
Neuron Manifold Distillation for Edge Deep
Learning

Zeyi Tao, Qi Xia, Qun Li

Department of Computer Science
William & Mary

Williamsburg, Virginia 23185
Email: {ztao, qxia01}@email.wm.edu, liqun@cs.wm.edu

Abstract—Although deep neural networks show their extraor-
dinary power in various object detection tasks, it is very challeng-
ing for them to be deployed on resource constrained devices or
embedded systems due to their high computational cost. Efforts
such as model partition, pruning or quantization have been used
at an expense of accuracy loss. Recently proposed knowledge
distillation (KD) aims at transferring model knowledge from
a well-trained model (teacher) to a smaller and faster model
(student), which can significantly reduce the computational cost,
memory usage, and prolong the battery lifetime. In this work,
we propose a novel neuron manifold distillation (NMD), where
the student models not only imitate teacher’s output activations,
but also learn the feature geometry structure of the teacher.
Our approach produces a high-quality, compact, and lightweight
student model. We conduct comprehensive experiments with
different distillation configurations over multiple datasets, and
the proposed method demonstrates a consistent improvement in
accuracy-speed trade-offs for the distilled model.

Index Terms—Cloud Computing, Edge Computing, Machine
Learning, Manifold Learning, Dimension Reduction

I. INTRODUCTION

Recently, deep neural networks (DNNs) [1] have achieved
state-of-the-art accuracy on many tasks ranging from computer
vision to natural language processing. In particular, the success
of object detection via deep convolutional neural networks has
spawned many exciting applications, such as augmented real-
ity, autopilot, and mobile shopping, on various mobile devices.
The advances in machine learning have heavily relied on very
deep network architectures or their ensembles. Therefore it
makes them very hard to be deployed on resource constrained
devices due to the high demand of computational power and
battery supply.

To address the above issue, people usually deploy the DNNs
on the Cloud or on the edge [2]. When users run machine
learning (ML) based applications on mobile devices, a lot
of raw data, such as images and personal information, will
have to be delivered to the Cloud where powerful learning
models reside. As a consequence, transmitting a large amount
of data may cause network congestion and data plan waste. On
the other hand, time-sensitive applications such as autopilot,
AR games and control sensors, demand fast responses from
the server. Network delay and cloud server outages, however,
may result in significant quality of service (QoS) degradation.

Hence, practitioners face the dilemma of processing massive
data in a local environment or sending it to a cloud server.

In order to address the issue of DNNs deployability, many
approaches have been proposed. They can be roughly cate-
gorized into three types: deep neural network partition, model
pruning and quantization, and knowledge distillation. By parti-
tioning models [3]–[8] or providing infrastructure that supports
model layer sharing [9], we can benefit from executing the
learning mode in parallel on different devices. Slicing the
large DNNs across the edge of the cloud, the application
pipeline becomes extended by breaking up the model layer
which provides more flexibility in placement. However, how
to discover the optimal model partition strategy and deal with
the trade-off between runtime and large training meta-data
transmission time becomes a major issue of this approach.

Network pruning [10]–[12] iteratively prunes model by
removing neurons or weights that are less important to ensure
the model does not have significant loss in accuracy. Parameter
quantization [13]–[15] decreases the representation precision
of weights to reduce computation costs and memory usages to
accelerate the DNNs. In addition, to accelerate convolutional
layers in DNNs, [16] and [17] use low-rank decomposition
of the convolutional kernel. However, most of the techniques
mentioned above are very hard to apply to the cloud-based
ML applications because of two reasons. First, cloud-based
ML applications are usually running on many different devices
and embedding systems. In order to fit the model into different
devices, it requires lots of effort on finding appropriate sub-
models via network pruning which is very inefficient. Second,
pruned or quantized models usually can not be reused for
model training when feeding new data. In addition, even if we
could run models on local devices, the model inference speed
is also a well-known bottleneck for many such applications.
In this paper, we focus on knowledge distillation to reduce the
model size so that the model can be run on mobile devices
efficiently. Knowledge distillation [18] is a promising approach
to overcoming the problem of DNNs deployment. The conven-
tional knowledge distillation uses a student-teacher paradigm
in transferring the knowledge from a deeper and wider network
(teacher) to a shallow and fast network (student). Fig. 1.(a)

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

Teacher
M
odel

Student
M
odel

Output Activation

Output Activation

T(x)

S(x)

0 1 2 3 4 5 6 7 8 9

One-hot Lable

D
is

til
la

tio
n

Lo
ss

Tr
ai

ni
ng

 L
os

s

K
no

w
le
dg

e
D
is
til
la
tio

n

Distilled Model

(a) (b)

Fig. 1. (a) Conventional knowledge distillation. The well-trained state-of-the-art teacher model (deeper and wider) displays in blue color and the distilled
student model displays in cream-coloured. Given an input data (handwriting 5), we train the student model via knowledge distillation by two losses. First is
soft loss where we minimize the difference of student activation and teacher activation. This is also known as student mimic. The second is hard loss where
we compare the prediction result with a one-hot label. (b): Cloud-based machine learning with knowledge distillation. Portable distilled models from the cloud
are deployed on the various end devices.

illustrates a typical knowledge distillation process. The insight
of knowledge distillation is that the student network keeps
mimicking the output distribution of the teacher model, and
thus students acquire information encoded in the teacher’s
classifiers to achieve the same prediction results.

