

Figure 1: Wi-Fi tethering.

DozyAP: Power-Efficient Wi-Fi Tethering
Hao Han1,2, Yunxin Liu1, Guobin Shen1, Yongguang Zhang1, Qun Li2

1
Microsoft Research Asia, Beijing, China

2
College of William and Mary, Williamsburg, VA, USA

ABSTRACT
Wi-Fi tethering (i.e., sharing the Internet connection of a

mobile phone via its Wi-Fi interface) is a useful functionali-

ty and is widely supported on commercial smartphones. Yet

existing Wi-Fi tethering schemes consume excessive power:

they keep the Wi-Fi interface in a high power state regard-

less if there is ongoing traffic or not. In this paper we pro-

pose DozyAP to improve the power efficiency of Wi-Fi

tethering. Based on measurements in typical applications,

we identify many opportunities that a tethering phone could

sleep to save power. We design a simple yet reliable sleep

protocol to coordinate the sleep schedule of the tethering

phone with its clients without requiring tight time synchro-

nization. Furthermore, we develop a two-stage, sleep inter-

val adaptation algorithm to automatically adapt the sleep

intervals to ongoing traffic patterns of various applications.

DozyAP does not require any changes to the 802.11 proto-

col and is incrementally deployable through software up-

dates. We have implemented DozyAP on commercial

smartphones. Experimental results show that, while retain-

ing comparable user experiences, our implementation can

allow the Wi-Fi interface to sleep for up to 88% of the total

time in several different applications, and reduce the system

power consumption by up to 33% under the restricted pro-

grammability of current Wi-Fi hardware.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network Ar-

chitecture and Design － Wireless communication

General Terms
Algorithm, Design, Experimentation, Measurement

Keywords
802.11, Energy Efficiency, SoftAP, Wi-Fi Tethering

1. INTRODUCTION
Wi-Fi tethering, also known as a “mobile hotspot”, means

sharing the Internet connection (e.g., a 3G connection) of an

Internet-capable mobile phone with other devices over Wi-

Fi. As shown in Figure 1, a Wi-Fi tethering mobile phone

acts as a mobile software access point (SoftAP). Other de-

vices can connect to the mobile SoftAP through their Wi-Fi

interfaces. The mobile SoftAP routes the data packets be-

tween its 3G interface and its Wi-Fi interface. Consequent-

ly, all the devices connected to the mobile SoftAP are able

to access the Internet.

Wi-Fi tethering is highly desired. For example, even be-

fore the Android platform provided built-in support on Wi-

Fi tethering, there were already some third-party Wi-Fi teth-

ering tools on Android Market [8]. Two of them, called

“Barnacle Wi-Fi Tether” and “Wireless Tether for Root

Users”, are very popular, each with more than one million

installs. There are two main reasons why Wi-Fi tethering is

desirable. First, cellular data networks provide ubiquitous

Internet access but the coverage of Wi-Fi networks is spotty.

Second, it is common for people to own multiple mobile

devices but likely they do not have a dedicated cellular data

plan for every device. Hence, it is desirable to share a data

plan among multiple devices, e.g., sharing the 3G connec-

tion of an iPhone with a Wi-Fi only iPad. In response to this

common user desire, Wi-Fi tethering is now widely sup-

ported, as a built-in feature on most smartphone platforms,

including iPhones (iOS 4.3+), Android phones (Android

2.2+) and Windows phones (Windows Phone 7.5).

However, existing Wi-Fi tethering schemes significantly

increase the power consumption of smartphones. When op-

erating in the SoftAP mode, the Wi-Fi interface of a

smartphone is always put in the high power state and never

sleeps even when there is no data traffic going on. This in-

creases the power consumption by one order of magnitude

and reduces the battery life from days to hours (more details

in Section 2.1). To save power, Windows Phone automati-

cally turns off Wi-Fi tethering if the Wi-Fi network is inac-

tive for a time threshold of several minutes. However, this

simple scheme has two drawbacks. First, the Wi-Fi interface

still operates in the high power state for all the idle intervals

less than the threshold, leading to waste of energy. Second,

it harms usability. If a user does not generate any traffic for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.

Copyright 2012 ACM 978-1-4503-1301-8/12/06...$10.00.

.

a time period longer than the threshold (e.g., while reading a

long news article) and then starts to use the network again

(e.g., by clicking another news link), the user will have to go

back to the smartphone and manually re-enable Wi-Fi teth-

ering, which results in poor user experience.

The IEEE 802.11 standard defines a Power Saving Mode

(PSM) [10] that allows the Wi-Fi interface of a device to

stay in a lower-power state to save power. However, PSM is

designed for client devices only. An AP should never enter

PSM according to the IEEE 802.11 standard. It is not an

issue for APs in traditional scenarios because they are exter-

nally powered. However, such old design wisdom does not

work for the battery-powered SoftAPs in Wi-Fi tethering.

The IEEE 802.11 standard also defines a power saving

mechanism for stations operating in ad hoc mode. In ad hoc

mode all the stations equally share the responsibility for

beacon generation. One station may sleep when another

station generates beacons. However, in Wi-Fi tethering, a

SoftAP is the single gateway to the Internet and can hardly

sleep. Ad hoc mode is much less used than the infrastructure

mode (i.e., AP mode) in practice. Interestingly, despite that

the Wi-Fi hardware does support ad hoc mode, the OS on

many mobile devices, including Windows phones, Android

phones and iPhones, hides it [30], preventing a device from

connecting to an ad hoc network. Thus, in this paper we

focus on Wi-Fi tethering in the infrastructure mode.

We propose and design DozyAP, a system to reduce pow-

er consumption of Wi-Fi tethering on smartphones while

still retaining a good user experience. The key idea of

DozyAP is to put the Wi-Fi interface of a SoftAP into sleep

mode to save power when possible. We measure the traffic

pattern of various online applications used in Wi-Fi tether-

ing. We find that the Wi-Fi network stays in the idle state

for a large portion of the total application time (more details

in Section 2.2), which means there are many opportunities

to reduce the power consumption. With DozyAP, a SoftAP

can automatically sleep to save power when the network is

idle and wake up on demand if the network becomes active.

Putting a SoftAP to sleep imposes two challenges. First,

without a careful design, it may cause packet loss. Existing

Wi-Fi clients assume that APs are always available for re-

ceiving packets, so whenever a client receives an outgoing

packet from applications, it will immediately send the pack-

et to its AP. However, if the AP is in the sleep mode, this

packet will be lost, even after the retrials that occur at the

low layers of the network stack. Second, putting an AP to

sleep will introduce increased network latency and may im-

pair user experiences if the extra latency is user perceivable.

DozyAP addresses the first challenge with a sleep re-

quest-response protocol with which a SoftAP and its clients

learn and agree on a valid sleep schedule of the SoftAP. To

avoid possible packet loss, a client will transmit packets

only when the SoftAP is active and buffer outgoing packets

otherwise. To address the second challenge, we design an

adaptive sleep scheme and limit the maximum sleep dura-

tion. Consequently, DozyAP is able to reduce power con-

sumption of Wi-Fi tethering with negligible impact on the

network performance. DozyAP does not require any chang-

es to the 802.11 protocol and is incrementally deployable

via software updates to mobile devices.

We have implemented the DozyAP system on existing

commercial smartphones and evaluated its performance

using various applications and the traces from real users.

Evaluation results show that DozyAP can put the Wi-Fi

interface of a SoftAP to sleep for up to 88% of the total time

in several different applications. Due to the restricted pro-

grammability of current Wi-Fi hardware on smartphones,

forcing a SoftAP to go to sleep or wake up consumes con-

siderable overhead. Thus, DozyAP only saves power by up

to 33% while increasing network latency by less than 5.1%.

To the best of our knowledge, we are the first to study

power efficiency in Wi-Fi tethering for SoftAP. The main

contributions of this paper are:

 We study the characteristics of existing Wi-Fi teth-

ering implementations and present our findings. We show

that current Wi-Fi tethering is power hungry and wastes

energy unnecessarily. We analyze the traffic patterns of

various applications and identify many opportunities to op-

timize the power consumption of Wi-Fi tethering.

