implemented the stem (5) A combination of a working prototype and simulation is
prototype on off-the-shelf sensor motes, and conducted esttsive .
experiments to evaluate the system performance. used for evaluation. . .
The rest of the paper is presented as follows. Sections
|. INTRODUCTION Il and Il describe the Snoogle system architecture and
A pervasive computing environment entails embeddirgpery resolution algorithms respectively. Section IV ekses
small computing devices into everyday objects such asgablew Snoogle provides mobility, security and privacy suppor
and shelves. These small devices allow us to store andvetri&ection V contains the evaluation of our system, Section
information regarding the underlying physical object. For VI discusses some limitations, and Section VII presents the
stance, consider a collection of document binders. Eadlebinrelated work. Finally, Section VIl concludes.
is embedded with a device containing a short description of
the contents of that binder. This description can be created
through input devices such as a digital pen which can tremsl&. System Components
a person’s handwriting onto text, or by a miniature RFID Snoogle consists of three components: object sensorsg Inde
reader that scans every RFID enabled document place ifigints (Ps) and Key Index Points eyIPs). An object
the folder. A user wanting to find a particular document cagensor is a mote attached to a physical object, and contains a
query each binder’s embedded device to learn of the contengxtual description of the physical object. This descoiptis
and then retrieve the appropriate binder. determined by the object owner. The object sensor can be ei-
In this paper we present Snoogle, a search engine tiigér static or mobile, depending on whether the correspandi
allows users to efficiently search for information in a psiva physical object is stationary or mobile.
computing environment. We assume that these small devicegn 7P is a static sensor that is associated with a physical
are already embedded in everyday objects, and each devigsation, for example, a particular room in an office builglin
has limited processing, storage and communication abify 7 Ps are responsible for collecting and maintaining the data
use the terms “sensor” or “mote” to describe such a resourfgem the object sensors in their vicinity. THe? hardware is
limited device. We also assume that an effective data inpsinilar to an object sensor, but with larger storage capadit
mechanism is used to store the necessary data into the dewielection of I Ps forms a homogenous mesh network.
Snoogle adheres to the design principal thdbrmation The KeyI P collects data from differentPs in the network.
pertaining to an object on the object itself. In other words, The KeyIP is assumed to have access to a constant power

information describing a binder should be stored on thedyindsource, powerful processing capacity, and possess coablde
itself, and not on a remote server. This improves robustnegsrage and processing capacity.

since a wireless connection to a remote server may not be .

available but information stored on the binder can be alwaffs System Architecture

be accessed via short range wireless protocols like Bla#tto Snoogle adopts a two-tier hierarchical architecture degic

However, adhering to this principal requires novel dataagfe in Fig. 1. The lower tier involves object sensors ahgs.

and management techniques to be implemented on the m&ach/ P manages a certain area within its transmission range.

Furthermore, this principal also require security and gmyw Object sensors register themselves and transmit the object

protections be tailored for the resource constrained motes description metadata to the specifi®. I Ps are responsible
We make the following contributions in this paper. (1jor building the inverted indexes for local search.

We designed a complete search system using informatiorOn the upper tier,/ Ps have their dual roles. First,Ps

retrieval (IR) techniques on a resource constrained platfo forward the aggregated object information to tReylP so

Il. SYSTEM DESIGN

that the Keyl P can maintain a consistent inverted index of
IPs. IPs performs the following three data operations.

Insert: This operation is executed when a new object comes
into the I P’s region and sends the metadata to fti¢. The
1P stores the new metadata and object id into its inverted
table.

Delete: When a physical object leaves the vicinity of a
particular P, e.g., a user moves a book from one office
to another, the corresponding object sensor is no longer
associated with the previoukP. The I P then performs a
“delete” operation to remove all the metadata of the leaving
object from its inverted table.

Fig. 1. Overview of Sensord,P and K eyl P Architecture Modify: This operation is performed when there is a change

in the object sensor's data. When this happens, the object
sensor sends a modification request to ilie Since thel P

that theK eyl P can return a list of Ps that are most relevantinverted table is stored in the flash memory, which does not

to a certain user query. Second;s also provide the messagesupport random writes, the “modify” operation is achieved b

routing for the traffic betweed Ps, Keyl P, and users. The the combination of a “delete” and an “insert”.

Keyl P, considered as the sink of tHé> mesh network, holds We improve the flash storage efficiency, basing on the

the global object aggregation information reported by eaéh observation that théP only stores the metadata of the objects,

While Snoogle does not restrict the numberiséyI Ps, for instead of the whole payload data which has to be considered

the simplicity, this paper only considers the sindleey/P in the general storage media. We take advantage of the small

setup. granularity write capability of the NOR flash (TelosB on-

Users query Snoogle using a portable device such as a delard flash memory) and allo@Ps to be able to append
phone. Snoogle provides two different kinds of queridecal the object metadata sequentially in the flash memory without
query and adistributed query. A local query is performed extraread and write required in the NAND flash. In this way,
when a user directs his query to a specifie. This type the flash erasing operation (once the flash is full) is keplé¢o t
of query occurs when a user wishes to search for objectsmainimum. In addition, we also implement a “delete” function
a specific location. A user performs a distributed query whehat efficiently invalidates the metadata associated with a
he queries théey I P. The distributed query capability allowsobject sensor. We perform the “delete” by zeroing out the
Snoogle to scale since users do not need to flood elBrio necessary bytes in the flash memory, avoiding the expensive
find a particular object. We discuss querying in further letaread and write method used in general flash storage system.

in the next section. That same memory location is not overwritten until there is a
C. Data Processing in Object Sensors sector delete during garbage collection.