In our machine learning design, as shown in the Fig. 1.(b)
(Fig. 3 for more details), the state-of-the-art models (teacher
model) are trained in the cloud or on the edge servers, e.g.,
through distributed training [19]–[21]. Through the knowledge
distillation, we produce various student models that fit for
different kinds of environments. We also call student models
as pre-trained student models because they are trained by
knowledge distillation. These pre-trained student models are
delivered and deployed on mobile devices for different tasks.
The pre-trained student model is adapted to the running envi-
ronment and we can re-train it with new data locally. Users,
therefore, can safely execute their private tasks on devices and
update the local model. A perfect knowledge distillation would
enable us to seamlessly transform the knowledge from one
neural network to another, while preserving the high accuracy
and generalization ability.

In this paper, we propose a novel knowledge distillation
method to improve the accuracy of distilled models such that
we can execute machine learning tasks on mobile devices
with low computational cost. To this end, we combine the
knowledge distillation with edge-cloud framework and use the
method of local feature geometric extraction to build our end-
to-end trainable framework for cloud-based machine learning
applications. In knowledge distillation, through extracting fea-
ture geometric information, we can easily deploy lightweight
learning models on resource constrained mobile devices. A
key concept in our proposed knowledge distillation method
is feature manifold. The feature manifold is a feature space
representation but is represented in a low-dimensional space.
We use a feature manifold to describe all key characteristics
in the feature space. Compared with the traditional dimen-

sion reduction methods, feature manifold preserves structural
relation in between features. In other words, we can use the
feature manifold to recover the feature space when giving a
relatively small number of feature points. In our proposed
knowledge distillation method, closely matching teacher’s
feature manifolds with those of students means that they have
an agreement in feature extraction from both numerical and
relational perspectives.

Our approach has two advantages. First, our distillation
method uses merely a small fraction of features to mini-
mize the difference between teacher and student models. The
reduction in the computational costs allows us to generate
distilled models efficiently. The overhead that is introduced
by feature manifold approximation is negligible. Because we
use a simple but efficient method called feature tangent space
to construct the low-dimensional manifold from a series of
neighboring feature points so that we can preserve the local
geometric information. Second, since our proposed distillation
method using a feature manifold which can preserve both
numerical and geometric information, our distilled model has
been proved by our experiments that it achieves high accuracy
and better generalization ability on distilled student models. In
summary, the contributions of this paper are in threefold:

• We propose an end-to-end trainable framework for cloud-
based machine learning applications that is running on
resource constrained mobile devices. To the best of our
knowledge, this is the first demonstration of knowledge
distillation for an edge-cloud environment.

• We propose a new knowledge distillation method that
effectively addresses the problem of deep neural network
deployment. In particular, our proposed method shows
advantages in the computation and communication effi-
ciency, flexibility, portability and security.

• Our proposed method allows the distilled model to be
executed on resource constrained devices where it retains
high accuracy as the state-of-the-art models. The over-

head in the distillation process is low.

II. RELATED WORK

In recent years, extensive works have been proposed to
explore the knowledge distillation methods. The key to under-
stand knowledge distillation is understanding how to properly
define the knowledge in the student-teacher paradigm shown
in Fig. 1.(a). The existing efforts can be broadly categorized
into three types, each of which is described below.
Soft knowledge was first proposed by [18]. Because of
their extraordinary pioneering work, knowledge distillation
becomes more and more popular. The key insight in this
work is that the network knowledge is defined as soft outputs
(soften activation) of the teacher network. The one-hot hard
label projects the samples of each class into a single point in
the label space, while the soft activations project the samples
into a continuous distribution, Student networks mimic teacher
soft activations distribution as their learning outcomes. In
other words, given an input, students and teachers have an
agreement on input-output mapping which indicates that they
have the same ability to classify. A similar work by [22]
uses a perturbation logist to create a multiple teachers dis-
tillation environment. By using noise-based regularizers in the
experiment, they show the reduction of intra-class variation.
They claim that a proper noise level can help the student to
achieve better performance. However, the drawback of using
soft knowledge is also obvious, that is soft knowledge only
fits for classification tasks and is limited by the number of
classes. For example, in a binary classification problem, soft
knowledge is barely helpful in improving the performance.
Model feature knowledge is proposed to help the knowledge
distillation to use more useful information other than soft acti-
vations. DNNs extract the sample features via operational lay-
ers such as convolutional layer, ReLU, or residual block [23] in
ResNet. Researchers want to utilize these intermediate features
to improve the performance of distilled models. FitNet [24]
forces students to mimic the full features from the teacher
model. However, the depth of the student network is the same
as the teacher network because they think the deep networks
are more accurate than the shallow one when it is given with
the same parameter budget. Later, there is evidence that FitNet
may adversely affect the performance and convergence [25].
Then [26] proposed Attention Transfer (AT) by defining the
network knowledge as a spatial attention map of input images.
In a deep network, the size of attention map is determined by
the number of neurons. Therefore, during the distillation, the
student model mimics the teacher attention map point-wisely.
To reduce the computational cost, they introduce an activation-
based mapping function which compresses a 3D tensor to a
2D spatial attention map. A similar work applied in the vision
field is proposed by [27], they call their knowledge as Flow
of Solution Procedure (FSP) which distills the Gram matrix
of features. Their approach is also inefficient in computation.
Jacobian knowledge This approach has been explored
by [28]. In this work, authors describe the neural network
as a nonlinear function. Based on this, the distillation process

can be regarded as matching the Jacobians of two networks
by using first-order approximation of the neural network.
Our proposed knowledge distillation method is inspired by
another Jacobian knowledge variation [29]. We use local affine
space to approximately obtain Jacobian knowledge residing in
nonlinear feature manifolds.

III. KNOWLEDGE DISTILLATION

In this section, we will give an introduction to the main
idea of knowledge distillation followed by a discussion to the
issues with knowledge distillation and a possible solution.