 We propose DozyAP to improve power efficiency

of Wi-Fi tethering. We design a simple yet reliable sleep

protocol to schedule a mobile SoftAP for sleep without re-

quiring tight time synchronization between the SoftAP and

its clients. We develop a two-stage adaptive sleep algorithm

to allow a mobile SoftAP to automatically adapt to the traf-

fic load for the best sleep schedule.

 We implement DozyAP system on commercial

smartphones and evaluate its performance through experi-

ments with real applications and simulations based on real

user traces. Evaluation results show that DozyAP is able to

significantly reduce power consumption of Wi-Fi tethering

and retain comparable user experience at the same time.

The rest of the paper is organized as follows. In Section 2

we report our findings on existing Wi-Fi tethering, focusing

on the power consumption and the traffic patterns of various

applications. Based on the findings, in Section 3 we design

DozyAP to schedule a mobile SoftAP for sleep and present

the design details. We describe our implementation in Sec-

tion 4 and evaluate it in Section 5. We discuss limitations of

DozyAP and future work in Section 6, survey the related

work in Section 7 and conclude in Section 8.

2. UNDERSTANDING WI-FI TETHERING
In this section we report our findings on the characteris-

tics of Wi-Fi tethering through real measurements on exist-

ing commercial smartphones. We have focused on two

characteristics: the power consumption of existing Wi-Fi

tethering implementations and the traffic pattern of various

online applications used in Wi-Fi tethering. We also provide

some background on Wi-Fi power management to set up the

context of our DozyAP design.

Figure 2: Measured power consumption of Wi-Fi

tethering on Nexus One and HTC HD7 in idle case.

2.1 Power Consumption
We first measure the power consumption of existing

commercial smartphones regarding the Wi-Fi tethering. We

impose no traffic but simply turn on/off the Wi-Fi tethering,

i.e., the Wi-Fi interface and the 3G interface were kept on

but idle. We used a Nexus One phone (Android 2.3.6), a

HTC HD7 Windows Phone (Windows Phone 7.5) and an

iPhone 4 (iOS 4.3.5) for experiments. For the Nexus One

and the HTC HD7, we measured the power consumption of

the whole system using a Monsoon Power Monitor [4].

However, it is not possible to use the Monsoon Power Mon-

itor to measure the power consumption of the iPhone 4

without damaging the phone. Instead, we used MyWi 5.0

[5], a very popular third-party Wi-Fi tethering tool on iOS

that is able to tell the draining current of the battery, to

measure the power consumption of the iPhone 4 when Wi-

Fi tethering is enabled. In all the experiments, the display

was turned off.

With Wi-Fi tethering disabled, the power consumption

was pretty low, because the Wi-Fi and 3G interfaces were in

sleep for most of the time. The average power consumption

was only 20mW for the Nexus One and 30mW for the HTC

HD7, respectively. For the iPhone4, MyWi 5.0 read a drain-

ing current of 6mA, equivalently, a power consumption of

22mW.

With Wi-Fi tethering enabled, the power consumption of

the smartphones increased significantly. Figure 2 shows the

results for the Nexus One and the HTC HD7 smartphones.

We can see that both smartphones operated in a high power

state constantly even though there was no traffic at all.

There are periodic spikes in the plots, caused by periodic

Wi-Fi beacon transmissions. On average the power con-

sumption was 270mW for the Nexus One and 302mW for

the HTC HD7. These results indicate that Wi-Fi tethering

leads to severe drop of the battery lifetime: from 70 hours to

5.2 hours for the Nexus One and from 43 hours to 4.3 hours

for the HTC HD7, given their respective battery capacity of

1400mAh and 1300mAh. For the iPhone 4, MyWi 5.0 read

a draining current of 90mA, equivalently a power consump-

tion of 333mW. While this software approach may not be as

accurate as using the Monsoon Power Monitor, the result

still clearly indicates that Wi-Fi tethering on the iPhone 4

has similar power consumption as on the Nexus One and the

HTC HD7.

The above results demonstrate that existing Wi-Fi tether-

ing schemes on all the three mobile platforms are power

hungry. They consume an order of magnitude more power

than necessary when there is no ongoing traffic, i.e., in idle

network state. In next subsection we will show that such

idle cases are indeed frequent in various typical Internet

access scenarios.

Intuitively, the Wi-Fi interface should be put to sleep

when the Wi-Fi network is idle. As the battery is a very

scarce resource on smartphones, this calls for a power-

efficient Wi-Fi tethering solution and motivates us to con-

duct the work in this paper.

2.2 Traffic Patterns
Next, we study how frequently the Wi-Fi network is actu-

ally in an idle state and how long the idle state typically

lasts. We enabled Wi-Fi tethering on a Nexus One

smartphone with a China Unicom 3G connection, and con-

nected a Wi-Fi client to the mobile SoftAP. On the client,

we launched various applications that access the Internet

and used those applications normally. In the meantime, we

used a Lenovo T61 laptop running Linux 2.6.32 as a Wi-Fi

sniffer to capture all the frames exchanged between the cli-

ent and the SoftAP. We studied two different clients: a Nex-

us One smartphone and a Wi-Fi version iPad 2. The follow-

ing seven applications were measured.

(1) News reading. We went to http://news.baidu.com,

and read five news articles one by one. (2) Online book

reading. We went to http://www.zangdimima.org and read

three chapters of a popular book. (3) Video streaming. We

went to http://www.youku.com (a popular video website in

China like YouTube in US) and watched a 76-second long

video clip. (4) Search. We used Google Search to search for

“tethering” and read the first three results one by one. (5)

Map. We used Bing Map to search and browse three loca-

tions in Beijing: Tiananmen Square, Peking University and

Microsoft R&D Asia. (6) Email. We used Gmail to read

three new emails and replied to one of them. (7) RSS Read-

er. We used Google reader to download and read five pieces

of news.

Note that some websites detect the type of client devices

and return different content for different device types. For

example, when the Nexus One smartphone is used, Baidu

News automatically redirects to its mobile version that re-

turns less complex webpages than the normal version. Simi-

larly, Youku streams low bitrate video clips to the Nexus

One smartphone but high bitrate ones of the same videos to

the iPad 2. Consequently, the same application may behave

differently on different devices.

For each application, we study the traffic patterns by ana-

lyzing the packet inter-arrival time of all the captured pack-

ets. Figure 3 shows the results of the Nexus One. Due to the

space limitation, we omit the curves of the iPad 2 which has

similar results. We first study the distribution of packet in-

Figure 3. Traffic patterns. From left to right: CDF of packet inter-arrival interval in total application time; CDF

of packet inter-arrival interval in total packets; Probability of sleeping for 100ms after an idle threshold.

ter-arrival intervals in the total application time which is the

period from the first packet to the last one. The left figure in

Figure 3 shows the Cumulative Distribution Function (CDF)

for all the applications, where the y-axis depicts the percent-

age of packets with inter-packet intervals less than or equal

to a specific value in the x-axis to the total application time.

To make the curves easy to read, we only show the data for

the time intervals less than one second. We can see that the

intervals under 200ms only take less than 30% of the total

application time for all the applications on the Nexus One.

For the iPad 2, the corresponding number is 35%. For some

applications, these intervals consume as low as 20% or even

less than 10% on the Nexus One or the iPad 2. If we consid-

er the network “idle” during the packet inter-arrival inter-

vals larger than 200ms, then we can say that the Wi-Fi net-

work was idle for 70%-90% of the total application time.

This shows that these applications only spent a small por-

tion of time for the Internet access and their network traffic

is very sparse and bursty.