After the sensor sends its id and metadata to kRe the

and metadata. Payload is a short description of the attachednforma‘[Ion s first sf[ore_d na buﬁer in RAM. On(_:e the buffer
Is full, a hash function is applied to every term in the buffer

physical objectMetadata is a representation of thaayload. The hash results are used as the indices that map to the lookup

For example, thepayload of an object sensor attached Kh

e able entries. We maintain the lookup table (INDEX in Fig. 2)
a folder can be a short note describing the contents of t|neRAM 10 store the address pointing to the flash page. Each
folder. The metadata is a set of tuplesfterm, : freq: : P 9 page.
idy} - {term,, : freq, : id,}, where term is a single word

flash page has the size of 256 bytes. Those flash pages which
describing thepayload, and freq indicates the importance of

are associated to the same lookup entry are organized in a
. : I D .~ chained structure, very similar to the structure of the dishk

this term in describing thpayload. A user storing information . .
. . . . g list in data structure. The value of the lookup table entry
into an object sensor is responsible for sending pagoad : .

o o always points to the head of the flash page chain. The most
and metadata. To minimize the data transmission cost, the
data in the object sensor can also be pre-compressed uggaulated terms that are mapped to the same lookup table

y are flushed to the flash memory, and the flash address

. . . . en
compression schemes described in the next section. is returned to the lookup table entry. This flushing operatio

D. Data Processing and Storage at /s continues until there are enough empty buffer slots to Huéd t
IPs in Snoogle have two data processing roles. Firshcoming object terms. The lookup table manages the flash
IPs collect data from object sensors within their range aradidresses in a chained structure that multiple flash pages ca
organize the data into an inverted index. Due to reliabdityl be assigned to the same table entry. Fig. 2 illustrates the IP
space concerns, the inverted index table in ftizis stored storage architecture.
in the on-board flash memory of sensors rather than RAM.When thel P receives a query, it applies the hash function
Second,/ Ps periodically send aggregated update informatido the query to map each query term to a lookup table entry,
that reflects the object dynamics in its area, to fey/ P so and obtains the flash address. This address stores a looétion

Each object sensor contains two types of dptg|oad data

IndexPoint (IP) m

BUFFER INDEX k=1In2- - (2)
s2: 110, 2 h(t5) |paddrg)
5: 116, 3 h(t9) [paddrs| . .
o sz ggzgé,é - [0 [padd 2 Bloom filters can be further compressed to achieve better
ke . h(mica)=t10,4 - 110, ' adar . _ .. .
! sensor?) | siuzz-dn (el | E transmission efficiency [3]. This is based on the obsermatio
b‘*' ' 7| 12) [paddrt that am-bit string may be transmitted by a less number of
Object S 1
jectmensors flash readwrit bits without any information loss. We denoteas the number
T T N . of bits after compression. Note the compression_ only works
N A 15| B S (z < m) when there are less “1”s than “0”s (or in reversed
* case). Mitzenmacher [3] indicated that each bit of the Bloom

filter has roughly 1/2 probability to be “1” or “0” when a
Fig. 2. Sensor S1 sending data &’ Bloom filter is tuned to have optimal false positive rate.sThi
tells us an optimal Bloom filter almost cannot be compressed.

the flash hain head which tains that particular t It also means there is trade-off between false positive and
€ flash page chain head which contains that particuiar. tef mpression ratio. To gain transmission efficiency, we have
Next, each flash page in the chain is sequentially read to

RAM g 4 for th wchi | ts. Eventuall crifice the false positive rate. Mitzenmacher [3] corgihto
: » and scanned for the maiching elements. EVentually, @ ot that the procedure of compressing a Bloom filter is
list of matching terms with associated sensor ids is obthin

th ked list of ids that best match th ctually equivalent to hash each term into: & bit string.
€n a ranked List of sensor 1as that best match the query'I"ﬁerefore, instead of doing complicated bit operations, we
derived using an information retrieval (IR) algorithm fuet

i . simply hash each term to bit string, and concatenate
elaborated in the next section. Py a/n 9

the n hash results together to generate an array. Suppose the

Finally eachl P will periodically send the updated metadatﬁash function is perfect, the probability of having a catis

terms and sensors, which reflect the object dynamics in 18h another word for each/n bit string is roughly(%)z/”.
region, to thekiey IP. The Keyl P’ stores the data and checks Selecting the correct compression method is crucial for

for inconsistency. This inconsistency arises when sensQy

ﬁoogle system. The optimal bloom filter achieves the lowest
moved from onel > (1) to another (1) beforel P have ¢ o positive rate, while the compressed bloom filter store