A. The Main Idea of Knowledge Distillation

The conventional use of knowledge distillation is training
a shallow student network from a large teacher ensembles.
The teacher model activations are used to guide the training
process. Suppose we have dataset {xi, yi} ∈ X × Y, i =
1, 2, · · · , n where xi ∈ X is the i-th input image and yi ∈ Y
is its class label. Let T (·) to be the teacher model, and let
pti = softmax(zit) to be its class probability where zti is the
output logit for i-th image in the teacher model. Similarly,
we also define S(·) as a student model with class probability
psi = softmax(zsi) where zsi is the output logit for i-th image
in the student model. The student network S is trained to
optimize the following loss function:

LKD =
∑
i∈[n]

αLhard(psi , yi) + (1− α)Lsoft(p
s
i , p

t
i) (1)

where Lhard is the hard loss by using ground truth labels, and
Lsoft is the soft loss by using teacher activations and α is
the hyper-parameter to balance the hard and soft losses. For
example, in the original work of Hinton [18], when set α =
0 and uses Kullback-Leibler divergence for Lsoft, they use a
soft activations (softmax(T (xi)

t)) to distill the knowledge from
teacher model T to the student model S as

LKD =
∑
xi∈X

KL(softmax(
T (xi)

t
), softmax(

S(xi)

t
)) (2)

the temperature t aims to produce a soft probability distribu-
tion over classes. In this setting, the knowledge is transferred
to the distilled student model by using a soft target distribution.
Notice that the temperature is only used during the training
phase. After that, the temperature will set to be 1 for inference.

Through knowledge distillation, we receive a shallow stu-
dent network who has the same ability as teacher network
but it can run learning tasks in portable devices. Although
it seems to meet our requirements that the distilled model
could fit for running on an embedded system, in fact, it has
been shown that the distilled model suffers from accuracy
loss and poor generalization ability. The major reason for
that is due to an inappropriate knowledge selection. Properly
choosing the knowledge to distill can significantly improve the
model performance. In Section IV.B, we theoretically reveal
the underlying principle of knowledge distillation with model
features.

C
on

v

FCBN R
el

u

#5 Basic Block #5 Basic Block #5 Basic Block

D
is

til
la

tio
n

Lo
ss

L2 Loss

C
on

v

R
el

u

BN FC#2 Basic Block #2 Basic Block #2 Basic Block

C
on

v

C
on

v

BN R
el

u

BN

Basic Block

L2 Loss L2 Loss

Feature Manifold

Teacher: ResNet32

Student: ResNet14

Fig. 2. Overview of our proposed method. Teacher network in light blue is a standard deep Residual Network [23](ResNet32). The student network in cream-
colour is a shallow network (ResNet14). Deep neural networks do not benefit from stacking more hidden layers because of vanishing gradient problems.
However, ResNet can overcome this problem by introducing identity shortcut. Given a input image, we distill the knowledge block-wisely. We optimize the
feature manifold loss for each basic block.

B. Issues with Knowledge Distillation

Modern over-parameterized deep learning models have the
ability to extract millions of features from the input data so
that it dramatically increases their performance. These features
are encoded in the different layers such as convolution layers
or activation layers. They are always presented in a high-
dimensional feature space.

In conventional knowledge distillation, the student models
do not benefit from the features in the teacher model because
they only use the information encoded in the teacher’s output
activations. Instead, people started to investigate feature based
knowledge distillation to better use the features in the teacher
model. For example, attention transfer extracts the model
knowledge from multiple teacher features and then compresses
these features into a small compact cubes called attention map.
Although feature based approaches outperform conventional
knowledge distillation, they have two major drawbacks. First,
feature based methods force student model to generate the
same features as in the teacher model. However, such features
usually lie in a very high dimensional space. Minimizing
the difference between the features of student and teacher
is inefficient and time consuming. Second, learning teacher
features can be regarded as conducting a very strong and
strict regularization for student models [30]. Learning a student
model heavily based on the features in a teacher’s model will
lead to model overfitting and thus poor generalization. There-
fore, it is very important to decide what appropriate features
to include for training the student model, and determine the
parameters for regularization. Moreover, conventional knowl-
edge distillation and feature based knowledge distillation, such
as attention transfer, do not preserve the information that lies
in the local geometric structure in the feature space. Here, the
local geometric structure refers to the different intra-features

that have relation to or in contrast with other features in a
system of representations.

Suppose the high-dimensional features lie close to a low-
dimensional nonlinear manifold (feature manifold). Inspired
by Whye et al. [31] and Zhang et al. [32], we could use
local tangent space to approximate a low-dimensional feature
manifold. The tangent space we used is constructed from a
series of neighborhood feature points which can preserve the
local geometric information of the nonlinear manifold. The
feature manifold plays a very crucial role in our proposed
method because the feature manifold not only has all key
characteristics to recover the entire feature space, but also
reveals the structural relation among all features. In the process
of knowledge distillation, closely matching a teacher feature
manifolds with that of a student indicates they have an
agreement in feature extraction. In other words, both models
have the same output based on the same input data. In this way,
we can obtain a smaller compact student model. Compared to
feature-based distilled models, our method learns knowledge
more efficiently with the same amount of training time and
resources. It is not trivial to discover the structure of the
manifold from a set of features sampled from neural networks
possibly with noise. We will elaborate our approach in the
next section.