There are two main reasons for the above findings. First,

all the applications consist of two phases: a content fetching

phase and a content consuming phase. Once users download

some content from a remote server (e.g., a Web server), they

need to spend time to consume the content (e.g., reading the

text). The content consuming time may vary from seconds

to tens of seconds to even minutes. During such a time, the

network is mostly idle. In the email case, replying to emails

and composing new ones also result in significant network

idle time. Secondly, the bandwidth of 3G is much lower

than that of Wi-Fi. According to 3GTest [18], 3G typically

offers 500Kbps – 1Mbps downlink throughput for US carri-

ers but the Wi-Fi offers much higher data rates (54Mbps for

802.11a/g and 300Mbps for 802.11n). Furthermore, 3G has

much higher RTTs, ranging from 200ms to 500ms [18],

than that of Wi-Fi. Consequently, the Wi-Fi interface of a

SoftAP in Wi-Fi tethering often has to wait for data to be

received from or transmitted over 3G. Such a waiting period

will put the Wi-Fi interface in an “idle” state.

While the results are somehow as expected for those in-

teractive applications, we are surprised to see that similar

patterns were observed in the video streaming case. Even

for the iPad 2 on which a high bitrate video clip was contin-

uously played back, the packet inter-arrival intervals larger

than 200ms took more than 60% of the total streaming time.

After carefully checking the captured trace, we found that it

used a large video buffer when streaming video clips. It

aggressively downloaded video content until the video buff-

er was full. Then it stopped video downloading. The down-

loaded bits were constantly consumed and drained from the

buffer. Once the buffer level became lower than a threshold,

the aggressive downloading was resumed again.

The large percentage of the Wi-Fi idle time in these ap-

plications demonstrates that there are many opportunities to

reduce the power consumption of Wi-Fi tethering. During

the large network idle intervals, the Wi-Fi interface of a

mobile SoftAP should sleep to save power. More specifical-

ly, there are two kinds of network idle intervals that we ex-

ploit in this paper. The first one is the long network idle

intervals resulting from the user content consuming behav-

ior. The second one is the relatively shorter network idle

intervals that occur during the content downloading. The

latter case is mainly caused by the RTTs of 3G: after a client

sends a request packet to a remote server, it has to wait for

at least a RTT of 3G to get the first response packet from the

server. For example, to access a Web server, we can typical-

ly see two such network idle intervals: one for the DNS

name lookup for the server and the other for making a TCP

connection to the server.

We further study how putting a SoftAP to sleep can affect

the network performance. The middle figure in Figure 3

shows the CDF of packet inter-arrival interval in total pack-

ets, where the y-axis depicts the percentage of the packets

whose inter-packet interval is less than or equal to a specific

value in the x-axis to the total number of packets. We can

see that the inter-packet intervals under 150ms cover more

than 80% of all the packets for all the applications. For

some applications the number is as high as 90% or even

95%. This means that if we use an idle threshold of 150ms

to decide whether to put the SoftAP to sleep or not, most of

the packets will not be affected. The right figure in Figure 3

further shows the probability that the SoftAP can success-

fully sleep for extra 100ms after waiting for different idle

Figure 4: Interactions of a SoftAP and a client using

the sleep request-response protocol.

Figure 5: Packet format of the sleep protocol.

thresholds. Again, if we use a threshold of 150ms, the prob-

ability is higher than 60% for all the applications.

All the above findings demonstrate that a mobile SoftAP

should and can sleep to save power in Wi-Fi tethering,

which provides the foundation for DozyAP design.

2.3 Background: Wi-Fi Power Saving
The IEEE 802.11 standard defines PSM to save power of

Wi-Fi client devices [10]. In PSM, the Wi-Fi interface of a

client stays in a lower-power state to save power and cannot

receive or transmit any data. If an AP has some packets for a

PSM client, the AP buffers the packet and sets the Traffic

Indication Map (TIM) in its periodic beacons which are

broadcasted typically every 100ms. A PSM client periodi-

cally (e.g., every three beacon intervals) wakes up to listen

to the beacons of the AP. If the client detects a TIM for it-

self, it sends a separate PS-Poll frame to receive each buff-

ered packet. Otherwise it goes to sleep immediately. When

the AP sends a buffered packet to the client, a MORE bit in

the data frame is set if the AP has more packets for the cli-

ent. This allows the client to decide when to stop sending

PS-Poll messages.

On the Nexus One, the above static PSM scheme is called

“PM_MAX”. PM_MAX allows a client to sleep as much as

possible by allowing the client to sleep immediately if the

AP does not have any packet for it. However, it leads to

long network latency and hence low network efficiency be-

cause a separate PS-Poll message is required for every

packet. This makes it less suitable for interactive applica-

tions. Therefore, on the Nexus One, another power saving

scheme called “PM_FAST” is used. In PM_FAST, a client

stays in active unless its Wi-Fi interface is idle for a thresh-

old of 200ms. Then it sends a Null-Data frame with power

management flag set to 1 to tell its AP that it will sleep

soon. If such a frame is acknowledged, the client is able to

go to sleep since all packets destined for it will be buffered

at AP. Otherwise, the client cannot go to sleep. Many other

Wi-Fi devices today also implement a similar scheme

known as adaptive PSM [19]. PM_FAST is designed for

fast system response and PM_MAX is more suitable for

background services. By default Nexus One smartphones

use PM_FAST if the screen is on and switch to PM_MAX if

the screen is turned off.

3. DOZYAP DESIGN
Guided by the findings in Section 2, we design the

DozyAP system that aims to reduce the power consumption

of Wi-Fi tethering by putting the Wi-Fi interface of a mobile

SoftAP into sleep mode whenever possible. Below we pre-

sent the detailed design of DozyAP and the rationale of the

design decisions. We start with a single client and describe

the extension to support multiple clients later on.

3.1 Scheduling a SoftAP for Sleep
We design a simple “sleep request-response” protocol to

enable a mobile SoftAP to safely sleep in Wi-Fi tethering,

according to its own best schedule. While the SoftAP can

sleep at will, it can only do so when the client agrees, to

avoid possible packet loss. Therefore, before entering sleep

mode, a SoftAP sends a “sleep request” to its client. If the

client sends back a “sleep response” to accept the sleep re-

quest, the SoftAP then enters the sleep mode. Otherwise, it

will continue to stay in the active state. Figure 4 shows a

typical interaction procedure between a SoftAP and a client.

At time t1, the SoftAP decides to sleep and enters sleep

mode at time t2 after receiving the client’s agreement. When

the sleep times out at time t3, the SoftAP wakes up and con-

tinue to communicate with the client.

Packet format. Both the sleep request and the sleep re-

sponse are transmitted as a normal Wi-Fi unicast data pack-

et. This design does not require any modification on existing

Wi-Fi standard and is easy to implement. Figure 5 shows

the packet format. The sleep protocol is implemented direct-

ly on top of the underlying link layer without TCP/IP head-

ers in the middle to reduce the overhead. The sleep protocol

packets have three fields. The “Type” field indicates the

packet type: “0x1” means sleep request and “0x2” means

sleep response. The “Sequence Number” field is a unique

ID to identify a sleep request-response pair. It starts from

zero and increases by one for every new sleep request. The

“Time Duration” field specifies how long (in milliseconds)

the SoftAP requests to sleep. All the sequence numbers and

time durations are decided by the SoftAP. When the client

accepts a sleep request, it simply copies the sequence num-

ber and time duration from the sleep request packet into its

sleep response packet. Sleep response packets are used only

for accepting a sleep request. If the client does not agree the

SoftAP to sleep, it simply chooses not to send out the sleep

Figure 6: State machine for a SoftAP (top) and a cli-

ent (bottom).

response. There is only one case that the client will decline

the sleep request of the SoftAP: it has more data packets to

transmit. In that case, the client will send a data packet, in-

stead of the sleep response packet, to the SoftAP. The Sof-

tAP then learns that the client has declined the sleep request

and thus stays active. This design reduces the overhead of

the sleep protocol because a sleep response packet is trans-

mitted only when it is necessary.