%Cftﬁg%ﬁ;gni?sdt:;ec;/tsisreec:;% ?}Ilgtceitzl(ljSbeynff(;sy?;\/eT?]:m% er pompres;iqn ratio [4] so that it can achieve better
K,eyIP then informs bothl Ps verify the sensor déta l:Ortrar_]smlssmn efficiency an_d [ower processing ov_erhead. We
examole. both P. andI P> report having Sensor EachfP believe that th_e low transmission cost and processing eaerh
Xampie, ! 2 Tep 9 L : are more desirable for extremely resource constrainecsens
will send a message directed .ﬁ)' I 5115 No longer in .the nodes. Therefore, we use the compressed Bloom filter for our
range of /7%, t.hef‘ onIyIEQ will receive a reply. 1Py wil Snoogle system. Actually, with carefully chosen paranseter
deletes, from its inverted index table. we can lower the false positive rate to an acceptable level. A
E. Communication Compression we will describe in the evaluation section, given the data se
A Bloom filter [1] is used in Snoogle to compress group¥ith 1512 words, and compressed Bloom filter size of 16 bits,
of terms together. A Bloom filter with an-bit array andi the false positive rate is only about 2.3%.
independent hash functions is used for everyvords. The Ill. PERFORMING QUERY
m-bit array is first initialized to “0”. Then, for each word, As mentioned earlier, there are two ways of querying
the hash function maps the input to a value betweeand Snoogle. The first is to query ahP directly, the second is
m — 1, corresponding to the bit position in the bit array, antb query theKeyI P first, and then to perform the distributed
that bit is then set to “1”. Aftemn words are inserted, the query given a list of most relevantPs returned by the
resulting value of the array becomes the summary ofrthe KeyIP.
words. The collection of the arrays becomes the summaryThe first guery method is used when a user is only interested
of the document. To check whether or not a word is in the finding the object in some specific area, or if the user has
document, we apply thé hash functions to the word andan approximate idea where the object might be found. For
check if the resulting bit positions are all “1”s in any of theexample, a user wants to find a particular magazine, but only
array collection. Any “0” indicates there is no match. Howeev if it is within a short distance from where he is currently at.
a result of all matching “1”s only indicates there is a certaiThus, he only queries theP near him by sending a few terms
probability that there is a real match. The uncertainty is thu that describe this magazine. THi& evaluates the answers to
false positive (or collision, we use false positive andisah the user. Each answer is the id of an object that best matches
interchangeably in this paper). If a Bloom filter has bits, the user query. The user can then query the sensor directly, o
k functions, and holds: words, the probability of having a physically find the sensor and hence the object.

collision (incurs the false positive) with another word is The second query method is used when a user wishes to
1-(1- _)kn)k ~(1— e—kn/n)k_ 1) find an object regardless of where it is, or has no idea which
m 1P to start querying. The user first queries tReyl P with

Whenm andn are fixed, the optimal false positive rate camseveral terms describing the target object. Theyl P then
be achievable when [2] returns a ranked list ofn I Ps that contain objects that best

match the query, where: is a system parameter. The useis for the user to perform a top-query for each of then
then perform the distributed topquery from the returneeh. I Ps returned byKeylP. By collecting them - k£ answers
IPs and find the satisfied answers. the user can then obtain the tdp objects. However, the
A. Improving Query Accuracy message complexity @P(mk) is too expensive for the energy

. . . constrained system.
When a user queries ahP, he receives a ranked list of y

sensor ids that best match his query from flitas his answer. s — .
This ranking is derived from a score for each sensor comiair(élgor'thm 1 Distributed Topk Query Algorithm
within thatZ P based on the query terms. For example, the usey WUtk IPS: 1Py, 1Py, - - [P, ,
. . . : Output: topk answers:Obj1, Obja, - - - , Obji
issues a query with two query tern'(s,t,ty.) to an [P with 3: EachIP sorts its objects in descending order of the weights
three sensorgsy, s2, s3). The score fors; is the sum of the 4. for fromi = 1 t0 5 = m do
weight of ¢, in s; and weight oft, in s;. The score fors, 5. querylP; for the top answer; eachP removes the first object
and sz are determined in a similar fashion. from the sorted list and sends it to user

The weight of a term in a sensor is determined using th& Sthebth‘itOD answet; Z”d_'ts qszomated "‘{e"ght_'r[‘ Snanay:
TF/IDF weighing algorithm from IR research. The intuition . en((l:i[ll‘]c;(r) j = tai, alil-weight = weight(ta:), alil.ip = 1P
behindT'F'/IDF is that the importance of a term in describingg: set the number of committed objects, nurommit=1
a sensor is based on two considerations. The first is the mumbg while num_commit < & do
of times that term appears in that sensor, Th€. The more 10: sort the array in descending order of weight so that
often a term appears in the sensor, the more relevant timat ter all].weight > a[2].weight > - - a[m].weight

is in d ibina that | t HE value i senda[2].weight and numcommit to I P a[l].ip
IS In describing that sensor. In our system, value 1s 5. p a[l1].ip removes from its sorted list a list of objects (say

given as part of the metadata of the sensor. of them) such that the last object has the highest weight less
The second consideration is how important that term is thana[2].weight, sayw

among thecollection of all sensors in a particulafP. The 13: IP a[l].ip sends the first min(lk— num_commit)
IDF is determined as 14: commit all retrieved objects with weight greater than