IV. NEURON FEATURE MANIFOLD DISTILLATION

In this section, we will introduce our proposed knowledge
distillation method. Neuron manifold distillation (NMD) fo-
cuses on transferring both numerical and structural knowl-
edge by using low dimensional feature manifolds in the
teacher network. As mentioned before, conventional knowl-
edge distillation is only focusing on mimicking teacher output
distributions. As a consequence, those methods show high
training accuracy but may fail on the test data where the poor

generalization ability occurs. On the other hand, for feature
based methods, distilling compact representations from teacher
features is not enough. The valuable knowledge resides in
infinitely many data structures and should not be neglected. We
combine the method of local feature geometric extraction and
knowledge distillation and propose NMD to distill a flexible,
portable and computation efficient model.

Fig. 2 illustrates the complete architecture of our proposed
method. We extract the features generated by basic block in
ResNet to guide student training. However, unlike method of
attention transfer or flow of solution procedure, we do not use
full features for distillation. We use feature manifold, a low-
dimensional feature representation, to distill the knowledge
from teacher to student network. How can we find a proper
representation which can not only characterize the feature
space but also carry on structural feature relations becomes a
key challenge of our work. To this end, constructing a feature
manifold becomes to our solution. By gathering both teacher
features Ft and student features Fs, we first compute their
feature manifolds by using manifold extraction function ψ(·).
Then we minimize the l2 distance of the feature manifold
as ||ψ(f ti) − ψ(fsi)||22 for each feature, where f ti ∈ Ft and
fsi ∈ Fs. The optimization problem can be formulated as

LKD =αLhard(ps, y) + γLsoft(ps, pt)

+
∑

ft
i∈Ft,fs

i ∈Fs,

βi||ψ(f ti)− ψ(fsi)||22 (3)

where α, βi, γ are hyper-parameters that control the weight
of each component. As discussed before, comparing all the
features f ti and fsi in the loss function requires much com-
putation. To address the problem, we intend to use a feature
manifold generation function ψ(·) to map the feature space
to lower dimensional space so that the comparison of the
features in the teacher model and student model can be much
more efficient. The choices of hyper-parameter βi are very
important. For lower level features, we choose bigger β value,
in contrast, for deeper level features, we choose smaller β
value. In the next section, we carefully explain how to extract
the feature geometric information from a given feature space
as a feature manifold.

A. Feature Manifold Extraction

We assume there is a d-dimension manifold M ⊂ Rd is
embedded in a m-dimension space Rm such that m� d. we
define a construction function h(·) as

h :M⊂ Rd → Rm (4)

Here, the construction function h(·) will produce a high
dimension vector from a low dimension space. Suppose we
have deep learning feature space F is a subset of Rm such
that F ⊂ Rm. Given N learning features, the feature set F
is F = [f1, f2, · · · , fN]. For each fi ∈ Rm and i ∈ [N], we
have feature construction function hf (·) as

fi = hf (vi) + εi, i = 1, · · · , N (5)

where vi is the feature manifold for i-th feature fi and εi is
error. We would like to represent the learning feature fi by
using a low-dimension vector vi. In the following we show
how to find such a low dimension manifold representation vi
for feature fi.

Next, we start by showing the linear feature manifold
approximation to give some intuition first and then explain
the method for a realistic non-linear approximation.

In the construction of linear feature manifold (which is not
always the case), we assume the feature are constructed by a
d-dimensional affine subspace, i.e.,

fi = c+Avi + εi, i = 1, · · · , N (6)

where c ∈ Rm, vi ∈ Rd and εi ∈ Rm is error. A ∈ Rm×d

is a matrix forms an orthonormal basis of the affine subspace.
In matrix form, we have:

F = ce> +AV + E (7)

where F = [f1, f2, · · · , fN], V = [v1, v2, · · · , vN], E =
[ε1, ε2, · · · , εN] and e is an N -dimensional column vector
of all ones. Therefore, Equation 7 forms our linear feature
manifold construction function. Our goal is going to find c, A
and V to minimize the error E, i.e.,

arg min
c,A,V

||E||22 = arg min
c,A,V

||F − (ce> +AV)||22 (8)

where || · ||2 is the Frobenius norm. Optimization problem
in Equation 8 can be solved by singular value decomposition
(SVD) [31]. Letting c = f̄ = Fe/N to be the mean of F , the
optimal solution of low-rank matrix AV is computed by the
SVD of F − f̄ e>, i.e.,

F − f̄ e> = UΣQ> (9)

We can set Σd = diag(σ1, σ2, · · · , σd) of the d largest singular
values of F − f̄ eT such that σd � σd+1, and Ud, Qd are the
matrices of the corresponding left and right singular matrix
respectively such that AV = UdΣdV

>
d . Remember our goal

is to find the low-dimension representation vi ∈ V by given
its corresponding feature fi. Since the optimal A is given by
Ud, we have the close form solution of construction function
hf as

hf (V) = f̄ e> + UdV
> (10)

and low-dimension representation V as

V = diag(σ1, σ2, · · · , σd)Q>d (11)

However, in deep learning feature space, things are more
complicated and discovering the nonlinear manifolds is chal-
lenging. There are evidences from [33] showing that the
traditional dimension reduction techniques such as PCA or
multidimensional scaling (MDS) fail to identify the underlying
structure of data points. In other words, the result from
Equation 11 does not hold for non-linear feature space where
the V is unable to preserve the structural information in low
dimension space. We will use an approach inspired by [32]
and [33] to find the learning feature manifold.

K
no

w
le

dg
e

D
is

til
la

tio
n

Edge Server

Model Delivery

local training

Prediction

Cloud Fog/Edge mobile devices User Interface

Prediction Model Request

Fig. 3. Knowledge distillation based machine learning on cloud. Pre-trained the-state-of-the-art deep networks deploy on the cloud server. The knowledge
distillation is running on the cloud server. The distilled models are sent to the edge server and they are ready to deliver to deploy on the edge devices. Users
can request for learning service by collecting the learning models from edge server. The local model can be privately trained with new data. If user would
like to share their data to improve the model, they could send the data to the cloud as well.