State machine. Figure 6 shows the state machine of a

SoftAP and a client. A SoftAP has three states: Normal,

Pre-sleep and Sleep. In the Normal state, the SoftAP is ac-

tive and can transmit and receive packets normally. When

the Wi-Fi interface of the SoftAP is idle for a time period

larger than a pre-defined threshold, the SoftAP sends a sleep

request packet to its client with a sequence number seq and

a time duration dur. Then it enters the Pre-sleep state and

waits for a sleep response. If it receives the right sleep re-

sponse with the same sequence number seq and time dura-

tion dur, it will put its Wi-Fi interface into sleep mode and

enters the Sleep state; if it receives any packet other than the

expected sleep response, it will go back to the Normal state

and invalidate the sleep request. In the Sleep state, the Wi-Fi

interface of the SoftAP is turned to sleep to save power.

Thus, the SoftAP cannot receive any packets over Wi-Fi. If

it receives any data from its 3G interface, it will not send the

received data to the client over Wi-Fi. Instead, it buffers

them during the whole period of Sleep state. When the sleep

timeout expires, if the SoftAP has any buffered data, it

wakes up its Wi-Fi interface, switches to Normal state and

transmits the buffered data to the client. Otherwise, it moves

back to the Pre-sleep state, sends out another sleep request

with a new sequence number new_seq and a new time dura-

tion new_dur and waits for the next sleep response.

The state machine of a client has only two states: Normal

and Block. In the Normal state, the client communicates

with the SoftAP as normal. It may use any Wi-Fi power

saving schemes, such as PM_MAX and PM_FAST. If it

receives a sleep request from the SoftAP and agrees, i.e., it

does not have any packets to transmit, it tentatively sets its

Wi-Fi power saving scheme to PM_MAX, sends back a

sleep response to the SoftAP and enters the Block state.

Note that by switching to PM_MAX, the firmware automat-

ically sends a “Null-Data” packet before we send out the

sleep response. The “Null-Data” packet tells the SoftAP that

the client will sleep immediately. Doing this way, the client

can go to sleep as quickly as possible (i.e., immediately after

the sleep response packet) to save power and the SoftAP

knows that the client is sleeping. Otherwise, if the client

uses PM_FAST scheme, after sending out the sleep re-

sponse, it stays in active until it sends out a “Null-Data”

packet to tell the SoftAP that it will go to sleep. However, as

the SoftAP has already entered the Sleep state after receiv-

ing the sleep response, it cannot receive the “Null-Data”

packet following the sleep response. As a result, the client

cannot receive an ACK from the SoftAP for the “Null-Data”

packet and cannot go to sleep. Note that PM_MAX is the

default scheme defined in PSM of IEEE 802.11 standard

and is supported by all the client devices. Thus, this design

does not depend on any specific devices.

In the Block state, the Wi-Fi interface of the client is in

power saving mode and the client knows that the SoftAP is

sleeping. Thus, it blocks all the packet transmissions by

buffering all the packets from applications. If the sleep

schedule times out or the client receives a data packet from

the SoftAP, it restores the previous power saving scheme

(e.g., back to PM_FAST) and moves back to the Normal

state. At this time, both the SoftAP and the client are active

and can communicate as normal (receiving or transmitting

any data packet will cause the SoftAP moves to Normal

state from Pre-sleep state). Otherwise, the SoftAP will send

out a new sleep request, and both the SoftAP and the client

can enter the Sleep or Block state again.

3.2 Synchronization
One advantage of the sleep request-response protocol is

that it does not require tight time synchronization between

the SoftAP and the client. If the SoftAP and the client can

synchronize their time perfectly, they can coordinate their

sleep scheduling to avoid packet loss without transmitting

any extra sleep request and response packets. However, this

is hard to achieve in practice. While very fine-grained

hardware timestamps (e.g., at microsecond granularity) al-

ready exists at link layer, such timestamps are segregated

inside firmware and are not available to the Wi-Fi driver

and applications. It is possible to do time synchronization by

explicitly exchanging packets with timing information be-

tween the SoftAP and the client. Such time synchronization

must be done periodically due to clock drift, which increas-

Figure 7: Abnormal cases: (a) a sleep request is lost; (b) a sleep response is lost; (c) a sleep response is delayed; (d)

a data packet is delayed.

Figure 8: The two-stage adaptive sleep algorithm.

es power consumption. Due to these considerations, we in-

tentionally avoided the time synchronization approach.

Interestingly, the proposed sleep protocol can achieve

loose synchronization between a SoftAP and a client, with a

desirable property: the client will never conclude that the

SoftAP is awake while it is sleeping. Therefore, our ap-

proach will not lead to packet loss that would arise from

wrong attempts of sending packets while the SoftAP is ac-

tually in sleep mode. In normal case, this is obvious because

the SoftAP will sleep only after it receives a sleep response

from the client. However, due to the uncertainty and com-

plexity of wireless communication, the sleep protocol may

not work as smoothly as expected. Below we analyze sever-

al possible abnormal cases and their consequences, as illus-

trated in Figure 7.

Packet loss. First, sleep request or response packets may

be lost during their transmission. For example, a sleep re-

quest may be lost. In this case, the SoftAP will stay in ac-

tive. If later on the client or the SoftAP has data to transmit,

they start to communicate as normal. Or the SoftAP will

send out a new sleep request after the network remains idle

for a period longer than the pre-defined idle threshold, as

shown in Figure 7a. The worst effect of losing a sleep re-

quest is that the SoftAP would waste some energy for stay-

ing in unnecessary active state between two successive sleep

requests. Similarly, if a sleep response is lost, the SoftAP

also has to stay in active until the next sleep request. How-

ever, in this case, as the client has concluded that the SoftAP

is in sleep, it will stay in the Block state and start to buffer

packets. Thus, it may further incur extra delay up to the idle

threshold to the client, as shown in Figure 7b.

Packet out-of-order. Second, packet transmission may

be delayed due to the hardware queuing and wireless con-

tention. As a result, there is a slight chance that packets may

not arrive at their destinations in the expected order. For

example, Figure 7c shows the case that a sleep response is

delayed by the client’s hardware. The SoftAP receives sleep

response 1 after sleep request 2 is sent out. In this case, the

SoftAP just ignores sleep response 1 but it has to stay in

active between the two sleep requests. Figure 7d shows a

more complex case. The client has already passed a packet

to the firmware and the packet is waiting for transmission in

the hardware queue. At this moment the client receives a

sleep request from the SoftAP. As the client does not have

more data to transmit, it replies a sleep response. However,

once the SoftAP receives the data packet, it resets its idle

timer, stays in active and ignores the sleep response. Conse-

quently, the SoftAP and the client are out of sync: the Sof-

tAP stays in active, wasting energy, but the client assumes

the SoftAP is in sleep and delays its packets transmission.

Based on the above analysis, we can see that those ab-

normal cases would at most cause some overhead in energy

and transmission latency, but they would not break the de-

sired synchronization property of our sleep protocol. A cli-

ent will never try to send packets when the SoftAP is actual-

ly in sleep. The SoftAP and the client may run out of sync

Figure 9: Short sleep and long sleep example.

temporally, but will always resume sync after the subse-

quent sync response. This demonstrates the robustness of

our sleep protocol.

3.3 Adaptive Sleeping
We design an adaptive sleep scheduling algorithm for a

SoftAP to adapt to the traffic pattern and also the 3G net-

work property. Our adaptive sleep algorithm consists of two

stages, namely a short sleep stage and a long sleep stage,

that are designed to exploit the two distinctive phases (i.e.,

the content fetching phase and the content consuming

phase) of interactive applications, respectively.

Sleep algorithm. Figure 8 shows how the two-stage

adaptive sleep algorithm works. The basic idea is to probe

the optimal sleep interval such that the SoftAP can wake up

shortly before a packet arrives. Starting with an initial con-

servative sleep interval, the sleep interval is gradually in-

creased, at a conservative pace, until a packet has arrived

during the last sleeping. Then the initial sleep interval is

updated according to the probing history. All the successive

sleep slots are collectively called a sleep cycle.