Total number of sensors all].weight, change the value of numommit, set
IDF = log(Numb f — h Q a[l].weight = w

umber of sensors containing the tefm ;¢ ong while
The idea here is that if a term appears in many sensors foulé return all the committed objectSb;1, Objz, - - - , Obj

within an I P's neighborhood, it is less important. Consider

the extreme case where a term appears in every sensor und@jur distributed tope query algorithm is shown in Algo-
an IP. Then, any one of the sensors returned will contajithm. 1. The basic idea can be explained as follows. Upon
that term, making that term not descriptive of any one sens@iceipt of the list ofm rankedIPs, the user queries each
at all. To get thelDF' value, we need the total number of;p for the most relevant object, denotedtas, 1 < i < m.

sensors and the number of sensors containing the term. Tt user stores then objects in an arraya such that
first one is easy to get since di knows all sensors in its (] obj = ta;, ali].weight = weight(ta;),alil.ip = IP;,

N

neighborhood. The second value is acquired while proogssihereweight(ta;) returns the weight score determinedBy’
the query at an/P. Given a query term, adP counts the and7DF as we discussed previously. After collecting the top
number of the matches with stored terms in its flash Memofyeighing objects from altn I Ps, the user does a sorting in the
Putting it all together, the weight for a tertp in IP s1 IS descending order of the object weight, and obtains a new arra
Weight of t, = (T'Fy, in s1) - (IDF,, in s1). that a[1].weight > a[2].weight > --- > alm].weight. By
now, the first topk answeria[1].0bj, is immediately available.
he next phase is to search for the remaining answers. The
user sets the threshold value a].weight, and queries
[1].ip for the objects (excluding[1].0bj) that weights more
han the threshold value. Note that among all thel Ps, it
is possible forl P a[1].ip to solely hold objects with weights
] no less tham[2].weight, so there is no reason to firstly query
B. Performing Top-k Query other I Ps. Ignoring all the committed objects (i.e., they are
While Snoogle is capable of returning a ranked list of atlefinitely top4 objects), eachl P has a new top weighing
relevant objects matching a query to a user, a user will isuabbject, and the same process continues till all kopbjects
want to limit the number of replies due to limited devicare found. The algorithm stops any time whiertop objects
display or battery power. Snoogle allows the user to spexifyare retrieved.
top- query which returns thé best matches to a user query. To bound the number of messages transmitted in the pro-
The k is a user specified value. cess, we make the following observations. First, eAghin
For a local query, returning the tdpquery is straightfor- total sends out at most one object that will not appear in the
ward since anf P needs to only return the top answers to top-k list. Therefore, the number of messages sent by all the
the user. For a distributed query, a naive foguery scheme IPs is at mostn + k including the topk objects and those

The aboveT F'/IDF scoring methods can also be used t
evaluate the weight of théP in the distributed query. We
initially considered CORI weighing algorithm [5] when a use
queries theieyI P, but there was no noticeable improvemen
Thus we use a simpl& F/IDF algorithm throughout this
paper.

“useless” objects that will not appear in the thist. Second, like laptops. He can then optimize his haul by targeting the
for each query sent out to theP, we will get back at least highest ranked location first.

one object (which may appear or not appear in the finalitop- To address these concerns, Snoogle must have a security
objects). Thus, the number of queries sent out to alllthe is mechanism to prevent the private objects from being sedrche
bounded by the number of received objects, which is at mdst unauthorized users. In other words, a user needs to be
m + k. Combining the two observations, we conclude thauthenticated before he can search private objects. Wet adop
the number of messages in this process is at R0st+ k). the public key cryptography rather than the symmetric key
Compared to the message complexity:ofk in naive scheme, scheme to have a clean user interface and a simple key
obviously our distributed top- query scheme is much moremanagement. Recent research [6], [7], [8] have demondtrate

efficient. that public key schemes are feasible for sensor nodes. We
IV. MOBILITY AND SECURITY developed an Elliptic Curve Cryptography (ECC) public key
A. Supporting Mobile Objects scheme for Snoogle. The reason we choose ECC over more

As objects can be mobile, there will inevitably be objectBOpUIar RSA is that ECC can be more efficiently implemented

moving in and out of arf P’s neighborhood. Snoogle uses 4" resource constrained sensors. Due to the space limit, we
combination ofbeacon and timer methods to ensure app ©Mit the discussion of ECC implementation on TelosB motes.

maintains up-to-date information The interested reader is referred to our technical repdifof9
In the beacon method, thel P will periodically broadcast More details. On TelosB sensor motes, it takes 1.4s to genera

a beacon that identifies itself. An object sensor in the neigf Public key. In Snoogle, the access control is performed at
borhood that receive this beacon will compare it against tife /£ instead of atiley/ P in a distributed fashion.

previous beacon. Matching beacons indicates that the pbjec/Ve_Provide security protections in Snoogle by adding a

is still covered by the sam&P, and the sensor does nothing.Security tag to the private object. The security tag has an
Otherwise, the sensor will report its metadata and id to tif¥neriD field and aGroupMask field. The Owner|D refers
to the owner identification. Th&roupMask determines which

new [P. L .
In thetimer method, the communication is initiated by eacHOUP Of users has the privilege to access the object. The ECC

individual sensor. Each object sensor periodically braat Pased user authentication is very similar to RSA.

a “keepalive” message. At the same time, ff2 maintains a If a user wants to search private objects, he first sends

timer. If the I P does not receive any “keepalive” message froﬁtﬂe query gnd_ the ceruﬁpatg, where the cert|.f|c.:ate is issued

a certain associated object before the timer expires,[fhe by a Certification Authority like Snoogle administrator. éf'h

considers the object is gone, and then deletes the all datte of /I first verifies the user certificate and the makes sure the

object sensor from its storage. Theacon andtimer methods Co'reéspondingownerlD and GroupMask matching with the

can be regarded as a¢ill” or a “push”. In the beacon method, object tag. Then, théP uses the derived user public key (from