Let us assume the feature fi are presented as weighted
linear combinations of selected neighbor features (features
that are close to fi). Consider Equation 5 ignoring the noise
term. Assume that the function hf is smooth enough, using
first-order Taylor expansion at a fixed v, and define a small
neighbourhood with {||v̂ − v||2 < ε}, we have:

hf (v̂) = hf (v) +∇vhf (v)T (v̂ − v) +O(||v̂ − v||2) (12)

The Equation 12 is known as the local affine approximation
of the function hf (·) around the local neighbourhood. Let
∇vhf (v)T = Jh(v) to be the Jacobian matrix of hf at v
in Rm×d, we have

Jh(v) =

∂h
(1)/∂v(1) · · · ∂h(1)/∂v(1)

...
...

...
∂h(m)/∂v(1) · · · ∂h(m)/∂v(d)

where h(i) and v(i) indicate the i-th element of vector. We
omit hf and use h for convenience. We know that the tangent
space Kv of h at v is spanned by this d column Jacobian matrix
Jh(v) i.e., Kv = span(Jh(v)) which ensure the dimension of
v at most d. Now, we would like to use the following lemma
to illustrate how the local affine transformation can help us to
find the v.

Lemma 1. (Local Affine Transformation [32]) Assume that
V is a d-dimensional manifold in a m-dimensional space
with unknown generating function h(v) and v ∈ Rd, and
we are given a data set consists of N m-dimensional vectors
F = [f1, f2, · · · , fN] and fi ∈ Rm. The first-order Taylor
expansion of nosie-free model fi = h(vi) at a fixed vi has
Jacobi matrix Jh(vi). If the orthonormal basis Qv of tangent
space Kv = span(Jh(v)) exist such that Jh(v)(v−v̂) = Qvθv
where θv = Q>v (h(v̂)−h(v)). When the data point fi has form
of fi = F̄ +Qiθi, the corresponding low dimension vi can be
expressed as vi = v̄ + Piθi where Pi is unique affine matrix.

This lemma applies the local affine approximation from
high-dimensional space h(v) to a low-dimensional space v
by using Jacobian matrix. Similarly, we can utilize this result
to address our feature manifold approximation in a non-linear
feature space. We use same settings mentioned in the section
IV.B.

For each feature fi, let Nfi = [fi1, · · · , fik] be a matrix
such that fi1 = fi, fi2, · · · , fik are the top-k features in
{f1, f2, · · · , fN} that are closest to fi (including fi). Given
Qi, which are the left singular vectors of Nfi(I − 1

kee
>) and

Θi = [θi1, · · · , θik] where θij = Qi(fij − N̄fi), we can express
fij in the following form:

fij = N̄fi +Qiθ
i
j + εij (13)

According to the Lemma 1, we have

vij = V̄i + Piθ
i
j + εij (14)

where Vi = [vi1, vi2, · · · , vik] and Pi is a local affine trans-
formation with respect to the local geometry determined by
the θij . Now we proceed to solve for Pi and vij .
Let Ei = [εi1, · · · , εik]. Equation 14 can be expressed in the
following matrix form, i.e.,

Vi =
1

k
Viee

T + PiΘi + Ei (15)

To optimize the local construction error ||Ei||:

arg min
Vi,Pi

||Ei|| = arg min
Vi,Pi

||Vi(I −
1

k
ee>)− PiΘi||2 (16)

The optimal Pi can be founded

Pi = Vi(I −
1

k
ee>)Θ+

i (17)

where Θ+
i is the Moore-Penrose generalized inverse of Θi.

Now we have:

min ||E|| =
∑
i

||Vi(I −
1

k
ee>)(I −Θ+

i Θi)||2 (18)

Finally, our goal is to determine the optimal V in the low-
dimension space. Let Si be a 0-1 selection matrix such
that Vi = V Si and W = diag(W1, · · · ,WN) with Wi =
(I− 1

kee
>)(I−Θ+

i Θi). Recall that V = [v1, v2, · · · , vN]. The
standard solution of V in Equation is given by the eigenvectors
of the matrix B = SWW>S> where S = [S1, · · · , SN].
At this point, we can obtain the low dimensional nonlinear
feature manifold V as desired. In next section, we will explain
why this feature manifold is closely related to knowledge
distillation in the theory.

B. Local Affine Approximators of Neural Networks

In this section, we will answer the question that why it is
necessary to use teacher feature in knowledge distillation and
the question that how it relates to our feature manifold, we
recall the equation.1 in Section III,

Lkd = αLhard(ps, y) + (1− α)Lsoft(ps, pt)

We notice that the soft losses contain information about the
relationship between different classes as discovered by teacher.
By learning from soft losses, the student network inherits such
dark knowledge. To see how does the knowledge distillation
relate to our local affine approximation, we define a multi-
layer teacher neural network T : Rinput → Routput:

T = t1(t2(· · · (tl))) and tl(x) =

pl∑
i=1

al,iφl(〈wl, x〉+ bl) (19)

where φl is lth operation layer such as ReLU activation, wl

is the hidden weight, bl is the bias vector, and al,i is the
output weight vector, and pl indicates the number of hidden
neurons. To simplify the analysis, we assume the lth layer of
teacher network extracts the corresponding feature according
to tl(al−1) = f where al−1 is the activations from layer l−1.
We know the l-th layer feature has a construction function
hf (v) + ε with the respect to low dimensional feature space
of V . Then we have following result.