More concretely, when the Wi-Fi interface remains idle

for a time period of thresh, the SoftAP will enter the short

sleep stage. It first sleeps for a time period of init which

equals to min initially. When the SoftAP wakes up, it either

goes back to the ACTIVE mode if there are pending out-

going or incoming packets, or continues to sleep for a fixed

interval of step. Depending on the real packet arrival pat-

tern, the length of the sleep cycle may become longer and

longer between two subsequent wakeups. The sleep period

can be expressed as “init + N * step” where “N” is the num-

ber of continuous sleep slots after the first sleep slot of init.

 As waking the Wi-Fi hardware up introduces certain en-

ergy overhead [25], it is desirable to reduce the number of

unnecessary wakeups. This calls for a good init value that

can let the SoftAP sleep as long as possible while still being

able to wake up in time, i.e., to avoid or shorten the probing

process. We determine the init value by exploiting the sleep

history. We use parameters cur and pre to track the gross

length of all successful sleep slots in the current sleep cycle

and that in the previous sleep cycle, respectively. That is, we

have cur equals to “init + (N-1) * step” because a sleep cy-

cle is always ended up by a false sleep slot during which a

packet has arrived and been buffered. Parameter pre is

simply a running record of the previous cur. Based on the

values of cur and pre, we adjust the value of init with a sim-

ple algorithm INIT_UPDATE as follows: if both cur and

pre are greater than current init plus step, we increase init by

step for the next sleep cycle. If cur is less than current init

minus step, we decrease init by step. To avoid excessive

latency that may be caused by an overly greedy init value,

we cap it to the value of max. In SHORT_SLEEP stage, if

the SoftAP has continuously been in sleep for a time period

of thresh_l, it will go to LONG_SLEEP stage. In

LONG_SLEEP stage, the SoftAP simply sleeps for a time

period of long periodically until it has to quit from sleep to

communicate with the client.

Example. Figure 9 illustrates the algorithm with a con-

crete example. Some details such as the time for waking up

the Wi-Fi interface between continuous sleep slots and the

time taken to get permission from clients after each wake-up

are omitted for sake of easier reading. Assume current value

of init is 200ms, the value of step is 100ms and the value of

thresh is 150ms. For the 460ms inter-packet interval in Fig-

ure 9, the SoftAP starts to sleep after 150ms. The SoftAP

will first sleep for 200ms, followed by two 100ms sleep

slots. Suppose then the value of init is qualified to increase

to 300ms, for the 520ms inter-packet interval, the SoftAP

will first sleep for 300ms followed by one more 100ms

sleep slot. In the content consuming period, after sleeping

for a time period of thresh_l, the SoftAP enters the long

sleep stage and periodically sleeps for a time period of long

(500ms).
The above algorithm is specially designed for the traffic

patterns of typical applications in Wi-Fi tethering as shown

in Section 2.2. The short sleep stage is designed for the Sof-

tAP to sleep between the time when the client sends out a

request to a remote server and the time when the first re-

sponse packet from the remote server is received. That dura-

tion is roughly a RTT of the 3G connection (typically hun-

dreds of milliseconds [18]). The purpose of init parameter is

exactly to estimate the 3G’s RTT in an elegant way, based

on the length of last two sleep cycles. Note that our algo-

rithm is conservative in the sense that it tries to reduce the

energy consumption under minimal impairment to user ex-

perience, i.e., extra latency incurred. We decrease the value

of init quickly, by considering only the length of the current

sleep cycle, but increase the value of init slowly by consid-

ering the length of both the current and the previous sleep

cycles. In addition, we use the parameter thresh to prevent

the SoftAP from entering the short sleep stage during burst

data transmission period (e.g., multiple response packets

from a remote server for the same client request such as

fetching a picture. In Section 4 we describe the parameter

values used in our implementation.

In summary, our sleep algorithm automatically adapts to

the traffic pattern of applications and achieves a good bal-

ance between power saving and network performance.

Figure 10: Implementation architecture of the client

part (left) and the SoftAP part (right).
Figure 11: Power consumption of turning the Wi-Fi

interface on/off in Wi-Fi tethering.
3.4 Supporting Multiple Clients

DozyAP can support multiple clients by repeatedly apply-

ing the sleep request-response protocol to each client. A

client goes to sleep once it agrees to the AP’s sleep request.

A SoftAP can sleep only if it receives the sleep responses

from all the clients. It is possible that some clients replied to

a sleep request but other clients did not so that the SoftAP

has to stay awake. However, this is not wrong because some

clients may have data to send and the SoftAP must serve

those clients. It is expected that the SoftAP sleeps less and

consumes more power in the multi-client case. However,

extending DozyAP to support multiple clients will not break

the synchronization property of the sleep protocol: no client

will send a packet when the SoftAP is in sleep. Note that we

considered the possibility of broadcasting the sleep requests

as it can obviously reduce the overhead of the sleep proto-

col. However, we do not take this approach for several rea-

sons. First, broadcast packets are less reliable because they

are transmitted without link layer retransmissions. In partic-

ular, the clients in PSM likely cannot receive them. Second,

broadcast packets are transmitted at lowest data rate and

thus take more air time than normal packets. Third, the sleep

responses are still sent in unicast packets. Last but not the

least, Wi-Fi tethering typically happens with very few sim-

ultaneous clients, often only one or two clients. Therefore,

the improvement of using broadcast is expected to be very

small in multi-client case, and for single client case, it is

worse than using unicast.

Another minor issue with the multi-client case is the bea-

con. In our design a SoftAP does not send out beacons in

the sleep mode. Thus, a new client cannot join the Wi-Fi

network when the SoftAP is in sleep. However, the SoftAP

sends out periodic beacons when it is active. Even in long

sleep stage, it still wakes up periodically and can send out

beacons. Consequently, a new client is still able to find the

SoftAP but may experience slightly longer latency. As this

only happens when a new client joins the network, we think

it is acceptable.

4. IMPLEMENTATION
We have implemented a DozyAP prototype on Nexus

One smartphones running Android 2.3.6 (the latest official

version for Nexus One), with a Wi-Fi chipset of Broadcom

BCM4329 802.11 a/b/g/n [2].
The overall architecture consists of two parts: the SoftAP

part and the client part, as shown in Figure 10. The SoftAP

part is directly modified from the open source Wi-Fi driver

in which we embedded the sleep request-response protocol

and the two-stage adaptive sleep algorithm. When the Sof-

tAP is in sleep state, all the packets received from 3G inter-

face are buffered. The client part is implemented as a

loadable module where a packet buffer is implemented, to-

gether with a blocking controller to decide if and when ap-

plication packets must be buffered. In our prototype we use

a special Ethernet type of 0xfffff (a reserved value that

should not be used in products) for the packets of the sleep

request-response protocol. In real deployment, other ap-

proaches can be used to implement the sleep protocol, e.g.,

using dedicated IP packets rather than the special Ethernet

type. We use a netfilter to intercept all the outgoing packets

and to detect the packets of sleep requests and response.

Implementing the client part as a loadable module does not

require any modifications to the source code of the client

OS. This makes it easy to deploy DozyAP on different types

of client devices.

Putting a mobile SoftAP to sleep. One practical difficul-

ty we met is how to put a mobile SoftAP to sleep. On

smartphones (Nexus One, and other types of smartphones),

most Wi-Fi MAC layer functionalities are implemented in

the firmware running on the Wi-Fi chipset, not in the CPU-

hosted Wi-Fi driver. When Wi-Fi tethering is enabled, the

firmware of the Android One smartphone keeps the Wi-Fi

hardware always on and in a high power state. There is no

interface available to change the power states. All that we

can do in the driver is to turn on/off the Wi-Fi interface.

Consequently, in our implementation, we simply turn off

and on the Wi-Fi interface when the SoftAP decides to sleep

and wakeup, respectively. By modifying the source of the

driver, we hide the fact that the Wi-Fi interface is turned off.

