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I. INTRODUCTION

Object-tracking quality and network lifetime are two criti-
cal and conflicting objectives to object-tracking applications in
a sensor network. Full sensing coverage [3] is too restricted
and expensive to support long-time monitoring applications,
and provides little leverage to tune the object-tracking quality
and the battery power consumption. Recently, a relaxed sensing
coverage — probabilistic coverage where any point in a sens-
ing field is sensed with a certain probability at any time — was
proposed [1], [2], which is a more appropriate approach to bal-
ancing the object-tracking quality and the battery power con-
sumption.

Under probabilistic coverage, we present an analytical model
to investigate the object-tracking quality with respect to various
network conditions and sensor scheduling schemes. The an-
alytical model facilitates performance evaluation of a sensing
schedule, network deployment, and sensing scheduling proto-
col design. The contributions of our analytical model are three-
fold.
• First, together with simulation to evaluate performances of

different scheduling protocols, this analytical model can
give more solid and thorough understanding about various
protocols and provide insights into the pros and cons of
each protocol.

• Secondly, the analytical model helps to plan a sensor net-
work with certain object-tracking quality requirements and
battery power budget. The analytical model is flexible
enough to capture the interaction among the system pa-
rameters, object-tracking quality requirements, and net-
work energy limit.

• Thirdly, in sensing scheduling protocol design, aside from
determining the parameters for sensing scheduling proto-
cols, our analytical model can direct new protocol design.

We validate the correctness of our model through extensive
simulation experiments, and use this model to design schedul-
ing algorithms.

II. OBJECT TRACKING UNDER PROBABILISTIC COVERAGE

In this poster, we analyze the tracking quality and lifetime
with respect to the several network and scheduling parameters.
We define detection probability (DP) as the expected probabil-
ity that an object is detected in a certain observation time, and
stealth distance (SD) as the average distance an object travels
before it is detected for the first time. Taking the energy con-
straints into account, we define the system lifetime (LT) as the
elapsed working time from system startup to the time when the

TABLE I
SYSTEM MODELING PARAMETERS

System Parameter Definition
d density of sensors
R sensing radius of a sensor
v constant velocity of a motion object
P sensing period of sensors
f active ratio of sensors in P
ta observation interval

object-tracking quality requirement cannot be met for the first
time if nodes do not vary their sensing periods.

We assume that sensors are randomly and independently de-
ployed in a sensing field where a motion object passes through
along a straight line with a constant speed, and the size of mo-
tion object can be neglected. These system parameters of a sen-
sor network are summarized in Table I.

III. OBJECT-TRACKING QUALITY ANALYSIS

We consider two scheduling schemes, random sensing sched-
ule and synchronized sensing schedule. In a random sensing
schedule, a node independently and randomly chooses the start-
ing time of its active interval fP in P ; while in a synchronized
sensing schedule, all nodes start their active interval fP at the
same time in P . We examine the random schedule to show
how a sensing schedule in general affects the tracking quality
and lifetime, and investigate the synchronized schedule to show
how coordination among nodes affects the performance. Sup-
pose all nodes have the same initial energy capacity such that
they can continuously work for time T . It is easy to see that
under the two sensing schedules the lifetime is LT = T

f .

A. Random Sensing Analysis

1) Detection Probability: Consider a motion object that
travels the distance of [−vta2 , vta2 ] on x-axis during the obser-
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Fig. 1. The Active Area in Random Sensing Schedule.
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Fig. 2. DP under Random Schedule: Vary P
and f . The parameters are: d = 0.01, R = 8,
v = 1, and ta = 1.
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Fig. 3. SD under Random Schedule: Vary P
and f . The parameters are: d = 0.2,
R = 0.05, and v = 1.
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Fig. 4. DP Degradation with Time. The parameters
are: d = 0.2, R = 0.5, v = 5, ta = 2,
P = 1.1, f = 0.5, r = 3 and Emax = 30.

vation interval ta. As shown in Figure 1, we define the ac-
tive area AA of this object as the oblong area, including the
rectangle area with length vta and width of 2R, and the two
half disks with radius R attached to the rectangle. Consider a
sensor at location (xs, ys), the segment length that the object
trajectory intersects this sensor’s sensing range is l(xs, ys) =
min( vta2 , xb)−max(−vta2 , xa).