Theorem 2. (Local Affine Equivalence Theorem) Consider the
squared error cost function for matching soft targets of two
neural networks at lth layer with p features, given by

Lsoft(Ttl(x),Stl(x)) =

p∑
i=1

(T i
tl

(x)− Sitl(x)))2

where x is the activations from layer l − 1. and ξ is noise.
Let ft = Ttl(x) and fs = Stl(x), the ft, fs ∈ F are the
features in feature space F which are generated by Ttl and Stl ,
respectively. Then matching soft targets of two neural networks
is equivalent to match their feature manifold where

E[

p∑
i=1

(T itl(x+ ξ)− Sitl(x+ ξ))2] =

p∑
i=1

(T itl(x)− S
i
tl(x))

2

+ σ2E[

p∑
i=1

(∇xhit(v)−∇xhis(v))2] +O(ρ4)
(20)

where ∇xh
i
t(v) is the Jacobian matrix of ht at v.

Proof. To prove this, we recall Section IV.B, the feature mani-
folds are given by two construction function where Ttl = ht(v̂)

and Stl(x + ξ) = hs(v̂) where ξ is small noise. Using first-
order Taylor expansion at a fixed v, and a small neighbourhood
with {||v̂ − v||2 < ρ} and ρ is small, we have

E[

p∑
i=1

(T itl(x+ ξ)− Sitl(x+ ξ))2] = E[

p∑
i=1

(hit(v̂)− his(v̂))2]

=Eρ[

p∑
i=1

(hit(v) +∇vhit(v)ρ− his(v)−∇vhis(v)ρ))2] +O(ρ4)

=

p∑
i=1

(hit(v)− his(v))2 + Eρ[

p∑
i=1

ρ2(∇xhit(v)−∇xhis(v))2]

=

p∑
i=1

(T itl(x)− S
i
tl(x))

2 + ρ2E[

p∑
i=1

(∇xhit(v)−∇xhis(v))2]

We omit O(ρ4) at third and last row.

We notice that the loss function has two components.
The first term indicates the conventional loss of knowledge
distillation on samples from both teacher and student. And the
second regularizer term represents the difference of local affine
approximation of the given networks. The final error terms are
small for small ρ and can be ignored. From the observation in
Theorem.2, we can conclude that it is ill-considered practice
for conventional knowledge distillation that it only transfers
the raw CNN activation outputs point-wisely to their offspring
model. For a complete knowledge distillation method, transfer
of the underlying knowledge residing in the infinitely many
data points nearby is also obligatory. Now, back to our topic
in Section IV.B, our feature manifold can be regarded as a
highly compressed abstraction extracted from feature local
affine space, which can preserve the greatest level of feature
geometric information by using local tangent space.

V. KD BASED MACHINE LEARNING ON CLOUD

Our cloud-based machine learning framework with the help
of model knowledge distillation is shown in Fig. 3. Through
knowledge distillation, cloud sends and stores the distilled
model on the edge server in advance. When we initiate a
machine learning request, if the mobile device already down-
loads the model, it can start the task immediately and quickly
response to users. If the local device does not have a required
model, it will generate a request according to its environmental
information to the proximal edge server [34] and prepare to
receive the corresponding distilled model. However, in case
of outdated models which have low confidence in prediction,
users can still upload the task data to the cloud to have correct
results (shown in red line and green dash line). In our design,
clouds can generate different intensity distilled models. In
other words, different quality & size models stored in edge
servers can meet the different requirements of various level
tasks. It is worthy to mention that the distilled model can also
be trained in a private environment (shown in blue dot line).

Ideally, once the mobile devices acquire the distilled model,
all the computation and data motion will occur in an in-
dependent environment that turns out to be communication
and computation efficient. In addition, running flexible and

TABLE I
THE PERFORMANCE OF DIFFERENT DISTILLATION METHODS

TCH/STD Model KD Method top-1 Acc. top-5 Acc.

ResNet 50/ResNet 14

KD (baseline) 63.4% 90.3%
AT [26] 72.2% 93.3%
Gram matrix [27] 66.1% 85.7%
NMD (this paper) 73.9% 92.1%

VGG 19/VGG 19

KD (baseline) 62.1% 83.4&
AT [26] 71.3% 90.8%
Gram matrix [27] 66.5% 89.4%
NMD (this paper) 72.1% 91.2%

light-weight distilled models on mobile devices provides con-
venience for privacy concerns. In fact, users can reserve
the right to determine and upload the privacy data to the
cloud so that they can get high accuracy prediction results.
Meanwhile, distilled models can conduct self-reinforcement
(supervised learning) when meeting the new data. Last but not
the least, our framework can adapt rapid model updating or
maintenance. When cloud side models are updated, the newly
distilled model will be stored on an edge server for other nodes
downloading.

VI. EVALUATION

In this section, we evaluate the performance of our proposed
method on several metric learning tasks. We compare our
results with several state-of-the-art distillation methods. We
also deploy our distilled model on resource constrained devices
such as Raspberry Pi 4 Model B to evaluate the distilled model
performance. Our experiments show that the proposed method
achieves very promising performance improvement.

A. Experiment Setup

Environment To simulate the cloud-edge and mobile frame-
work, we use two experimental settings. Training teacher
networks and performing a series of knowledge distillations
are conducted on a lab server with 32Mb Memory and 4
GeForce GTX 1080ti GPUs. We use Raspberry Pi 4 Model
B with Quad core Cortex-A72 (ARM v8) Cup without a
graphic card installed as our mobile device. We implement
our model by Google TensorFlow 1.9 which can fully support
the Raspberry Pi.