Thus, applications and the OS can work as normal as if the

Wi-Fi interface is always on.

Energy overhead of turning on/off the Wi-Fi. It costs

some extra energy to turning on/off the Wi-Fi interface. We

measured such energy overhead on a Nexus One

Figure 12: Power saving and energy saving of the

SoftAP in idle (I), busy download (D) and the five

applications of news reading (N), book reading (B),

video streaming (V), search (S) and map (M).

smartphone and Figure 11 shows the measurement results.

Initially, the Wi-Fi interface was off. Then we turned the

Wi-Fi interface on for 100ms and turned it off again. We

can observe two artifacts: first, when the Wi-Fi interface is

turned on, the system jumps to a high power state of

600mW and stays in an average power state of 400mW

which is higher than the normal power consumption of Wi-

Fi tethering in idle case (270mW as shown in Figure 2).

Second, when the off command is issued, the power con-

sumption reduced immediately, but remains at a power level

as high as 150mW for about one second before entering a

very low power state of 10mW. This finding is similar to

what the authors reported in [25]. They pointed out that

when the Wi-Fi interface goes to sleep, it first enters a “light

sleep” state and then enters a “deep sleep” state after some

time. We cannot control this behavior but it significantly

affects how much power we can save: the SoftAP never

enters the “deep sleep” state because we have limited the

maximum sleep time to 500ms. We want to point out that

this is a platform-specific limitation caused by the restricted

programmability over the Wi-Fi hardware. Our design itself

does not impose any limitation. If the smartphone can enter

the “deep sleep” state more quickly, our approach can save

much more power.

Parameter values. We determine the parameter values in

the adaptive sleep algorithm (refer to Figure 8) based on the

findings in Section 2 and the measured power data. We set

thresh to 150ms for triggering a SoftAP to enter sleep mode.

With this setting, the SoftAP can handle over 80% of the

total packets in its short awake time and over 60% cases it

can successfully sleep for 100ms if the SoftAP decides to.

Due to the energy overhead of turning on the Wi-Fi inter-

face as shown in Figure 11, there is no obvious benefit if the

SoftAP sleeps less than 100ms. Thus, we set min to 100ms.

Considering the RTT of 3G and to limit the maximum extra

latency, we set max to 500ms. The value of init varies be-

tween 100ms and 500ms. We set thresh_l to 3s for switch-

ing to the long sleep stage where the SoftAP periodically

sleeps for 500ms (i.e., long equals to 500ms).

5. EVALUATION
We evaluate the performance of DozyAP by answering

the following questions. 1) How much power can DozyAP

save for a mobile soft AP in various applications? 2) What

is the impact of DozyAP on client side power consumption?

3) How much extra latency does DozyAP introduce? 4)

How much power can be saved in multi-client case?

5.1 Experiment Setup
Hardware devices. We use one Nexus One smartphone

as a SoftAP with a China Unicom 3G connection (WCD-

MA), and another Nexus One smartphone as a client to run

applications. Both smartphones run Android 2.3.6. We use a

Monsoon Power Monitor [4] to measure the power con-

sumption. We repeat every experiment for five times and

present the average results.

Applications and methodology. We use five of the ap-

plications described in Section 2, including news reading,

book reading, video streaming, search, and map. To make

the experiments repeatable, except video streaming, we ana-

lyze the captured trace of the applications to find out all the

HTTP requests contained in the traces. Then we write a test

program in Java to send out those HTTP requests with the

exact same order and timing as the traces. The program uses

the WebView class in the WebKit package [1]. Thus, we

can easily repeat every experiment. For video streaming, we

manually play the same video clip.

Traces. To evaluate DozyAP with more diverse and real-

istic traffic patterns, we asked the authors of MoodSense

[21] for the traces collected from real users. In MoodSense,

the authors conducted a two-month field study with 25 iPh-

one users and collected their network traffic everyday using

tcpdump [7]. We select the traces of the top eight most ac-

tive 3G users. For each of them, we further select the trace

of the day when the user generated the largest 3G traffic

volume. We use the eight-day traces to evaluate the perfor-

mance of DozyAP.

5.2 Power Consumption
Average power. We first measure the power consump-

tion of a mobile SoftAP with DozyAP and without DozyAP.

Besides the five applications, we also measure two extreme

cases: idle case and busy download case. In the idle case, we

measure the power consumption of the SoftAP with one

client associated but without any network traffic. In the busy

download case, we measure the power consumption of

downloading a 1MB file from a Web server. The dark bars

in Figure 12 show the average power saving of DozyAP.

Without explicit mention, the error bars depict the minimum

and maximum values in all the experiments. We can see that

DozyAP can reduce the average power by 12.2% to 32.8%

for the five applications. In the idle case, it can save power

by 36.5%. Even for the busy download case, the average

power can be reduced by 3.3%. It is worth noting that the

power saving percentage is calculated in the total power

consumption of the whole system, including the power con-

Figure 13: Wi-Fi interface sleep time of the SoftAP in

busy download and the five applications.

Figure 14: Wi-Fi interface sleep time calculated based

on the traces of eight real users.

Figure 15: Power increasing of the Nexus One client

in idle, busy download and the five applications.

Figure 16: Power saving and energy saving of the Sof-

tAP with two applications running on single client.

sumed by CPU and 3G. 3G consumes significant power

when transmitting and receiving data. If we only consider

the power consumption of Wi-Fi, the power saving percent-

age will be even higher in busy download and the five ap-

plications.

Total energy. As DozyAP buffers packets and delays

their transmission, it may lead to longer application time

comparing with the case without DozyAP. Thus, we meas-

ure the total energy for the busy download case and the five

applications. Total energy does not make sense for the idle

case. The light bars in Figure 12 show the results. We can

see that DozyAP never increase the total energy. Instead, it

can save the total energy by 12.2% to 32.9% for the five

applications, which is almost the same as the result of aver-

age power. As we will show in Section 5.3, DozyAP intro-

duces very little network latency which has negligible im-

pact on total energy. Even in the busy download case,

DozyAP can save the total energy by 2.3%.

Wi-Fi interface sleep time. As we point out in Section 4,

with the current commercially available smartphones, forc-

ing the SoftAP to go to sleep or wakeup can be only

achieved by turning off/on the Wi-Fi interface. That results

in significant overhead (see Figure 11). If we can have more

control on the power states of the Wi-Fi hardware (e.g., if

we can directly modify the firmware or if we have a Mad-

Wifi [9] style driver which implements most MAC layer

functions in driver rather than in firmware), DozyAP should

be able to save significantly more power. Therefore, we

measure how much time DozyAP can put the Wi-Fi inter-

face of a mobile SoftAP to sleep. Figure 13 shows the re-

sults. We can see that the Wi-Fi interface of a SoftAP can

stay in sleep mode for 47%-88% of the total time in the five

applications. Even in the busy download case, we can turn

the Wi-Fi interface to sleep for 11% of the total time. These

results demonstrate the potential of DozyAP to significantly

reduce the power consumption of Wi-Fi tethering. Given

proper control over the Wi-Fi hardware, more energy is ex-

pected to be saved from sleeping.

We also evaluate the Wi-Fi interface sleep time with the

real traces of the eight users in MoodSense [21]. To do it,

we wrote a program to analyze the packet inter-arrival time

of the traces and calculate the Wi-Fi interface sleep time as

if these traces have happened in Wi-Fi tethering. To make

the calculation reasonable, we ignore all the inter-packet

arrival intervals larger than 5 minutes. That is, for any inter-

vals larger than 5 minutes, we treat it as if the user stopped

using the phone and turned Wi-Fi tethering off. This treat-

ment is conservative because a user may spend more than 5

minutes to read a long news article or Wi-Fi tethering might

not be turned off even the user stopped using the phone for

5 minutes. Figure 14 shows the calculated results. We can

see that DozyAP is able to allow the Wi-Fi interface of a

SoftAP stay in sleep mode for 77%-95% of the time, for the

mixed, multi-application real user traffic. The numbers in

Figure 14 are higher than the ones in Figure 13. The reason

is because the experiments in Figure 13 focused on single

application usage only. In practice users may use multiple

applications one by one. Switching from one application to

another leads to more network idle time.