I Ps pull the status information from the object sensors. In tH8€ certificate) to encrypt a randomly chosen secret key, and

timer method, object sensopsish their status tal Ps. sends the ciphertext to the user. If the user can successfull
The beacon'scheme consumes less energy than tthrer decrypt the key, it proves that the user is the legitimateawn

method since the object sensors only need to wake up in fHethe certificate. Finally, the/P and the user the key to
duty cycle to listen the beacons. They do not need to transrﬂﬁtab“Sh a secure channel. This !<ey can also be_used tovachie
any message as long as there is no movement. tiFher the user privacy. The user can simply encrypt his query terms
method, however, offers better reliability. When an objed® USing the key so that no one can learn the query content.
moves to anothed P neighborhood, the previousP can _ V. PERFORMANCEEVALUATION _ _ .
notice an object missing through the timer, and the g% ~ We implement a prototype of Snoogle, including object
also can also be notified by the timer message sent by §f1S0rs, IPs and user module, on TelosB motes, a research
moving object. In short, theéeacon method is more suitable Platform developed by Berkelgy. TelosB hardware_ features a
for static objects, while theimer method works better for lower-power TI MSP430 16-bit micro-controller with 1_0KB
mobile ones. In practice, the two methods can be propeﬁiAM and 48KB ROM. The on-board IEEE 802.15.4/ZigBee

combined depending on the system requirement. compliant radio transceiver facilitates the wireless camin
o .) cation with other IEEE 802.15.4 compliant devices. TelosB
B. Providing Security and Privacy also has an on-board flash memory with 1MB space, which

Since Snoogle is built on sensors, it shares all common seemables our prototypé&P to store as many as 262,144 terms
rity threats with other applications in sensor networkssiBes, and the associated object ids and term frequency. The low-
Snoogle also poses unique security and privacy requirememower feature{.1.A) current draw in sleep mode) of TelosB
in searching. The concern is that a search engine like Saooglotes allows object sensors to stay alive for long time. We
may violate personal privacy by revealing object informoati use an HP iPAQ for the user module. The HP iPAQ features
to others. For example, a user may not want his private objec622MHz ARM920T PXA270 processor, 64MB RAM and
(e.g., a DVD movie) to be searchable by strangers, but orlg8MB flash memory. The software dfPs, object sensors
his friends and himself. In another example, a thief canyueand user module are written by NesC language on TinyOS
Snoogle for a list of locations most likely to have valuablegersion 1.1.15.

To better discern the performance of the system, we breedmpressed terms. However, it requires more than 5 times of
the search system down into individual components and evatnount of time to transfer 40 uncompressed terms.
uate each separately. We mainly focus on object sensor and
I P interaction. The reason is twofold. First, both the sensor 250 —

. . ——O— Insertion with buffer
and/ P are power constrained and computationally challenged —%— Insertion without buffer
devices, while theKeyl P can be a resource-rich device. I
This makes the performance of the object sensor aRd
crucial for the validity of the system. Second, we believe
most user queries will be directed toward8s, rather towards
the KeylI P. This is mainly due to privacy restrictions. For
instance, a user looking for his keys will most likely start
qguerying familiar locations rather than the entire buitdin o 5 10 15 20 25 30

We derive our workload by collecting information from Number of Object Sensors
various conference abstracts. The title, authors andadifiis Fig. 4. Insertion performance with buffer and without bufée TP
of each accepted entry becomes the metadata terms in each
sensor. We use the IR definition @fF to obtain the weight Next, we show how the buffer helps to further improve the
of each metadata term. This yields a workload sufficient fatata collection efficiency. Ad P has limited RAM and uses
about80 sensors, each of which has about 15 to 25 uniqflesh memory to store the sensor metadata. Flash memory,
words on average. unlike conventional disk, is written on a per page basisaligu
on the magnitude of 256-512 bytes per page. When there are
multiple sensors wanting to send data to an IP, ke will
The startup phase for our search system occurs when Haye to periodically halt transmission to flush the comintada

IP is first initialized and contains no object data at alinto flash. This lengthens the time taken for an object sensor
This is a costly activity since théP has to identify all the to successfully transmit data to d@, especially during the
sensors within its range, and obtain their metadata. Fatély) initial stage when a group of object sensors upload the data t
this initialization phase occurs rarely since aliP utilizes the IP. To solve this issue, the? maintains a small buffer in
persistent flash memory for data storage to protect agaitat dRAM , e.g., 256 bytes, to buffer sensor data before flushing to
loss. The main metric we use to evaluate this portion is tflash. The IP therefore does not need to invoke the expensive
time latency needed for ahP to obtain necessary data fromflash flushing routine as long as there is enough buffer space
object sensors and update the collected data for the futt@enold the coming object terms, and picks a spare time later
changes to give accurate answers for queries. To reduce thd@ush the buffered terms into the flash.