Datasets and Deep neural networks The datasets we
use for image classification include CIFAR10, CIFAR100 and
ImageNet (ILSVRC2013). The CIFAR-10 and CIFAR-100
are labeled subsets of the 80 million 32x32 colour image
dataset. ImageNet consists of two parts, training data and
validation data. The training data contains 1000 categories and
1.2 million images and the validation and test data consists of
150,000 photographs, collected from flickr and other search
engines, hand labeled with the presence or absence of 1000
object categories. The training models we are using include
ResNe50, ResNet34, VGG16 and VGG19.

Training Settings In our experiments, the SGD with
momentum (SGDM) is adopted for knowledge distillation
where momentum value is set to be 0.9 and weight decay

TABLE II
DISTILLED MODELS WITH STATS

Model AlexNet Res18 Res34 Res50 Res101

Stats

para(M) 5 11 21 23 42
Memory 204 588 1280 1560 2640
GFLOPs 0.6 1.4 3.44 3.56 6.68
Time(min) 14 29 37 58 144

Acc.(%)

KD 82.4 89.2 90.2 89.1 91.2
AT - 90.3 90.0 91.1 88.9
AT+KD - 91.9 92.1 93.1 92.3
NMD 88.6 91.3 92.9 92.4 93.7

TABLE III
THE PERFORMANCE OF DISTILLED MODEL

TCH/STD Model KD Method Training Time Acc.

VGG 16/VGG 16

KD (baseline) 183 71.4&
AT [26] 235 72.1%
Gram matrix [27] 260 73.8%
NMD (this paper) 193 74.2%

is 0.0001. For conventional knowledge distillation [18], the
hyper-parameter t temperature is set to be 6. We train all
distilled model with 60 epochs.

B. The performance of NMD

We first evaluate the performance of NMD. We use a pre-
train ResNet50 model on ImageNet as a teacher network which
provides 75.2% top-1 accuracy and 92.2% top-5 accuracy as
reported in [35]. And we use ResNet14 as a student network.
The conventional knowledge distillation achieves 63.4% and
90.3% top-1 and top-5 accuracy respectively. Our proposed
method NMD achieves 73.9% and 92.1% top-1 and top-5
accuracy respectively. Compared to the attention transfer and
its variant which uses Gram Matrix, our proposed method
achieves the-state-of-the-art accuracy in the distilled model.

We also conduct experiments with VGG19 [36] on Ima-
geNet. We use two VGG19 networks where one network is
used as a teacher and the other used as a student network. This
type of knowledge distillation is called self-distillation. In this
experiment, we want to know whether the distillation can help
model with generalization or not? As shown in Table. I, our
proposed method achieves 72.1% on The experiments on self-
distillation also states the fact that properly distilled model
can have better generalization ability than teacher. We also
notice that, conventional knowledge and Garm matrix transfer
have relatively poor performance even worse than the original
model.

Further, we want to know how small the distilled model can
be. This is very important as smaller models are appealing to
mobile devices and can be fitted on their running environment.
We train CIFAR-100 on a very deep neural network ResNet
152 as our teacher network. The student networks include
ResNet101, ResNet50, ResNet34, ResNet18 and AlexNet. We
gradually reduce the number of layers in deep networks and
we collect the statistics data for each model showing in the

Teacher

Student

Fig. 4. Image query on distilled model

Table. II. Reducing the number of network layers means
reducing the number of parameters that the network uses.
Therefore the memory and GFLOPs decrease. We discover
that an over-parameterized deep neural network has sufficient
capacity to memorize training results, that is, AlexNet who
has only 5 Million parameters can still achieve high accuracy.
Another fact is when we reduce the DNNs layers, there is no
significant accuracy drop in the distilled model. NMD can be
applied on distilling to smaller models, for example, we only
use the last layer of AlexNet to match feature manifolds with
ResNet152, however, methods such as attention transfer can
not be applied.

Table. III illustrates the single batch training time of
knowledge distillation of different approaches. We use self-
distillation on two VGG16 networks. The training batch size
is fixed as 256. The conventional knowledge distillation does
not introduce any extra computation and therefore it uses the
shortest time as desired. Compared with other approaches,
NMD achieves 17 % to 25% speed up in training a single
batch. top-1 accuracy.

C. The performance of distilled model

To evaluate the performance of the distilled model, we
conduct an experiment in which we use a 7-layer LeNet
as a teacher network and we use a super shallow network
named Hinton-1200 [18] as a student network. We simulate
the machine learning task as handwritten digits recognition.
We train LeNet by the MNIST database, it has a training set
of 60,000 examples, and a test set of 10,000 examples, and all
digits are 28x28 images in greyscale. As shown in Fig. 4, the
input image on the left is a new query data, this image does
not present in either the train or test dataset. We retrieve the
top six prediction results from both teacher and student. Both
teacher and student give the correct answers. We can see that
the teacher can always return the most accurate predictions in
handwritten digits. However, when comparing teacher’s model
to the distilled model that solely uses teacher’s lower level
activations, we see the output ”5” (right most in the second
row) is distorted and looks similar to ”6”. It is also worth
mentioning that the outputs of the distilled network in the red
box have similar shape to the input image since NMD can
preserve the spatial relation of data.

VII. CONCLUSION

In this paper, we propose an end-to-end trainable frame-
work for cloud-based machine learning applications running
on resource constrained mobile devices. We also propose a

new knowledge distillation method that effectively addresses
the problem of deep neural network deployment. By using
this method, our trainable framework becomes more flexible,
portable and communication efficient. Finally, we shed light on
internal relations between knowledge distillation and feature
geometry structure information.