Let Pr(xs, ys) denote the probability this sensor can detect
this object, we know (1) if l(xs, ys) < (1−f)vP ,Pr(xs, ys) =
f + t

P ; (2) if l(xs, ys) ≥ (1 − f)vP , Pr(xs, ys) = 1, where
t = l(xs,ys)

v . Let P̃ r denote the probability that one sin-
gle sensor can detect this object within ta, we have P̃ r =

1
AA

∫ R
−R dys

∫ vta
2 +R

− vta2 −R
Pr(xs, ys)dxs. The expected probabil-

ity that at least one sensor will detect this motion object is
Pr(all, rand) = 1− e−λP̃r, where λ = d ·AA.

2) Average Stealth Distance: The average stealth distance
under random sensing scheme is E(SD) =

∫∞
0
ve−λP̃ rdta.

B. Synchronized Sensing Analysis
1) Detection Probability: Similar to the random sensing

scheme, in a synchronized sensing scheme the active area AA is
the set of periodically repeated areas. DenoteX0 = (1−f)vP .
Let IA(P ) be the total covering area of two half disks in one
sensing period P , then the active area in one intermediate sens-
ing period P is AA(P ) = IA(P ) + 2RvfP , where (1) if

R ≥ X0

2 , IA(P ) = X0

√
R2 − X0

2

4 + 2R2 arcsin X0

2R ; (2) if

R < X0

2 , IA(P ) = πR2. Let ta be multiple times of P , and
λs = d · AA(ta), then Pr(all, syn) = 1− e−λs .

2) Average Stealth Distance: The average stealth dis-
tance under synchronized sensing scheme is E(SD) =

vP
d·(IA(P )+2RvfP )e

−d(πR2−IA(P )).

C. Analytical Results and Simulation
Figures 2 and 3 show the comparison between the analytical

results and the simulation results. The simulation results match
the analytical curves well, which validates the correctness of
our model. We find that the synchronized scheduling does not
perform better than the random scheduling, which is consistent
to our prediction, because the synchronized sensing has more
overlapping sensing areas than the random sensing.

IV. SCHEDULING ALGORITHM DESIGN

Based on our analysis, we can schedule sensors according to
d to meet the object-tracking quality requirements. We propose
a centralized algorithm (Global Random Schedule (GRS)) and a
localized algorithm (Localized Asynchronous Schedule (LAS))
to estimate d and assign f and P to sensors. We simulate the al-
gorithms and plot their performance degradations with respect
to time. We observe that both algorithms achieve the require-
ment at the beginning when all nodes have abundant energy, as
shown in Figure 4.

We also design a Power-Aware Asynchronous Schedule
(PAAS) to make the time to the first node failure longer than
the two previous algorithms. We assume 2R < (1 − f)vP ,
and fP is a constant. Considering the diversity of power
capacity among nodes, given the sum of the power capacity
E =

∑n
i=1 Ei (where Ei is the initial power of node i), we can

schedule a node that has the power capacityEi with the sensing
period E

nEi
P to achieve the same object-tracking quality as that

with the same P . As shown in Figure 4, for the PAAS, after its
system lifetime, the DP directly drops to zero because all nodes
are depleted of power. This indicates in PAAS all nodes have
the same working time.

V. CONCLUSION

Under probabilistic coverage, we present an analytical model
to fully investigate the object-tracking quality with respect to
various network conditions and sensor scheduling schemes.
Centered on the two object-tracking metrics — detection prob-
ability and stealth distance, the analytical model gives us more
solid and thorough understanding on controlling the object-
tracking quality, and provides guidelines for optimal sensor de-
ployment and power conservation.
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