We set the buffer size with 256 bytes, equivalent to the

Total Time Taken (ms)
B P N
o al o
o o o

a
o

(=]

A. Data Input and Maintenance at I Ps

500|[= Hashed Tex] N page size of the flash memory setup. Since each object term
5 |2 Rain Text requires 4 byte memory space, including 2 byte digest, 1 byte
§4°° term frequency and 1 byte for the object id, a 256-byte buffer
= a00} can hold at most 64 object terms. In the both experiments, 30
3 object sensors, each having 10 terms, sequentially tramiseni
2 2% data to thel P. We record the average waiting time of each
= 100, . object sensor and present the results in Fig. 4. It cleadysh
O,M that each object sensor waits significantly less amountoé ti
5 10 B e B e a0 3 A0 when thel P uses the buffer.
We also notice that the variation of the object sensor wgitin
Fig. 3. Time taken to transmit metadata & time without an/ P buffer is much larger. Our investigation

reveals that the variation is determined by the amount of tim
transmission cost and improve the storage efficiency, Seootaken to flush the data to the flash. Since each compressed
adopts the idea of compressed Bloom filter to compress tteem is further hashed by theP (as previously described in
metadata terms. In particular, a hash function residindhén tSection 4) to an index table, different terms can be mapped
object sensor convert each plaintext metadata term into at@-different positions of index entries. The number of egri
byte digest before transmitting the data over to {lé¢ We can be any value between 1 and the number of terms. The
perform a comparison test to learn the benefit of the ddteyger the number is, the longer time is required because the
compression. Fig. 3 shows the time taken to transmit hashefl has to flush more flash pages. As the comparison, this
data to thel P compared to the plaintext method. As we cawmariation is much smaller with a buffer enablé&. The reason
see, the transmission time grows linearly as the number isfthat, thel P buffer keeps track of the index entry position
terms increases when the plaintext data is used, while éistalof each term. When the number of buffer empty slots is not
much less time for the P to collect the same amount ofenough to hold the coming data, the buffer first flushes the
data in the compressed form. It only tak#Bns to collect 40 most populated terms that hashed to the same index position,

350 average time taken to complete a user query comprising of one
to four terms. Fig. 6 shows the results. We see that the query
response time increases as the number of query terms iecreas
As mentioned in sectiod.1, multiple flash pages may have
to be read from flash memory to determine theF' of each
guery term. This accounts for the increase in query response

time.

—5— Actual Time

w
o
o

2501

Deletion Time (ms)

200,

300

1
5OO 200 400 600 800 1000 1200 1400 L [—

Number of Terms in IP
1 2 3

Number of Query Terms

N
a
o

N
o
o

Fig. 5. The amount of time to delete an object with 10 terms.

Total Time Taken (ms)
B B
o o
o o

and stops flushing if there are enough space. As the result,
with a high probability the number of pages required to be
flushed is less than that in a bufferle&B. 0
When an object is removed from its original location, the
I P has to update its inverted index table to reflect such change.
As described previously, théP can do a “delete” operation

to remove a certain object from its storage. The “delete” 2) Compare to searching without IPs. An alternative
operation requires theP to scan the entire valid flash storag&earching method is to have users query the sensors sequen-
area and tag the deleted object terms to be invalid. It is ngd|ly, and then collect the replied data to find the desired
difficult to suggest that “delete” performance is determibg jnformation. This method gets rid of theP. To evaluate we
the size of stored flash data. Our experiment results, anBhQWlplement this alternative searching scheme and compared
in Fig. 5, exactly show this trend. The experimentis conédctthe performance against our Snoogle system. The alteenativ
in the following way. We select a specific object sensor Witgearching scheme is implemented as follows. A group of
10 terms, and perform deletion with different amounts obdakensors are organized to a chained structure. The usersalway
loaded in thelP, ranging from 0 to 1600 terms. Initially, queries the chain head sensor, the queried sensor sednehes t
the de|eti0n t|me doeS not Vary mUCh When the number abery term in |tS memory and puts the resu'ts at the pre_
loaded terms increases. The reason is that/fRdvas to scan assigned position in the message packet, and then forward
at least one flash page for each index entry, no matter hgyga query to the next sensor in the chain. TH¢ sensor
many terms have already been stored in the flash. When fBgeats the above searching and puts the results in its pre-
term number continues to grow, some index entries requiggsigned position. This procedure repeats until the lastcse
more flash page to store the metadata terms. Therefore, ffigshes the query processing. The last sensor directlyeepl
deletion operation has to scan more flash pages. As the resgltthe user. We believe this is the most efficient way that
the time consumption increases accordingly. a general searching scheme can achieve because it requires
Note that deletion does not have to be done each timgogvest amount of the message transmission. We select 10
sensor leaves ahP's neighborhood. A simple list can be keptsensors for the both experiment setups. Each sensor is pre-
by the I P that records the ids of sensors that have left. Theaaded with the metadata of one conference paper. The user
before thel P’ replies to a query, it removes the sensors fourgkrforms a single term query to the both systems. We measure

in the list from the answer. This way, the user will still hate the user query response time with the number of Object
correct answer. Thé P can then perform the deletion in thesensors changes from 1 to 10. In Fig. 7, we show the

background when there are no other pending query requests.