Power consumption of a client. We also measure the

power consumption of the Nexus One client in the idle case,

busy download and the five applications. Figure 15 shows

the results. We can see that DozyAP increases the power

consumption of the client by less than 7.1% for the five ap-

plications. The reason is because that the client needs to

wake up to receive the sleep requests from the SoftAP and

Figure 17: Finish time of busy download and the five

applications.

Figure 18: Power saving and energy saving of the

SoftAP with two clients.

send back the sleep responses when the network is idle.

Thus, the idle case introduces the highest overhead but it is

still only 8%. Comparing to the large power saving of the

SoftAP, this small overhead is acceptable.

Multiple applications on single client. In some cases,

multiple applications may run on a single client simultane-

ously. We evaluate DozyAP in a typical scenario where a

user is reading news in the foreground meanwhile listening

online music in the background. To do it, we first started

Douban FM (which is popular app in China like Last.fm).

Once the music began to load, we started the news reading

program (the same as before) immediately. Figure 16 shows

the power saving and energy saving of the SoftAP. The av-

erage result over ten experiments is 14.5% and 14.2% for

power saving and energy saving, respectively.

5.3 Latency
DozyAP incurs extra network latency because it delays

packet transmissions when a SoftAP is in sleep mode. If the

extra latency is user perceivable, it may impair user experi-

ence. As all the five applications are about fetching remote

Web content, users care about the page loading time which

is the period from the time when a user sends out a webpage

request to the time when the webpage is fetched and ren-

dered by the browser. The page loading time metric is wide-

ly used to evaluate the performance of browsers and Web

servers. We evaluate the finish time of loading content

which is the sum of the page load time of all the webpage

requests in an application. The WebView object used in our

test program is able to tell when a webpage is loaded. In the

experiments, we sent out all the webpage requests of an

application one by one without any time interval and calcu-

lated the total finish time.

Figure 17 shows the average result and the variance in

busy download and the five applications. We can see that

DozyAP introduces very small extra network latency, rang-

ing from 0.9% to 5.1%. Such small extra latency is hardly

perceivable by users because of two reasons. First, as the 3G

network has limited throughput and large RTT, it takes sev-

eral hundred milliseconds to even seconds to load a

webpage. Second, the time variance of the page loading

time is pretty large, up to several seconds. That is, even

without DozyAP, users already experience long page load-

ing time with large variance. Therefore, the small latency

increase of less than 5.1% is very hard to detect.

5.4 Multiple Clients
We evaluate the performance of DozyAP when two cli-

ents are associated with a SoftAP. One client is a Nexus

One smartphone and the other is a Kindle Fire tablet. Each

client ran the same programs simultaneously. Figure 18

shows the average energy saving and power saving in busy

download, the five applications and the idle case. As ex-

pected, the most power and energy savings are lower than

the ones in single client scenario. However, the saving in

download case does not drop as much as other applications.

It is because in the download case the 3G connection was

always fully utilized. No matter a client or multiple clients

were downloading, the 3G connection was always the bot-

tleneck so that the sleep time for the SoftAP would not drop

much. Another finding is that the saving for video streaming

has a significant drop (from about 28% to less than 10%).

The reason is that two clients were competing in streaming

video so that both of them needed more time to finish. Thus,

the SoftAP had less opportunity to sleep.

It is worth noting that, in the rare case where many clients

share the same SoftAP, the energy gain of DozyAP becomes

less and the overhead on clients may increase significantly.

DozyAP can disable and enable the sleep protocol on the

fly, depending on the number of clients. In our implementa-

tion, we disable the sleep protocol if the SoftAP has more

than two clients and enable the sleep protocol if there are

only one or two clients.

6. DISCUSSIONS AND FUTURE WORK
DozyAP requires installing a loadable module on a client,

which restricts the number of clients it can support. It may

be hard or impossible to upgrade the software of dumb Wi-

Fi client devices, e.g., music players and e-readers. Howev-

er, to access the Internet, most people use “smart” devices

including smartphones, tablets and laptops. All these devic-

es are programmable and upgradable. The loadable module

in our implementation can immediately work on all the An-

droid-based smartphones and tablets. It can also be easily

ported to the other devices running a Linux-style OS kernel

including iOS. For Windows and Windows Phone based

devices, a similar approach can be used as well. One can

implement the client part in a loadable Network Driver In-

terface Specification (NDIS) [6] driver without modifying

the source code of the OS. Therefore, DozyAP is able to

support a wide range of diverse Wi-Fi client devices.

DozyAP takes advantage of the speed discrepancy be-

tween cellular and Wi-Fi. One may argue that such an ad-

vantage will not exist when 4G is deployed. However, the

speed of Wi-Fi increases fast too. With 11n and 11ac, there

is still a big gap between cellular and Wi-Fi. In addition, our

solution benefits not only from such a speed discrepancy,

but also from the long content consuming time of users.

Our implementation uses fixed parameter values derived

from the measurement results, which can be improved. For

example, one may use a dynamic approach to tune the pa-

rameters to better adapt to the network conditions. Even

though we use fixed values, we take a conservative way,

e.g., the sleep time starts from a small value of 100ms. As

shown in Figure 8, the tuning procedure of parameter init is

also conservative.

More power can be saved through transmission power

adaptation. The built-in Wi-Fi tethering on existing

smartphones always uses the highest transmission power. It

wastes energy because a SoftAP is often close to its clients

in Wi-Fi tethering. We plan to design a scheme to automati-

cally adjust the transmission power based on the network

conditions (e.g., RSSI and packet loss).

We also plan to further take advantage of the bandwidth

discrepancy between 3G and Wi-Fi to create more opportu-

nities for a SoftAP to sleep. The basic idea is shaping the

traffic between 3G and Wi-Fi. For downlink traffic, the Sof-

tAP can buffer the packets received from 3G and send them

to the client over Wi-Fi in batch. For uplink traffic, if the 3G

connection is congested, the SoftAP can ask the client to

stop sending more data. Thus, the Wi-Fi interface of both

the SoftAP and the client can sleep longer.

7. RELATED WORK
Wi-Fi power saving. There has been a lot of research ef-

fort devoted to power saving in Wi-Fi [11-13, 15, 17, 19,

23, 25-28], focusing on improving the existing PSM in gen-

eral or targeting at specific applications or usage scenarios.

To name some recent work, Catnap [15] exploits the band-

width discrepancy between Wi-Fi and broadband to save

energy for mobile devices. NAPman [28] employs an ener-

gy-aware scheduling algorithm to reduce energy consump-

tion by eliminating unnecessary retransmissions. SleepWell

[25] coordinates the activity circles of multiple APs to allow

client devices to sleep longer. All these solutions are for Wi-

Fi clients only. DozyAP is complementary, focusing on the

power efficiency of APs. Putting an AP to sleep is more

challenging than putting a client to sleep because client de-

vices expect that their AP is always on. To avoid packet

loss, a SoftAP in DozyAP must coordinate its sleep sched-

ule with its clients, which is different from existing work.

 There is little work on power saving of APs. In [20, 32],

the authors propose to extend the IEEE 802.11 standard to

support power saving access points for multi-hop so-

lar/battery powered applications. Without building any real

systems, they focus on protocol analysis and simulation,

assuming Network Allocation Vector (NAV) can be used.

Our work focuses on system design and implementation.

We build real systems on commercial smartphones and do

evaluation with real experiments. In addition, the NAV-

based approach cannot work on existing smartphones be-

cause NAV is only visible in firmware. Cool-Tether [29]

considers an alternative way to address the mobile hotspot

problem that involves reversing the role of the phone and

the client. However, it significantly increases the power

consumption of the client and does not support multiple

clients.