ACKNOWLEDGEMENTS

We thank all reviewers for their helpful comments. This
project was supported in part by US National Science Foun-
dation grant CNS-1816399. This work was also supported in
part by the Commonwealth Cyber Initiative, an investment
in the advancement of cyber R&D, innovation and workforce
development. For more information about CCI, visit cyberini-
tiative.org.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org

[2] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning
for edge computing: Research problems and solutions,” High-Confidence
Computing, 2021.

[3] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning from
differentially private neural activations with edge computing,” in 2018
IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp. 90–102.

[4] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1–14.

[5] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia,
“Optimizing deep cnn-based queries over video streams at
scale,” CoRR, vol. abs/1703.02529, 2017. [Online]. Available:
http://arxiv.org/abs/1703.02529

[6] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host partition-
ing of deep neural networks with feature space encoding for resource-
constrained internet-of-things platforms,” CoRR, vol. abs/1802.03835,
2018. [Online]. Available: http://arxiv.org/abs/1802.03835

[7] K.-J. Hsu, K. Bhardwaj, and A. Gavrilovska, “Couper: Dnn model
slicing for visual analytics containers at the edge,” SEC, 2019. [Online].
Available: http://acm-ieee-sec.org/2019/program.php

[8] Y. Mao, W. Hong, H. Wang, Q. Li, and S. Zhong, “Privacy-preserving
computation offloading for parallel deep neural networks training,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp.
1777–1788, 2021.

[9] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger,
“Mainstream: Dynamic stem-sharing for multi-tenant video processing,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 29–42. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/jiang

[10] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. N.
Choudhary, and S. Chang, “Fast neural networks with circulant
projections,” CoRR, vol. abs/1502.03436, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03436

[11] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” CoRR, vol. abs/1506.02626,
2015. [Online]. Available: http://arxiv.org/abs/1506.02626

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep
neural network,” CoRR, vol. abs/1602.01528, 2016. [Online]. Available:
http://arxiv.org/abs/1602.01528

[13] M. Courbariaux and Y. Bengio, “Binarynet: Training deep
neural networks with weights and activations constrained to +1
or -1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

[14] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and
Y. Chen, “Compressing neural networks with the hashing
trick,” CoRR, vol. abs/1504.04788, 2015. [Online]. Available:
http://arxiv.org/abs/1504.04788

[15] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing
deep convolutional networks using vector quantization,” CoRR, vol.
abs/1412.6115, 2014. [Online]. Available: http://arxiv.org/abs/1412.6115

[16] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” CoRR, vol. abs/1404.0736, 2014. [Online]. Available:
http://arxiv.org/abs/1404.0736

[17] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky, “Speeding-up convolutional neural networks using
fine-tuned cp-decomposition,” CVPR, 12 2014. [Online]. Available:
https://arxiv.org/abs/1412.6553

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv e-prints, p. arXiv:1503.02531, Mar 2015.

[19] Z. Tao and Q. Li, “eSGD: Communication efficient distributed deep
learning on the edge,” in USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18). Boston, MA: USENIX Association, July
2018.

[20] Q. Xia, Z. Tao, Z. Hao, and Q. Li, “FABA: An algorithm for fast
aggregation against byzantine attacks in distributed neural networks,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 4824–4830.

[21] Q. Xia, Z. Tao, and Q. Li, “Defenses against byzantine attacks in dis-
tributed deep neural networks,” IEEE Transactions on Network Science
and Engineering, 2021.

[22] B. B. Sau and V. N. Balasubramanian, “Deep model compression:
Distilling knowledge from noisy teachers,” CoRR, vol. abs/1610.09650,
2016. [Online]. Available: http://arxiv.org/abs/1610.09650

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[24] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” CoRR, vol. abs/1412.6550,
2014. [Online]. Available: http://arxiv.org/abs/1412.6550

[25] Z. Huang and N. Wang, “Like what you like: Knowledge distill via
neuron selectivity transfer,” arXiv preprint arXiv:1707.01219, 2017.

[26] S. Zagoruyko and N. Komodakis, “Paying more attention to
attention: Improving the performance of convolutional neural networks
via attention transfer,” CoRR, vol. abs/1612.03928, 2016. [Online].
Available: http://arxiv.org/abs/1612.03928

[27] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 7130–7138.

[28] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz,
and R. Pascanu, “Sobolev training for neural networks,”
CoRR, vol. abs/1706.04859, 2017. [Online]. Available:
http://arxiv.org/abs/1706.04859

[29] S. Srinivas and F. Fleuret, “Local affine approximations for
improving knowledge transfer,” Idiap, 2018. [Online]. Available:
http://infoscience.epfl.ch/record/256319

[30] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation:
A survey,” CoRR, vol. abs/2006.05525, 2020. [Online]. Available:
https://arxiv.org/abs/2006.05525

[31] Y. W. Teh and S. Roweis, “Automatic alignment of local
representations,” in Proceedings of the 15th International Conference
on Neural Information Processing Systems, ser. NIPS’02. Cambridge,
MA, USA: MIT Press, 2002, pp. 865–872. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2968618.2968726

[32] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimension
reduction via local tangent space alignment,” CoRR, vol. cs.LG/0212008,
2002. [Online]. Available: http://arxiv.org/abs/cs.LG/0212008

[33] S. T. Roweis and L. K. Saul, “Nonlinear dimensional-
ity reduction by locally linear embedding,” Science, vol.
290, no. 5500, pp. 2323–2326, 2000. [Online]. Available:
https://science.sciencemag.org/content/290/5500/2323

[34] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of
virtual machine management in edge computing,” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1482–1499, 2019.

[35] Tensorflow, “tensorflow pre-trained mod-
els,” Apr 2019. [Online]. Available:
https://github.com/tensorflow/models/tree/master/research/slim/Pretrained

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv 1409.1556, 09 2014.