a
o

4

Fig. 6. Time taken forl P to respond to a query

200

B. Local Query B —0~ Without 1P
To evaluate the local query performance, we focus query %150—
latency. We first test the performance of the query latency of %
Snoogle. Then, we demonstrate the Snoogle query efficiency g 100f
by a comparison test that compares the latency performance g
between Snoogle and a flat structured network. § 5o
1) Query Latency: Query latency is the time taken for a
user querying ad P to receive a reply. This includes the time 0o 2 6 8 10
to transmit, process and reply to a query. To better evahuate Number of Object Sensors
search system, we measure the query latency using common Fig. 7. Query latency with and withoutPs

web search characteristics. From [10], the average nunfber o
query terms per search is less than 3. We then determine dlifference in query response time in two different searghin

systems. We see that the query response time in Snoogle
system remains relatively constant. The time taken in gdner
searching system, however, increases linearly with thelum

of objects increases. This proves Snoogle achieves mutdr bet
scalability then any general searching scheme.

a
®

a
o

a
»

a
)

C. Digtributed Top-k Query

As we discussed in Section 11I-B, the message complexity
is the major concern in the distributed témuery. To evaluate
the performance of our top-query scheme, we use the same
dataset, which is composed of 80 objects. We evenly and Fig. 9. User perceived private object query response time.
randomly distribute these objects into eidhits (eachl P has
10 objects). In this way, we create a testbed for the digtibu
query with eight/ Ps, which are returned from th&ey/P D. Security Overhead for User Query
for the user query (noten = 8). In the next step, the user
performs the distributed top-query.

Query Response Time (s)

o

»
®

o

2 10

4 6 8
Number of Query Terms

Finally, we add the authentication module to the and
test the performance of private object query. We used an ECC
w0 public key cryptosystem designed for TelosB motes. Our ex-
e e ery) tensive optimization allows TelosB mote to efficiently merh
TPtk e due) ECC public key operation. Our experiment shows it only takes
1.4s to do a point multiplication. To the best of our knowledg
this is the best ECC performance achieved on TelosB motes by
academic implementations. When the user queries the erivat
objects, the user’s identity and access privilege have to be
.] verified. The 160-bit ECC based authentication is performed
. " : . .] for the verification purpose. The user query response time is
kvalue presented in Fig. 9. To query a private object, the user waits
around 4.9s to pass the authentication check. Obviousy, th
authentication time dominates the overall response tirhes T
is because that the ECC based authentication scheme require
ECC point multiplications, which contribute more than 90%
the overall delay.

Message Units

Fig. 8. Message complexity of distributed tépguery.

We implement our distributed top-query scheme on our
simulator since our interest is the message complexity.on&c
The rule of determining the message complexity is explained
as follows. 1. A single user query to a certdiR is counted as
one message unit. 2. The answer witbbjects from a certain
IP is counted ask message units since the message lengthCommunication Reliability In the course of running our
grows ask increases. We run the simulations for three differexperiments, we observed that dropped messages has larger
gueries with two, three and four query terms, respectivelffect on performance than originally expected. Dropped-me
We first randomly distribute the objects into eighPs, then sages resulted in occasional objects that suddenly diaappe
run the query and count the message numbers. We repeat &@mid reappear at a different location. This occurs whed 2an
procedure for 100 times for each simulation and calculate thas deleted a leaving object, but the nEf¥does not detect the
average message count values. For the comparison purposeying object due to packet loss during beacon sending and
we also implement the naive tdpquery scheme. Note therereply. This suggest that a reliable communication mechanis
is no change in message complexity of naive scheme givaight be useful.
variant object distribution and query term numbers. System Scalability. Our Snoogle design utilizes one

The simulation results are shown in Fig. 8. As we can seE,ey! P to manage all thd Ps. In practice, multipléSey Ps
the performance of naive scheme is significantly worse thaan be deployed for scalability. For example, in an office com
that of our distributed tog- query scheme. Wheh increases plex consisting of several buildings, each building canehigs/
by one, the naive scheme needsmore messages (here = own KeylP. Since Keyl Ps are resource rich devices, less
8). Comparatively, the number of extra messages required fmmnstraints are placed on techniques for information exgba
our top# query is much less tham. As the result, wherk Another concern for scalability is that a singl® is insuf-
increases to eight, the naive scheme costs 72 messages, Witiient when there are too many objects. AR in Snoogle
our top+« query only needs 32 messages on average. The figuses4 bytes of flash memory to store each descriptive term.
also shows that the number of query terms has no significagsuming that an object can be described ®itherms, an/ P
impact on the performance of the distributed topuery, the with 1MB flash can support over0000 objects, a relatively
performance of two, three and four term query is very closarge number. For applications which involve extremelygéar
to each other. number of objects, a more powerfliP can be used.

VI. SYSTEM LIMITATIONS

Mobility Support. While Snoogle supports the search focommunication costs by employing compressed Bloom filter
a mobile object, it does not track a moving object in rean sensor data, while maintaining low rates of false pasitiv
time. Due to the power constraints in boft’s and object We also introduced a flexible security method using public
sensors, Snoogle cannot afford very frequent beacon or tinkey cryptography that protects user privacy. Our current im
mechanism so that adP may not immediately detect aplementation incurs a five second latency. Currently we are
moving object in its neighborhood. Therefore, a snapshot wbrking on different techniques to further reduce the layen
the system view does not necessarily give accurate moviitg security.
object locations. However, once the object stops at a certai
place for a certain amount of time (e.g., a beacon cycle), the ACKNOWLEDGMENTS
I P at that location will Capture the Object and updﬁ[eyjp The authors would like to thank all the reviewers for their

with the new indexed items. Obviously, a large number dfelpful comments. This project was supported in part by US
moving Objects will trigger many index updates fran®’s to National Science Foundation award CCF-0514985 and CNS-

the Keyl P, which may cause much battery drain and could721443.
be a concern of théP life-cycle. We currently assume there
are limited moving objects in the system and reserveltRe