Traffic-driven design. Adapting to traffic load for better

sleeping is not a new idea [11, 27]. Traffic patterns in dif-

ferent applications and scenarios have also been studied in

some papers and the similar observations are identified (e.g.,

the large portion of network idle time) [19, 23]. DozyAP

builds on top of the basic techniques and applies them to

Wi-Fi tethering scenario. Furthermore, DozyAP can be im-

proved by leveraging existing literature, e.g., by traffic

shaping [13, 15, 26] and sleeping in short intervals [23].

Sleep scheduling. Sleep/wake scheduling has been ex-

tensively studied in Bluetooth domain, e.g., [16, 22] and

sensor network domain, e.g., [14, 24, 31]. However, those

approaches usually focus on MAC layer design, resulting in

a new MAC protocol, and often require time synchroniza-

tion. DozyAP employs a simple application-level protocol

to coordinate the sleep schedule of a SoftAP with its client,

without requiring time synchronization or any modifications

on existing IEEE 802.11 protocol. Thus, DozyAP is easy to

deploy on existing smartphones.

Dedicated Wi-Fi tethering devices. MiFi [3] is a dedi-

cated mobile Wi-Fi hotspot device. However, such a device

also stays in a high power state even without any ongoing

traffic. We measured a Huawei E5830 MiFi device and

found the average power consumption was as high as

420mw in idle case. We believe MiFi devices can benefit

from DozyAP design if they are programmable.

In addition, MyWi Ondemand [5] makes Wi-Fi tethering

easy to use for an iPhone and an iPad paired over Bluetooth.

When a user leaves a Wi-Fi network and uses her iPad, Wi-

Fi tethering can be automatically enabled between her iPad

and her iPhone. MyWi Ondemand provides a convenient

way to decide when to enable and disable Wi-Fi tethering

but does not save power when Wi-Fi tethering is enabled.

8. CONCLUSIONS
In this paper we have studied the power efficiency of Wi-

Fi tethering. We show that Wi-Fi tethering on existing

smartphones is power hungry and wastes energy unneces-

sarily, but there are many opportunities to save power by

putting a mobile SoftAP to sleep. We propose DozyAP sys-

tem to improve the power efficiency of Wi-Fi tethering.

DozyAP employs a lightweight yet reliable sleep request-

response protocol for a mobile SoftAP to coordinate its

sleep schedule with its clients without requiring tight time

synchronization. Based on our findings on the traffic pat-

terns of typical applications used in Wi-Fi tethering, we

design a two-stage adaptive sleep algorithm to allow a mo-

bile SoftAP to automatically adapt to the on-going traffic

load for the best power saving. We have implemented

DozyAP system on commercial smartphones. Experimental

results demonstrate that DozyAP is able to significantly

reduce the power consumption of Wi-Fi tethering without

impairing the user experience.

ACKNOWLEDGEMENTS
We sincerely thank our shepherd, Dr. Kameswari Chebrolu,

as well as anonymous reviewers, whose comments and

feedback helped improve this paper. We also thank Dr. Chiu

C. Tan (Temple University), Ahmad Rahmati (Rice Univer-

sity), and our colleagues at Wireless and Networking Group,

Microsoft Research Asia for fruitful discussions and valua-

ble suggestions. The W&M team was supported in part by

NSF grants CNS-1117412 and CAREER Award CNS-

0747108.

REFERENCES
[1] Android WebKit package and WebView class,

http://developer.android.com/reference/android/webkit/

package-summary.html

[2] Broadcom, BCM4329. http://www. broadcom.com.

[3] MiFi. http://en.wikipedia.org/wiki/MiFi.

[4] Monsoon Power Monitor. http://www.msoon.com/

LabEquipment/PowerMonitor/.

[5] MyWi and MyWi Ondemand. http://intelliborn.com/

mywi.html.

[6] Network Driver Interface Specification (NDIS),

http://msdn.microsoft.com/en-us/library/ff559102.aspx.

[7] Tcpdump. http://www.tcpdump.org/.

[8] The Android Market, https://market.android.com/.

[9] The MadWifi project. http://madwifi-project.org/.

[10] Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications. IEEE Std 802.11,

2007.

[11] M. Anand, E. Nightingale, and J. Flinn. Self-Tuning

Wireless Network Power Management. In MobiCom,

2003.

[12] D. Bertozzi, L. Benini, and B. Ricco. Power Aware

Network Interface Management for Streaming Multi-

media. In IEEE WCNC, 2002.

[13] S. Chandra and A. Vahdat. Application-specific net-

work management for energy-aware streaming of popu-

lar multimedia formats. In USENIX ATC, 2002.

[14] T. Dam and K. Langendoen. An Adaptive Energy-

Efficient MAC Protocol for Wireless Sensor Networks.

In SenSys, 2003.

[15] F. Dogar, P. Steenkiste and K. Papagiannaki. Catnap:

Exploit High Bandwidth Wireless Interfaces to Save

Energy for Mobile Devices. In Mobisys, 2010.

[16] S. Garg, M. Kalia and R. Shorey. MAC Scheduling

Policies for Power Optimization in Bluetooth: A Master

Driven TDD Wireless System. In IEEE VTC, 2000.

[17] Y. He and R. Yuan. A Novel Scheduled Power Saving

Mechanism for 802.11 Wireless LANs. IEEE Transac-

tions on Mobile Computing, 8(10):1368–1383, 2009.

[18] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang and

P. Bahl. Anatomizing Application Performance Differ-

ences on Smartphones. In MobiSys, 2010.

[19] R. Krashinsky and H. Balakrishnan. Minimizing energy

for wireless web access with bounded slowdown. In

MobiCom, 2002.

[20] Y. Li, T. D. Todd and D. Zhao. Access Point Power

Saving in Solar/Battery Powered IEEE 802.11 ESS

Mesh Networks. In IEEE QShine, 2005.

[21] R. LiKamWa, Y. Liu, N. D. Lane and L. Zhong. Can

Your Smartphone Infer Your Mood?. In PhoneSense

workshop, 2011.

[22] T. Lin and Y. Tseng. An Adaptive Sniff Scheduling

Scheme for Power Saving in Bluetooth. In IEEE Wire-

less Communications, 9(6):92-103, 2002.

[23] J. Liu and L. Zhong. Micro Power Management of Ac-

tive 802.11 Interfaces. In MobiSys, 2008.

[24] G. Lu, N. Sadagopan and B. Krishnamachari. Delay

Efficient Sleep Scheduling in Wireless Sensor Net-

works. In Infocom, 2005.

[25] J. Manweiler and R. R. Choudhury. Avoiding the Rush

Hours: WiFi Energy Mangement via Traffic Isolation.

In Mobisys, 2011.

[26] C. Poellabauer and K. Schwan. Energy-aware traffic

shaping for wireless real-time applications. In RTAS,

2004.

[27] D. Qiao and K. Shin. Smart Power-Saving Mode for

IEEE 802.11 Wireless LANs. In Infocom, 2005.

[28] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu.

NAPman: Network-Assisted Power Management for

WiFi Devices. In MobiSys, 2010.

[29] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan,

and E. M. Belding. Cool-tether: energy efficient on-the-

fly Wi-Fi hotspots using mobile phones. In CoNEXT,

pages 109-120, 2009.

[30] H. Wirtz, R. Backhaus, R. Hummen and K. Wehrle.

Establishing Mobile Ad-Hoc Networks in 802.11 Infra-

structure Mode. In WiNTECH demo session, 2011.

[31] Y. Wu, S. Fahmy and N.B. Shroff. Optimal Sleep/Wake

Scheduling for Time-Synchronized Sensor Networks

with Qos Guarantees. In IEEE/ACM Transactions on

Networking, 17(5):1508-1521, 2009.

[32] F. Zhang, T. D. Todd, D. Zhao and V. Kezys. Power

Saving Access Points for IEEE 802.11 Wireless Net-

work Infrastructure. IEEE Transactions on Mobile

Computing, Vol. 5, No. 2, 2006.