[1] B. H. Bloom, “Space/time trade-offs in hash coding withoawable

power management in our future work. errors,” in Communications of the ACM, 13(7):422-426, 1970.
VII. RELATED WORK [2] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary caghscalable

. P : . wide-area web cache sharing protocol.”"SftGCOMM 1998.
Effective methods for retrieving data has been studied ip, - Mitzenmacher, “Compressed bloom filters.” Proc. of the 20th

sensor networks [11], [12]. However, searching in sensor Annua ACM Symposium on Principles of Distributed Computing, 2001.
networks are primarily restricted to numeric data, and hav#] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. Karg and

not been expanded to handle textual data. :31 Ih;'?ggS On the feasibility of peer-to-peer web indexiagd search,

Indoor localization research shares similarities with@me [5] J. c. French, A. L. Powell, J. P. Callan, C. L. Viles, T. EftmK. J.
in that sensors are attached to mobile objects [13], [14].[1 Prey, and Y. Mou, “Comparing the performance of databasecteh
However, most localization research is focused on alloveing ., 290'ithms," inResearch and Development in Information Retrieval.

. . _ . . fG] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, f@aring
sensor to determine its location. One exception is MAX [16] ~ elliptic curve cryptography and rsa on 8-bit cpus,"GHES, 2004.

which extends the localization idea to finding objects. In7] A. Liu and P. Ning, “TinyECC: Elliptic curve cryptographfor sensor

. . . networks,” 2005.
MAX, a user can query for a particular object attached wit 8] H.Wang and Q. Li, “Efficient Implementation of Public K&ryptosys-

a sensor through an interface and receive hints on where thé tems on Mote Sensors (Short Paper),”litternational Conference on
object can be found, i.e. “top shelf on third room”. However, Information and Communication Security (ICICS), LNCS 4307, Raleigh,

: - : - NC, Dec. 2006, pp. 519-528.
the search functions in MAX is more akin to thgrep (o \\ ivang. B. Sh‘é‘;g’ C. C. Tan, and Q. Li, ‘WM-ECC: an Elipt

function, determining the presence or absence on a sensor in -~ curve Cryptography Suite on Sensor Motes,” College of fifli and
particular location. The user in general has to know in adgan ~ Mary, Computer Science, Williamsburg, VA, Tech. Rep. WM-287-
what he is looking for, e.g. “my cellphone”. Searching i('}lo 11, 2007,

ge

X N N i B. J. Jansen, A. Spink, J. Bateman, and T. Saracevical‘Hée
Snoogle is different since a user can discover new knowle information retrieval: a study of user queries on the wé&hGIR Forum

by searching using some general terms and obtain a ranked 1998.

. e ; ; : [11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and Wnigp“TinyDB:
list of related matches. This is done by adopting infornmatid an acquisitional query processing system for sensor nksJoACM

retrieval research into sensor network. In addition, theeigty Trans. Database Syst., 2005.
system proposed in MAX does not provide a fine-grained afi¢] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards senatabase
flexible access control systems,” inMDM 2001: Proceedings of the Second International
. ’ . . Conference on Mobile Data Management. ~ London, UK: Springer-
The architecture for ouf P follows improvements in low Verlag, 2001, pp. 3-14.
level flash storage. One early work by [17] introduced @3] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The acthadge

: f ; e location system,” Tech. Rep., 1992.
file system especially tailored for sensors, providing ccm]m[]M] A. Harter. A. Hopper, P. Steggles, A. Ward, and P. Websiehe

file system primitives like append, delete and rename. While " anatomy of a context-aware application,” Mobile Computing and
a sensor file system can perform the functionalities of our Networking.

: : : :] N. Priyantha, A. Chakraborty, and H. Balakrishnan, &Tlericket
1P, our I P architecture emphasizes good indexing and qu location-support System " iivViobiCom 2000,

response time and not file system functionalities. In trggiré, [16] K.-K. Yap, V. Srinivasan, and M. Motani, “MAX: human-ngic search
our I P architecture is closer to MicroHash [18] which focuses of the physical world,” inSensys 2005.

;L : ; : ; e [17] H. Dai, M. Neufeld, and R. Han, “ELF: an efficient log+sttured flash
on efficient indexing of numeric data. Our architectureatf file system for micro sensor nodes.” SinSys 2004,

from MicroHash in that we allow indexing of arbitrary kindsjig] p. zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunolms, and W. A.
of terms, not just numeric ones, and we adopt information Najjar, “MicroHash: An efficient index structure for flaskded sensor

- . : devices.” inFAST 05.
retrieval algorlthms to reply to queries. Recent work by] [1%19] C. C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch: Earsh
can also be considered for diP. a world in a grain of sand,” inthe Sxth International Conference on

Pervasive Computing, 2008.

REFERENCES

VIII. CONCLUSION

In this paper, we presented Snoogle, an information re-
trieval system built on sensor networks. Our system reduces

